Package ‘infinityFlow’

May 29, 2024

Title Augmenting Massively Parallel Cytometry Experiments Using Multivariate Non-Linear Regressions

Version 1.14.0

Description Pipeline to analyze and merge data files produced by BioLegend’s LEGEND-Screen or BD Human Cell Surface Marker Screening Panel (BD Lyoplates).

Depends R (>= 4.0.0), flowCore

License GPL-3

Encoding UTF-8

LazyData false

Imports stats, grDevices, utils, graphics, pbapply, matlab, png, raster, grid, uwot, gtools, Biobase, generics, parallel, methods, xgboost

Suggests knitr, rmarkdown, keras, tensorflow, glmnetUtils, e1071

VignetteBuilder knitr

RoxygenNote 7.3.0

biocViews Software, FlowCytometry, CellBasedAssays, SingleCell, Proteomics

git_url https://git.bioconductor.org/packages/infinityFlow

git_branch RELEASE_3_19

git_last_commit 3469d0a

git_last_commit_date 2024-04-30

Repository Bioconductor 3.19

Date/Publication 2024-05-29

Author Etienne Becht [cre, aut]

Maintainer Etienne Becht <etienne.becht@protonmail.com>
fitter_glmnet

Description

Wrapper to glmnet. Defined separately to avoid passing too many objects in parLapplyLB

Usage

fitter_glmnet(x = NULL, params = NULL)

Arguments

x passed from fit_regressions
params passed from fit_regressions

Value

A list with two elements: predictions and a fitted model

Examples

fitter_glmnet()
fitter_linear

Wrapper to linear model training. Defined separately to avoid passing too many objects in parLapplyLB

Usage

fitter_linear(x = NULL, params = NULL)

Arguments

x passed from fit_regressions
params passed from fit_regressions

Value

A list with two elements: predictions and a fitted model

Examples

fitter_linear()

fitter_nn

Wrapper to Neural Network training. Defined separately to avoid passing too many objects in parLapplyLB

Description

Wrapper to Neural Network training. Defined separately to avoid passing too many objects in parLapplyLB

Usage

fitter_nn(x, params)

Arguments

x passed from fit_regressions. Defines model architecture
params passed from fit_regressions
fitter_xgboost

Value
A list with two elements: predictions and a fitted model

Examples
fitter_xgboost()

fitter_svm
Wrapper to SVM training. Defined separately to avoid passing too many objects in parLapplyLB

Description
Wrapper to SVM training. Defined separately to avoid passing too many objects in parLapplyLB

Usage
fitter_svm(x = NULL, params = NULL)

Arguments
x passed from fit_regressions
params passed from fit_regressions

Value
A list with two elements: predictions and a fitted model

Examples
fitter_svm()

fitter_xgboost
Wrapper to XGBoost training. Defined separately to avoid passing too many objects in parLapplyLB

Description
Wrapper to XGBoost training. Defined separately to avoid passing too many objects in parLapplyLB

Usage
fitter_xgboost(x = NULL, params = NULL)
infinity_flow

Arguments

x passed from fit_regressions
params passed from fit_regressions

Value

A list with two elements: predictions and a fitted model

Examples

fitter_xgboost()

infinity_flow

Wrapper to the Infinity Flow pipeline

Description

Wrapper to the Infinity Flow pipeline

Usage

infinity_flow(
 path_to_fcs,
 path_to_output,
 path_to_intermediary_results = tempdir(),
 backbone_selection_file = NULL,
 annotation = NULL,
 isotype = NULL,
 input_events_downsampling = Inf,
 prediction_events_downsampling = 1000,
 cores = 1L,
 your_random_seed = 123,
 verbose = TRUE,
 extra_args_read_FCS = list(emptyValue = FALSE, truncate_max_range = FALSE,
 ignore.text.offset = TRUE),
 regression_functions = list(XGBoost = fitter_xgboost),
 extra_args_regression_params = list(nrounds = 500, eta = 0.05),
 extra_args_UMAP = list(n_neighbors = 15L, min_dist = 0.2, metric = "euclidean", verbose
 = verbose, n_epochs = 1000L, n_threads = cores, n_sgd_threads = cores),
 extra_args_export = list(FCS_export = c("split", "concatenated", "none")[[1]], CSV_export
 = FALSE),
 extra_args_correct_background = list(FCS_export = c("split", "concatenated", "none")[[1]], CSV_export = FALSE),
 extra_args_plotting = list(chop_quantiles = 0.005),
 neural_networks_seed = NULL
)
Arguments

path_to_fcs Path to the input directory where input FCS files are stored (one file per well). Will look for FCS files recursively in that directory.

path_to_output Path to the output directory where final results will be stored

path_to_intermediary_results Path to results to store temporary data. If left blank, will default to a temporary directory. It may be useful to store the intermediary results to further explore the data, tweak the pipeline or to resume computations.

backbone_selection_file If that argument is missing and R is run interactively, the user will be prompted to state whether each channel in the FCS file should be considered backbone measurement, exploratory measurement or ignored. Otherwise, the user should run select_backbone_and_exploratory_markers in an interactive R session, save its output using write.csv(row.names=FALSE) and set this backbone_selection_file parameter to the path of the saved output.

annotation Named character vector. Elements should be the targets of the exploratory antibodies, names should be the name of the FCS file where that exploratory antibody was measured.

isotype Named character vector. Elements should be the isotype used in each of the well and that (e.g. IgG2). The corresponding isotype should be present in annotation (e.g. Isotype_IgG2, with this capitalization exactly). Autofluorescence measurements should be listed here as "Blank"

input_events_downsampling How many event should be kept per input FCS file. Default to no downsampling. In any case, half of the events will be used to train regression models and half to test the performance. Predictions will be made only on events from the test set, and downsamped according to prediction_events_downsampling.

prediction_events_downsampling How many event should be kept per input FCS file to output prediction for. Default to 1000.

cores Number of cores to use for parallel computing. Defaults to 1 (no parallel computing)

your_random_seed Deprecated: was used to set a seed for computationally reproducible results but is not allowed by Bioconductor. Please set a random seed yourself using set.seed(somenumber) if you desire computationally-reproducible results.

verbose Whether to print information about progress

extra_args_read_FCS list of named arguments to pass to flowCore:read.FCS. Defaults to list(emptyValue=FALSE,truncate_max_range=FALSE,ignore.text.offset=TRUE) which in our experience avoided issues with data loading.

regression_functions named list of fitter_* functions (see ls("package:infinityFlow") for the complete list). The names should be desired names for the different models. Each object of the list will correspond to a machine learning model to train. Defaults to list(XGBoost = fitter_xgboost).
select_backbone_and_exploratory_markers

For each parameter in the FCS files, interactively prompts whether it is part of the Backbone, the Infinity (exploratory) markers or should be ignored.

Description

This function will load the first of the input FCS files and extract the measured parameters as well as their labels. For each of these, it will ask the user whether it is part of the backbone measurements (which will be used as a predictor variable in regressions models), Infinity (exploratory) measurements (usually PE-conjugated or APC-conjugated, used as dependent/target variable in regressions) or discarded (e.g. for parameter such as Time, Sample IDs, Event number IDs, ...).
steady_state_lung

Usage

select_backbone_and_exploratory_markers(files)

Arguments

files character vector of paths to FCS files

Value

A data.frame

Examples

data(steady_state_lung)
dir <- tempdir()
fcs_tmp <- file.path(dir, "tmp.fcs")
library(flowCore)
write.FCS(steady_state_lung[[1]], file <- fcs_tmp)
if(interactive()){
 select_backbone_and_exploratory_markers(fcs_tmp)
}

steady_state_lung Subset of a massively parallel cytometry experiment of mouse lung single cells

Description

Subset of a massively parallel cytometry experiment of mouse lung single cells

Usage

data(steady_state_lung)

Format

a flowSet containing 10 flowFrames (thus corresponding to 10 FCS files)

Source

https://flowrepository.org/id/FR-FCM-Z2LP
steady_state_lung_annotation

Target and isotypes annotation for the data object infinityFlow::steady_state_lung

Description
Target and isotypes annotation for the data object infinityFlow::steady_state_lung

Usage
data(steady_state_lung_annotation)

Format
a data frame specifying the Infinity antibody targets and isotypes for each flowFrame of the steady_state_lung flowSet

steady_state_lung_backbone_specification

Backbone and Infinity antibodies specification for the data object infinityFlow::steady_state_lung

Description
Backbone and Infinity antibodies specification for the data object infinityFlow::steady_state_lung

Usage
data(steady_state_lung_backbone_specification)

Format
a data frame specifying the Infinity antibody targets and isotypes for each flowFrame of the steady_state_lung flowSet
Index

* datasets
 steady_state_lung, 8
 steady_state_lung_annotation, 9
 steady_state_lung_backbone_specification, 9

fitter_glmnet, 2
fitter_linear, 3
fitter_nn, 3
fitter_svm, 4
fitter_xgboost, 4

infinity_flow, 5

select_backbone_and_exploratory_markers, 6, 7
steady_state_lung, 8
steady_state_lung_annotation, 9
steady_state_lung_backbone_specification, 9