Package ‘martini’

January 8, 2024

Type Package
Title GWAS Incorporating Networks
Version 1.22.0
Description martini deals with the low power inherent to GWAS studies by using prior knowledge represented as a network. SNPs are the vertices of the network, and the edges represent biological relationships between them (genomic adjacency, belonging to the same gene, physical interaction between protein products). The network is scanned using SConES, which looks for groups of SNPs maximally associated with the phenotype, that form a close subnetwork.
License GPL-3
LazyData TRUE
Imports igraph (>= 1.0.1), Matrix, memoise (>= 2.0.0), methods (>= 3.3.2), Rcpp (>= 0.12.8), snpStats (>= 1.20.0), stats, utils,
Suggests biomaRt (>= 2.34.1), circlize (>= 0.4.11), STRINGdb (>= 2.2.0), htr (>= 1.2.1), IRanges (>= 2.8.2), S4Vectors (>= 0.12.2), knitr, testthat, readr, rmarkdown
Depends R (>= 4.0)
LinkingTo Rcpp, RcppEigen (>= 0.3.3.5.0)
RoxygenNote 7.2.3
Encoding UTF-8
biocViews Software, GenomeWideAssociation, SNP, GeneticVariability, Genetics, FeatureExtraction, GraphAndNetwork, Network
VignetteBuilder knitr
URL https://github.com/hclimente/martini
BugReports https://github.com/hclimente/martini/issues
git_url https://git.bioconductor.org/packages/martini
git_branch RELEASE_3_18
git_last_commit 1304224
git_last_commit_date 2023-10-24
Repository Bioconductor 3.18
Date/Publication 2024-01-08
Author Hector Climente-Gonzalez [aut, cre]
 (https://orcid.org/0000-0002-3030-7471),
 Chloe-Agathe Azencott [aut] (https://orcid.org/0000-0003-1003-301X)
Maintainer Hector Climente-Gonzalez <hector.climente@riken.jp>

R topics documented:

arrange_covars ... 3
calculateE ... 4
calculateG ... 4
check_installed ... 5
connect_biomart .. 5
get_adjacency .. 6
get_GI_network ... 6
get_GM_network .. 7
get_grid ... 8
get_GS_network .. 9
gtx .. 10
get_gxg ... 10
get_gxg_biogrid ... 10
get_gxg_string .. 11
get_snp_modules ... 11
group_snps .. 12
gwas2bed .. 12
is_coherent ... 13
ldweight_edges ... 13
maxflow ... 14
mget_gxg_biogrid ... 15
mget_gxg_string .. 15
mincut .. 16
mincut.cv ... 16
mincut_c ... 17
minigwas ... 18
minippi ... 18
minisnpMapping ... 19
organism_id2name ... 19
permute_snpMatrix ... 19
plot_ideogram ... 20
sanitize_map .. 20
sanitize_snpMapping 21
scones ... 21
scones.cv .. 22
scones.cv_ ... 24
scones_ ... 24
score_fold .. 25
search_cones ... 26
arrange_covars

Prepare covariates for `scones`

Description

Prepares de covariates data.frame for the functions used in `scones`, like `single_snp_association` or `score_folds`.

Usage

```
arrange_covars(gwas, covars)
```

Arguments

- `gwas` A SnpMatrix object with the GWAS information.
- `covars` A data frame with the covariates. It must contain a column `sample` containing the sample IDs, and an additional columns for each covariate.

Value

The covars data.frame, with the rows in the same order as gwas.
calculateE

Calculate the environmental component of the phenotype

Description

Calculates the environmental component of the phenotype using the variance in the genetic component.

Usage

`calculateE(G, h2)`

Arguments

- **G**
 The genetic component of the phenotype.
- **h2**
 The heritability.

Value

A vector with the environmental component of each sample.

calculateG

Calculate the genetic component of the phenotype

Description

Calculates the genetic component of the phenotype from a genotype.

Usage

`calculateG(effectSize, X, model)`

Arguments

- **effectSize**
 A vector with the effect size of each SNP.
- **X**
 Genotypes in a numeric matrix, where each row is a sample and each column a SNP.
- **model**
 Genetic model to assume.

Value

A vector with the genetic component of each sample.
check_installed

Description
Checks if a package is installed, launches an error if it is not.

Usage
check_installed(pkgs, fn = "This function")

Arguments
- pkgs: Character vector with the names of the packages.
- fn: Function calling the check.

Value
The package is loaded into the namespace.

Examples
martini:::check_installed(c("martini"))
Not run: martini:::check_installed("martinid")

connect_biomart

Description
Opens a biomaRt connection for the relevant species.

Usage
connect_biomart(organism)

Arguments
- organism: String containing the ensembl species name (e.g. hsapiens for human)
get_adjacency

Description

Compute Laplacian matrix

Usage

`get_adjacency(gwas, net)`

Arguments

- `gwas`: A SnpMatrix object with the GWAS information.
- `net`: An igraph network that connects the SNPs.

Value

A Laplacian matrix.

get_GI_network

Description

Get gene-interaction network.

Creates a network of SNPs where each SNP is connected as in the GM network and, in addition, to all the other SNPs pertaining to any interactor of the gene it is mapped to. Corresponds to the gene-interaction (GI) network described by Azencott et al.

Usage

```r
get_GI_network(
  gwas,
  organism = 9606,
  snpMapping = snp2ensembl(gwas, organism),
  ppi = get_gxg("biogrid", organism, flush),
  col_ppi = c("gene1", "gene2"),
  col_genes = c("snp", "gene"),
  flush = FALSE
)
```
get_GM_network

Arguments

- **gwas**: A SnpMatrix object with the GWAS information.
- **organism**: Tax ID of the studied organism. The default is 9606 (human).
- **snpMapping**: A data.frame informing how SNPs map to genes. It contains minimum two columns: SNP id and a gene it maps to. Each row corresponds to one gene-SNP mapping. Unless column names are specified using `col_genes`, involved columns must be named 'snp' and 'gene'.
- **ppi**: A data.frame describing protein-protein interactions with at least two columns. Gene ids must be the contained in snpMapping. Unless column names are specified using `col_ppi`, involved columns must be named gene1 and gene2.
- **col_ppi**: Optional, length-2 character vector with the names of the two columns involving the protein-protein interactions.
- **col_genes**: Optional, length-2 character vector with the names of the two columns involving the SNP-gene mapping. The first element is the column of the SNP, and the second is the column of the gene.
- **flush**: Remove cached results? Boolean value.

Value

An igraph network of the GI network of the SNPs.

References

Examples

```r
get_GI_network(minigwas, snpMapping = minisnpMapping, ppi = minippi)
```

Description

Creates a network of SNPs where each SNP is connected as in the GS network and, in addition, to all the other SNPs pertaining to the same gene. Corresponds to the gene membership (GM) network described by Azencott et al.

Usage

```r
get_GM_network(  
gwas,  
organism = 9606,  
snpMapping = snp2ensembl(gwas, organism),  
col_genes = c("snp", "gene")
)
```
get_grid

Arguments

- `gwas`: A SnpMatrix object with the GWAS information.
- `organism`: Tax ID of the studied organism. The default is 9606 (human).
- `snpMapping`: A data.frame informing how SNPs map to genes. It contains minimum two columns: SNP id and a gene it maps to. Each row corresponds to one gene-SNP mapping. Unless column names are specified using `col_genes`, involved columns must be named `snp` and `gene`.
- `col_genes`: Optional, length-2 character vector with the names of the two columns involving the SNP-gene mapping. The first element is the column of the SNP, and the second is the column of the gene.

Value

An igraph network of the GM network of the SNPs.

References

Examples

```r
get_GM_network(minigwas, snpMapping = minisnpMapping)
```

get_grid

Parse scones.cv settings

Description

Creates a list composed by all scones.cv settings, with the values provided by the user, or the default ones if none is provided.

Usage

```r
get_grid(c = numeric(), etas = numeric(), lambdas = numeric())
```

Arguments

- `c`: Numeric vector with the association scores of the SNPs. Specify it to automatically an appropriate range of etas and lambdas.
- `etas`: Numeric vector with the etas to explore in the grid search. If omitted, it’s automatically created based on the association scores.
- `lambdas`: Numeric vector with the lambdas to explore in the grid search. If omitted, it’s automatically created based on the association scores.
get_GS_network

Value

A list of scones.cv settings.

Examples

martini:::get_grid(etas = c(1,2,3), lambdas = c(4,5,6))
martini:::get_grid(c = c(1,10,100))

Description

Creates a network of SNPs where each SNP is connected to its adjacent SNPs in the genome sequence. Corresponds to the genomic sequence (GS) network described by Azencott et al.

Usage

get_GS_network(gwas)

Arguments

 gwas A SnpMatrix object with the GWAS information.

Value

An igraph network of the GS network of the SNPs.

References

Examples

get_GS_network(minigwas)
get_gxg

Get gene interactions

Description

Wrapper for the different functions to get gene-gene interactions. Supports cached results.

Usage

```r
get_gxg(db, organism, flush)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>db</td>
<td>String containing the database to obtain the gene-gene interactions from. Possible values: 'biogrid', 'string'.</td>
</tr>
<tr>
<td>organism</td>
<td>Tax ID of the studied organism. The default is 9606 (human).</td>
</tr>
<tr>
<td>flush</td>
<td>Remove cached results? Boolean value.</td>
</tr>
</tbody>
</table>

Value

A data.frame with two columns with pairs of interacting proteins.

get_gxg_biogrid

Get BioGRID protein-protein interactions.

Description

Get all protein-protein interactions for an organism from BioGRID.

Usage

```r
gtgxg_biogrid(organism = 9606)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>organism</td>
<td>Tax ID of the studied organism. The default is 9606 (human).</td>
</tr>
</tbody>
</table>

Value

A data.frame with two columns with pairs of interacting proteins.

Examples

```r
# download dog interactions
## Not run: martini:::gtgxg_biogrid(9615)
```
get_gxg_string

Get STRING protein-protein interactions.

Description
Get all protein-protein interactions for an organism from STRING. It uses a score cut-off of 400.

Usage
get_gxg_string(organism = 9606)

Arguments
organism Tax ID of the studied organism. The default is 9606 (human).

Value
A data.frame with two columns with pairs of interacting proteins.

Examples
download frog interactions
Not run: martini::get_gxg_string(8364)

get_snp_modules
Return groups of interconnected SNPs.

Description
Find modules composed by interconnected SNPs.

Usage
get_snp_modules(gwas, net)

Arguments
gwas A SnpMatrix object with the GWAS information.
net An igraph network that connects the SNPs.

Value
A list with the modules of selected SNPs.
Examples

```r
## Not run:
gi <- get_GI_network(minigwas, snpMapping = minisnpMapping, ppi = minippi)
cones <- search_cones(minigwas, gi)
martini:::get_snp_modules(cones, gi)
## End(Not run)
```

group_snps

Groups nearby SNPs

Description

Groups SNPs closer than a specified threshold of distance.

Usage

```r
group_snps(bed, chr_col, pos_col, threshold)
```

Arguments

- `bed`: data.frame containing at least two properties (chromosome and position) of a set of SNPs.
- `chr_col`: Name of the column containing the SNP chromosome.
- `pos_col`: Name of the column containing the SNP position.
- `threshold`: Maximum distance to group two SNPs group.

Value

A data.frame in bed format, with the same dimensions as the original, but with the groups.

gwas2bed

Converts a MAP data.frame to a BED data.frame

Description

Takes a map file and:

- column 1: Used as the chromosome column in the BED file.
- column 4: Used as start and end in the BED data.frame (as we work with SNPs).

Usage

```r
gwas2bed(gwas)
```
Arguments

gwas A SnpMatrix object with the GWAS information.

Value

A BED data.frame.

Description

Checks that the different data structures have the SNPs in the same order.

Usage

is_coherent(gwas)

Arguments

gwas A SnpMatrix object with the GWAS information.

Value

TRUE if the GWAS dataset is coherent. Else, raises an error.

Examples

martini:::is_coherent(minigwas)

Description

Include linkage disequilibrium information in the SNP network. The weight of the edges will be lower the higher the linkage is.

Usage

ldweight_edges(net, ld, method = "inverse")
maxflow

Arguments

net A SNP network.
ld A dsCMatrix or dgCMatrix containing linkage disequilibrium measures, like the output of ld.
method How to incorporate linkage-disequilibrium values into the network.

Value

An copy of net where the edges weighted according to linkage disequilibrium.

Examples

```r
ld <- snpStats::ld(minigwas[['genotypes']], depth = 2, stats = "R.squared")
# don't weight edges for which LD cannot be calculated
ld[is.na(ld)] <- 0
gi <- get_GI_network(minigwas, snpMapping = minisnpMapping, ppi = minippi)
ldGi <- ldweight_edges(gi, ld)
```

maxflow

Maxflow algorithm

Description

Run the maxflow algorithm.

Usage

```r
maxflow(A, As, At)
```

Arguments

A A sparse matrix with the connectivity.
As A vector containing the edges to the source.
At A vector containing the edges to the sink.

Value

A list with vector indicating if the feature was selected and the objective score.
mget_gxg_biogrid

Description
Get all protein-protein interactions for an organism from BioGRID.

Usage
mget_gxg_biogrid(organism = 9606)

Arguments
organism Tax ID of the studied organism. The default is 9606 (human).

Value
A data.frame with two columns with pairs of interacting proteins.

Examples
download dog interactions
Not run: martini:::get_gxg_biogrid(9615)

mget_gxg_string

Description
Get all protein-protein interactions for an organism from STRING. It uses a score cut-off of 400.

Usage
mget_gxg_string(organism = 9606)

Arguments
organism Tax ID of the studied organism. The default is 9606 (human).

Value
A data.frame with two columns with pairs of interacting proteins.

Examples
download frog interactions
Not run: martini:::get_gxg_string(8364)
mincut

Run min-cut algorithm

Description

Run min-cut algorithm

Usage

mincut(gwas, net, covars, eta, lambda, score, sigmod, family, link)

Value

A copy of the SnpMatrix$map data.frame, with the following additions:

- c: contains the univariate association score for every single SNP.
- selected: logical vector indicating if the SNP was selected by SConES or not.
- module: integer with the number of the module the SNP belongs to.

mincut.cv

Run the cross-validated min-cut algorithm

Description

Run the cross-validated min-cut algorithm

Usage

mincut.cv(
 gwas, net, covars, etas, lambdas, criterion, score, sigmod, family, link,
 max_prop_snp
)
Arguments

- `gwas`: A SnpMatrix object with the GWAS information.
- `net`: An igraph network that connects the SNPs.
- `covars`: A data frame with the covariates. It must contain a column 'sample' containing the sample IDs, and an additional column for each covariate.
- `family`: A string defining the generalized linear model family. This should match one of "binomial", "poisson", "gaussian" or "gamma". See `snp.rhs.tests` for details.
- `link`: A string defining the link function for the GLM. This should match one of "logit", "log", "identity" or "inverse". See `snp.rhs.tests` for details.

Description

Run the mincut algorithm.

Usage

```
mincut_c(c, eta, lambda, W)
```

Arguments

- `c`: A vector with the association of each SNP with the phenotype.
- `eta`: A numeric with the value of the eta parameter.
- `lambda`: A numeric with the value of the eta parameter.
- `W`: A sparse matrix with the connectivity.

Value

A list with vector indicating if the feature was selected and the objective score.
minigwas

Description of the minigwas dataset.

Description
Small GWAS example.

Format
A list with 3 items:

- genotypes Genotype and phenotype information.
- fam Simulated network.
- map Result of running find_cones with gwas and net.

Examples

data(minigwas)

access different elements
minigwas[["genotypes"]]
minigwas[["map"]]
minigwas[["fam"]]

minippi

Description
data.frame describing pairs of proteins that interact for minigwas.

Examples

data(minippi)

head(minippi)
minisnpMapping

Genes for the minigwas dataset.

Description

data.frame that maps SNPs from minigwas to their gene.

Examples

data(minisnpMapping)

head(minisnpMapping)

organism_id2name

Tax id to ensembl species name

Description

Converts taxid to ensembl species name e.g. human databases are hsapiens_.*

Usage

organism_id2name(id)

Arguments

organism: Tax ID of the studied organism. The default is 9606 (human).

permute_snpMatrix

Permute samples

Description

Compute a permutation of the samples of a snpMatrix object. Useful to make sure that the folds are not stratified by phenotype.

Usage

permute_snpMatrix(gwas)

Arguments

gwas: A SnpMatrix object with the GWAS information.
plot_ideogram

Ideogram of SConES results.

Description

Create a circular ideogram of the a network results using the circlize package (Gu et al., 2014).

Usage

```r
plot_ideogram(gwas, net, covars = data.frame(), genome = "hg19")
```

Arguments

- `gwas`: A SnpMatrix object with the GWAS information.
- `net`: An igraph network that connects the SNPs.
- `covars`: A data frame with the covariates. It must contain a column 'sample' containing the sample IDs, and an additional columns for each covariate.
- `genome`: Abbreviations of the genome to use: hg19 for human (default), mm10 for mouse, etc.

Value

A circular ideogram, including the manhattan plot, and the interactions between the selected SNPs.

References

sanitize_map

Check map

Description

Check that map is a proper data.frame.

Usage

```r
sanitize_map(gwas)
```

Arguments

- `gwas`: A SnpMatrix object with the GWAS information.
sanitize_snpMapping

Check snpMapping

Description
Check that snpMapping is a proper data.frame.

Usage
sanitize_snpMapping(snpMapping, col_genes)

Arguments
- snpMapping: data.frame containing the correspondence between SNPs and genes.
- col_genes: Length 2 character vector containing the colnames containing the SNP and the
gene ids, respectively.

scones
Find connected explanatory SNPs

Description
Finds the SNPs maximally associated with a phenotype while being connected in an underlying
network.

Usage
scones(
gwas,
net,
eta,
lambda,
covars = data.frame(),
score = c("chi2", "glm", "r2"),
family = c("binomial", "poisson", "gaussian", "gamma"),
link = c("logit", "log", "identity", "inverse")
)

Arguments
- gwas: A SnpMatrix object with the GWAS information.
- net: An igraph network that connects the SNPs.
- eta: Value of the eta parameter.
- lambda: Value of the lambda parameter.
scones.cv

Find connected explanatory SNPs.

Description

Finds the SNPs maximally associated with a phenotype while being connected in an underlying network. Select the hyperparameters by cross-validation.

Usage

```r
scones.cv(
  gwas,
  net,
  covars = data.frame(),
  score = c("chi2", "glm", "r2"),
  criterion = c("stability", "bic", "aic", "aicc", "global_clustering",
               "local_clustering"),
  etas = numeric(),
  lambdas = numeric(),
)```

**Arguments**

- `gwas`: A data frame with the covariates. It must contain a column 'sample' containing the sample IDs, and an additional columns for each covariate.
- `net`: Association score to measure association between genotype and phenotype. Possible values: chi2 (default), glm.
- `covars`: A string defining the generalized linear model family. This should match one of "binomial", "poisson", "gaussian" or "gamma". See snp.rhs.tests for details.
- `link`: A string defining the link function for the GLM. This should match one of "logit", "log", "identity" or "inverse". See snp.rhs.tests for details.

**Value**

A copy of the SnpMatrix$map data.frame, with the following additions:

- c: contains the univariate association score for every single SNP.
- selected: logical vector indicating if the SNP was selected by SConES or not.
- module: integer with the number of the module the SNP belongs to.

**References**


**Examples**

```r
gi <- get_GI_network(minigwas, snpMapping = minisnpMapping, ppi = minippi)
scones(minigwas, gi, 10, 1)
```
family = c("binomial", "poisson", "gaussian", "gamma"),
link = c("logit", "log", "identity", "inverse"),
max_prop_snp = 0.5
)

Arguments

- **gwas**: A SnpMatrix object with the GWAS information.
- **net**: An igraph network that connects the SNPs.
- **covars**: A data frame with the covariates. It must contain a column 'sample' containing the sample IDs, and an additional columns for each covariate.
- **score**: Association score to measure association between genotype and phenotype. Possible values: chi2 (default), glm.
- **criterion**: String with the function to measure the quality of a split.
- **etas**: Numeric vector with the etas to explore in the grid search. If omitted, it’s automatically created based on the association scores.
- **lambdas**: Numeric vector with the lambdas to explore in the grid search. If omitted, it’s automatically created based on the association scores.
- **family**: A string defining the generalized linear model family. This should match one of "binomial", "poisson", "gaussian" or "gamma". See snp.rhs_tests for details.
- **link**: A string defining the link function for the GLM. This should match one of "logit", "log", "identity" or "inverse". See snp.rhs_tests for details.
- **max_prop_snp**: Maximum proportion of SNPs accepted in the model (between 0 and 1). Larger solutions will be discarded.

Value

A copy of the SnpMatrix$map data.frame, with the following additions:

- **c**: contains the univariate association score for every single SNP.
- **selected**: logical vector indicating if the SNP was selected by SConES or not.
- **module**: integer with the number of the module the SNP belongs to.

References


Examples

gi <- get_GI_network(minigwas, snpMapping = minisnpMapping, ppi = minippi)
scones.cv(minigwas, gi)
scones.cv(minigwas, gi, score = "glm")
**scones.cv_**

*Find connected explanatory features*

**Description**

Finds the features maximally associated with a phenotype while being connected in an underlying network. Select the hyperparameters by cross-validation.

**Usage**

```r
scones.cv_(X, y, featnames, net)
```

**Arguments**

- `X`: n x d design matrix
- `y`: Vector of length n with the outcomes
- `featnames`: Vector of length d with the feature names
- `net`: An igraph network that connects the SNPs.

**Value**

A copy of the `SnpMatrix$map` data frame, with the following additions:

- `c`: contains the univariate association score for every single SNP.
- `selected`: logical vector indicating if the SNP was selected by SConES or not.
- `module`: integer with the number of the module the SNP belongs to.

**Examples**

```r
X <- as(minigwas[['genotypes']], 'numeric')
X <- X + matrix(rnorm(2500, sd = 0.1), nrow(X), ncol(X))
gi <- get_GI_network(minigwas, snpMapping = minisnpMapping, ppi = minippi)
scones.cv_(X, minigwas[['fam']]$affected, minigwas[['map']]$snp, gi)
```

---

**scones_**

*Find connected explanatory features*

**Description**

Finds the features maximally associated with a phenotype while being connected in an underlying network.

**Usage**

```r
scones_(X, y, featnames, net, eta, lambda)
```
score_fold

Arguments

- **X**: n x d design matrix
- **y**: Vector of length n with the outcomes
- **featnames**: Vector of length d with the feature names
- **net**: An igraph network that connects the SNPs.
- **eta**: Value of the eta parameter.
- **lambda**: Value of the lambda parameter.

Value

A copy of the SnpMatrix$map data.frame, with the following additions:

- **c**: contains the univariate association score for every single SNP.
- **selected**: logical vector indicating if the SNP was selected by SConES or not.
- **module**: integer with the number of the module the SNP belongs to.

Examples

```r
X <- as(minigwas[['genotypes']], 'numeric')
X <- X + matrix(rnorm(2500, sd = 0.1), nrow(X), ncol(X))
gi <- get_GI_network(minigwas, snpMapping = minisnpMapping, ppi = minippi)
scones_(X, minigwas[['fam']]$affected, minigwas[['map']]$snp, gi, 10, 1)
```

Description

Score the solutions of a k-fold

Usage

```r
score_fold(gwas, covars, net, selected, criterion, max_prop_snp)
```

Arguments

- **gwas**: A SnpMatrix object with the GWAS information.
- **covars**: A data frame with the covariates. It must contain a column 'sample' containing the sample IDs, and an additional columns for each covariate.
- **net**: An igraph network that connects the SNPs.
- **criterion**: String with the function to measure the quality of a split.
- **max_prop_snp**: Maximum proportion of SNPs accepted in the model (between 0 and 1). Larger solutions will be discarded.
search_cones

Find connected explanatory SNPs.

Description
Finds the SNPs maximally associated with a phenotype while being connected in an underlying network (Azencott et al., 2013).

Usage
search_cones(
  gwas,
  net,
  encoding = "additive",
  sigmod = FALSE,
  covars = data.frame(),
  associationScore = c("chi2", "glm"),
  modelScore = c("stability", "bic", "aic", "aicc", "global_clustering",
                 "local_clustering"),
  etas = numeric(),
  lambdas = numeric()
)

Arguments
- **gwas**: A SnpMatrix object with the GWAS information.
- **net**: An igraph network that connects the SNPs.
- **encoding**: SNP encoding (unused argument).
- **sigmod**: Boolean. If TRUE, use the Sigmod variant of SConES, meant to prioritize tightly connected clusters of SNPs.
- **covars**: A data frame with the covariates. It must contain a column 'sample' containing the sample IDs, and an additional columns for each covariate.
- **associationScore**: Association score to measure association between genotype and phenotype.
- **modelScore**: String with the function to measure the quality of a split.
- **etas**: Numeric vector with the etas to explore in the grid search. If omitted, it’s automatically created based on the association scores.
- **lambdas**: Numeric vector with the lambdas to explore in the grid search. If omitted, it’s automatically created based on the association scores.

Value
A copy of the SnpMatrix$map data.frame, with the following additions:
- **c**: contains the univariate association score for every single SNP.
- **selected**: logical vector indicating if the SNP was selected by SConES or not.
- **module**: integer with the number of the module the SNP belongs to.
References

Examples

```r
Not run: gi <- get_GI_network(minigwas, snpMapping = minisnpMapping, ppi = minippi)
search_cones(minigwas, gi)
search_cones(minigwas, gi, encoding = "recessive")
search_cones(minigwas, gi, associationScore = "skat")
```

## sigmod

**Find connected explanatory SNPs**

**Description**
Finds the SNPs maximally associated with a phenotype while being connected in an underlying network.

**Usage**

```r
sigmod(
 gwas,
 net,
 eta,
 lambda,
 covars = data.frame(),
 score = c("chi2", "glm", "r2"),
 family = c("binomial", "poisson", "gaussian", "gamma"),
 link = c("logit", "log", "identity", "inverse")
)
```

**Arguments**

- `gwas`: A SnpMatrix object with the GWAS information.
- `net`: An igraph network that connects the SNPs.
- `eta`: Value of the eta parameter.
- `lambda`: Value of the lambda parameter.
- `covars`: A data frame with the covariates. It must contain a column ‘sample’ containing the sample IDs, and an additional columns for each covariate.
- `score`: Association score to measure association between genotype and phenotype. Possible values: chi2 (default), glm.
- `family`: A string defining the generalized linear model family. This should match one of "binomial", "poisson", "gaussian" or "gamma". See snp.rhs.tests for details.
link  A string defining the link function for the GLM. This should match one of "logit", "log", "identity" or "inverse". See `snp.rhs.tests` for details.

Value

A copy of the SnpMatrix$map data.frame, with the following additions:

- c: contains the univariate association score for every single SNP.
- selected: logical vector indicating if the SNP was selected by SConES or not.
- module: integer with the number of the module the SNP belongs to.

References


Examples

gi <- get_GI_network(minigwas, snpMapping = minisnpMapping, ppi = minippi)
sigmod(minigwas, gi, 10, 1)

sigmod.cv  Find connected explanatory SNPs.

Description

Finds the SNPs maximally associated with a phenotype while being connected in an underlying network. Select the hyperparameters by cross-validation.

Usage

```r
sigmod.cv(
 gwas,
 net,
 covars = data.frame(),
 score = c("chi2", "glm", "r2"),
 criterion = c("stability", "bic", "aic", "aicc", "global_clustering", "local_clustering"),
 etas = numeric(),
 lambdas = numeric(),
 family = c("binomial", "poisson", "gaussian", "gamma"),
 link = c("logit", "log", "identity", "inverse"),
 max_prop_snp = 0.5
)
```
Arguments

- **gwas** A SnpMatrix object with the GWAS information.
- **net** An igraph network that connects the SNPs.
- **covars** A data frame with the covariates. It must contain a column `sample` containing the sample IDs, and an additional columns for each covariate.
- **score** Association score to measure association between genotype and phenotype. Possible values: `chi2` (default), `glm`.
- **criterion** String with the function to measure the quality of a split.
- **etas** Numeric vector with the etas to explore in the grid search. If omitted, it’s automatically created based on the association scores.
- **lambdas** Numeric vector with the lambdas to explore in the grid search. If omitted, it’s automatically created based on the association scores.
- **family** A string defining the generalized linear model family. This should match one of "binomial", "poisson", "gaussian" or "gamma". See `snp.rhs.tests` for details.
- **link** A string defining the link function for the GLM. This should match one of "logit", "log", "identity" or "inverse". See `snp.rhs.tests` for details.
- **max_prop_snp** Maximum proportion of SNPs accepted in the model (between 0 and 1). Larger solutions will be discarded.

Value

A copy of the SnpMatrix$map data.frame, with the following additions:

- **c**: contains the univariate association score for every single SNP.
- **selected**: logical vector indicating if the SNP was selected by SConES or not.
- **module**: integer with the number of the module the SNP belongs to.

References


Examples

```r
gi <- get_GI_network(minigwas, snpMapping = minisnpMapping, ppi = minippi)
sigmod.cv(minigwas, gi)
sigmod.cv(minigwas, gi, score = "glm")```
Description

Finds the features maximally associated with a phenotype while being connected in an underlying network. Select the hyperparameters by cross-validation.

Usage

sigmod.cv_(X, y, featnames, net)

Arguments

X n x d design matrix
y Vector of length n with the outcomes
featnames Vector of length d with the feature names
net An igraph network that connects the SNPs.

Value

A copy of the SnpMatrix$map data.frame, with the following additions:

• c: contains the univariate association score for every single SNP.
• selected: logical vector indicating if the SNP was selected by SConES or not.
• module: integer with the number of the module the SNP belongs to.

Examples

X <- as(minigwas[['genotypes']], 'numeric')
X <- X + matrix(rnorm(2500, sd = 0.1), nrow(X), ncol(X))
gi <- get_GI_network(minigwas, snpMapping = minisnpMapping, ppi = minippi)
sigmod.cv_(X, minigwas[['fam']]

sigmod_ Find connected explanatory features

Description

Finds the features maximally associated with a phenotype while being connected in an underlying network.

Usage

sigmod_(X, y, featnames, net, eta, lambda)
simulate_causal_snps

Arguments

- **X**
 n x d design matrix
- **y**
 Vector of length n with the outcomes
- **featnames**
 Vector of length d with the feature names
- **net**
 An igraph network that connects the SNPs.
- **eta**
 Value of the eta parameter.
- **lambda**
 Value of the lambda parameter.

Value

A copy of the SnpMatrix$map data.frame, with the following additions:

- **c**: contains the univariate association score for every single SNP.
- **selected**: logical vector indicating if the SNP was selected by SConES or not.
- **module**: integer with the number of the module the SNP belongs to.

Examples

```r
X <- as(minigwas[['genotypes']], 'numeric')
X <- X + matrix(rnorm(2500, sd = 0.1), nrow(X), ncol(X))
gi <- get_GI_network(minigwas, snpMapping = minisnpMapping, ppi = minippi)
sigmoid(X, minigwas[['fam']]$affected, minigwas[['map']]$snp, gi, 10, 1)
```

simulate_causal_snps
Simulate causal SNPs

Description

Selects randomly interconnected genes as causal, then selects a proportion of them as causal.

Usage

```r
simulate_causal_snps(net, ngenes = 20, pcausal = 1)
```

Arguments

- **net**
 An igraph gene-interaction (GI) network that connects the SNPs.
- **ngenes**
 Number of causal genes.
- **pcausal**
 Number between 0 and 1, proportion of the SNPs in causal genes that are causal themselves.

Value

A vector with the ids of the simulated causal SNPs.
Examples

gi <- get_GI_network(minigwas, snpMapping = minisnpMapping, ppi = minippi)
simulate_causal_snps(gi, ngenes=2)

simulate_phenotype

Simulate phenotype

Description

Simulates a phenotype from a GWAS experiment and a specified set of causal SNPs. If the data is qualitative, only controls are used.

Usage

```r
simulate_phenotype(
  gwas,
  snps,
  h2,
  model = "additive",
  effectSize = rnorm(length(snps)),
  qualitative = FALSE,
  ncases,
  ncontrols,
  prevalence
)
```

Arguments

gwas A SnpMatrix object with the GWAS information.

snps Character vector with the SNP ids of the causal SNPs. Must match SNPs in gwas["map"]["snp.name"]

h2 Heritability of the phenotype (between 0 and 1).

model String specifying the genetic model under the phenotype. Accepted values: "additive".

effectSize Numeric vector with the same length as the number of causal SNPs. It indicates the effect size of each of the SNPs; if absent, they are sampled from a normal distribution.

qualitative Bool indicating if the phenotype is qualitative or not (quantitative).

ncases Integer specifying the number of cases to simulate in a qualitative phenotype. Required if qualitative = TRUE.

ncontrols Integer specifying the number of controls to simulate in a qualitative phenotype. Required if qualitative = TRUE.

prevalence Value between 0 and 1 specifying the population prevalence of the disease. Note that ncases cannot be greater than prevalence * number of samples. Required if qualitative = TRUE.
Value

A copy of the GWAS experiment with the new phenotypes in `gwas[["fam"]][["affected"]].

References

Examples

```r
gi <- getGI_network(minigwas, snpMapping = minisnpMapping, ppi = minippi)
causal <- simulate_causal_snps(gi, ngenes = 2)
simulate_phenotype(minigwas, causal, h2 = 1)
```

snp2ensembl

Map SNPs to Ensembl genes.

Description

Maps SNPs from a GWAS experiment to genes.

Usage

`snp2ensembl(gwas, organism = 9606, flank = 0)`

Arguments

- `gwas` A SnpMatrix object with the GWAS information.
- `organism` Tax ID of the studied organism. The default is 9606 (human).
- `flank` A number with the flanking regions around genes to be considered part of the gene i.e. SNPs mapped to them will be considered mapped to the gene.

Value

A data.frame with two columns: one for the SNP and another for the gene it has been mapped to.
snp_test
Calculate genotype-phenotype associations

Description
Calculate the association between genotypes and a phenotype, adjusting by covariates.

Usage
snp_test(gwas, covars, score, family, link)

Arguments
- **gwas**: A SnpMatrix object with the GWAS information.
- **covars**: A data frame with the covariates. It must contain a column 'sample' containing the sample IDs, and an additional columns for each covariate.
- **score**: Association score to measure association between genotype and phenotype. Possible values: chi2 (default), glm.
- **family**: A string defining the generalized linear model family. This should match one of "binomial", "poisson", "gaussian" or "gamma". See snp.rhs.tests for details.
- **link**: A string defining the link function for the GLM. This should match one of "logit", "log", "identity" or "inverse". See snp.rhs.tests for details.

Value
A named vector with the association scores.

subnet
Subgraph of vertices with an attribute

Description
Returns a subgraph matching some condition.

Usage
subnet(net, attr, values, affirmative = TRUE)

Arguments
- **net**: An igraph network.
- **attr**: An attribute of the vertices.
- **values**: Possible values of attr.
- **affirmative**: Logical. States if a condition must be its affirmation (e.g. all nodes with gene name "X"), or its negation (all nodes not with gene name "X").
Value

A subgraph containing only the vertices with attribute equal to any of the values in values.

Examples

```r
# Example 1
gi <- get_GL_network(minigwas, snpMapping = minisnpMapping, ppi = minippi)
martini:::subnet(gi, "gene", "A")
martini:::subnet(gi, "name", c("1A1", "1A3"))
```

Description

Subsample snpMatrix

Compute a permutation of the samples of a snpMatrix object. Useful to make sure that the folds are not stratified by phenotype.

Usage

```r
subset_snpMatrix(gwas, samples)
```

Arguments

- **gwas**: A SnpMatrix object with the GWAS information.
- **samples**: Vector (logical or numeric) containing the samples to select.

subvert

Vertices with an attribute

Description

Returns the nodes matching some condition.

Usage

```r
subvert(net, attr, values, affirmative = TRUE)
```

Arguments

- **net**: An igraph network.
- **attr**: An attribute of the vertices.
- **values**: Possible values of attr.
- **affirmative**: Logical. States if a condition must be its affirmation (e.g. all nodes with gene name "X"), or its negation (all nodes not with gene name "X").
Value
The vertices with attribute equal to any of the values in \texttt{values}.

Examples
\begin{verbatim}
 gi <- get_GL_network(minigwas,.snpMapping = minisnpMapping, ppi = minippi)
martini:::subvert(gi, "gene", "A")
martini:::subvert(gi, "name", c("1A1", "1A3"))
\end{verbatim}

\section*{Description}
Wrap design matrix and outcome vector into a pseudo \texttt{SnpMatrix} object.

\section*{Usage}
\begin{verbatim}
 wrap_Xy(X, y, featnames, net)
\end{verbatim}

\section*{Arguments}
\begin{itemize}
 \item \texttt{X} \hspace{1cm} n x d design matrix
 \item \texttt{y} \hspace{1cm} Vector of length n with the outcomes
 \item \texttt{featnames} \hspace{1cm} Vector of length d with the feature names
 \item \texttt{net} \hspace{1cm} An \texttt{igraph} network that connects the SNPs.
\end{itemize}
Index

* internal

arrange_covars, 3
calculateE, 4
calculateG, 4
check_installed, 5
connect_biomart, 5
get_adjacency, 6
get_grid, 8
get_gxg, 10
get_gxg_biogrid, 10
get_gxg_string, 11
get_snp_modules, 11
group_snps, 12
is_coherent, 13
mget_gxg_biogrid, 15
mget_gxg_string, 15
mincut, 16
mincut.cv, 16
organism_id2name, 19
permute_snpMatrix, 19
sanitize_map, 20
sanitize_snpMapping, 21
score_fold, 25
snp2ensembl, 33
snp_test, 34
subnet, 34
subset_snpMatrix, 35

arrange_covars, 3
calculateE, 4
calculateG, 4
check_installed, 5
connect_biomart, 5

get_adjacency, 6
get_GI_network, 6
get_GM_network, 7
get_grid, 8
get_GS_network, 9

get_gxg, 10
get_gxg_biogrid, 10
get_gxg_string, 11
get_snp_modules, 11
GM, 6
group_snps, 12
GS, 7
gwas2bed, 12
is_coherent, 13
ld, 14
ldweight_edges, 13
maxflow, 14
mget_gxg_biogrid, 15
mget_gxg_string, 15
mincut, 16
mincut.cv, 16
mincut_c, 17
minigwas, 18
minippi, 18
minisnpMapping, 19
organism_id2name, 19
permute_snpMatrix, 19
plot_ideogram, 20
sanitize_map, 20
sanitize_snpMapping, 21
scones, 21
scones.cv, 22
scones.cv_, 24
scones_, 24
score_fold, 25
search_cones, 26
sigmod, 27
sigmod.cv, 28
sigmod.cv_, 30
sigmod_, 30
simulate_causal_snps, 31
simulate_phenotype, 32
snp.rhs.tests, 17, 22, 23, 27–29, 34
snp2ensembl, 33
snp_test, 34
subnet, 34
subset_snpMatrix, 35
subvert, 35
wrap_Xy, 36