Package ‘metapone’

May 18, 2024

Type Package

Title Conducts pathway test of metabolomics data using a weighted permutation test

Version 1.10.0

Date 2022-8-20

Description The package conducts pathway testing from untargetted metabolomics data. It requires the user to supply feature-level test results, from case-control testing, regression, or other suitable feature-level tests for the study design. Weights are given to metabolic features based on how many metabolites they could potentially match to. The package can combine positive and negative mode results in pathway tests.

Depends R (>= 4.1.0), BiocParallel, fields, markdown, fdrtool, fgsea, ggplot2, ggrepel

Imports methods

biocViews Technology, MassSpectrometry, Metabolomics, Pathways

License Artistic-2.0

LazyLoad yes

NeedsCompilation no

Suggests rmarkdown, knitr

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/metapone

git_branch RELEASE_3_19

git_last_commit ef007eb

git_last_commit_date 2024-04-30

Repository Bioconductor 3.19

Date/Publication 2024-05-17

Author Leqi Tian [aut],
Tianwei Yu [aut],
Tianwei Yu [cre]

Maintainer Tianwei Yu <yutianwei@cuhk.edu.cn>
Description

The package conducts pathway testing from untargetted metabolomics data. It requires the user to supply feature-level test results, from case-control testing, regression, or other suitable feature-level tests for the study design. Weights are given to metabolic features based on how many metabolites they could potentially match to. The package can combine positive and negative mode results in pathway tests. The package contains two types of statistical testing that considers matching uncertainty - (1) a permutation test that is based on the hypergeometric test and (2) a GSEA type test with weighted features/metabolites.

Details

The package conducts (1) a weighted hypergeometric test using permutations on metabolomics data. The weights are assigned based on how many metabolites each data feature can match to, (2) a GSEA type test based on an estimation of importance of metabolites/features. The importance is evaluated by the size of matching for each metabolite/feature and the p-value of features.

The user can tune a parameter to change the penalty for multiple-matched features and choose the type of pathway testing.

Author(s)

Tianwei Yu (<yutianwei@cuhk.edu.cn>)
bbplot1d

Plot of metapone result.

Description

The function bbplot1d() selects important pathways with their P-value less than a threshold and returns ranked bubble plot showing important pathways names and their corresponding -log10(P-value).

Usage

bbplot1d(res, p_thres = 0.05, sig_metab_thres = 1, low.color = "MidnightBlue", high.color = "LightSkyBlue")

Arguments

res The result matrix obtained from metapone with columns: "p_value", "n_significant metabolites", "n_mapped_metabolites", "n_metabolites", "significant metabolites", "mapped_metabolites", "fdr".

p_thres The threshold of P-value for pathways to be shown in the bubble plot. The default threshold is 0.05.

sig_metab_thres The threshold of fractional matched significant metabolite count for pathways to be shown in the bubble plot. The default is 1.

low.color The GRB color of the lowest ldfr value to be shown in the bubble plot.

high.color The GRB color of the highest ldfr value to be shown in the bubble plot.

Author(s)

Leqi Tian (<leqitian@link.cuhk.edu.cn>)

See Also

metapone

Examples

data(hmdbCompMZ.metapone)
data(pa)
data(pos)
data(neg)
dat <- list(pos, neg)
type <- list("pos", "neg")
r<-metapone(dat, type, pa, hmdbCompMZ=hmdbCompMZ.metapone, p.threshold=0.05, n.permu=100,fractional.count.power=0.5, max.match.count=10)
bbplot1d(ptable(r)) # p_thres = 0.05
The function `bbplot2d()` selects important pathways with their P-value less than a threshold and returns a 2-D bubble plot with \(-\log_{10}(P\text{value})\) and the number of significant metabolites as coordinate axes.

Usage

```r
bbplot2d(res, p_thres = 0.05, sig_metab_thres = 1, low.color = "MidnightBlue", high.color = "LightSkyBlue")
```

Arguments

- `res`: The result matrix obtained from `metapone` with columns: "p_value", "n_significant metabolites", "n_mapped_metabolites", "n_metabolites", "significant metabolites", "mapped_metabolites", "fdr".
- `p_thres`: The threshold of P-value for pathways to be shown in the bubble plot. The default threshold is 0.05.
- `sig_metab_thres`: The threshold of fractional matched significant metabolite count for pathways to be shown in the bubble plot. The default is 1.
- `low.color`: The GRB color of the lowest ldfr value to be shown in the bubble plot.
- `high.color`: The GRB color of the highest ldfr value to be shown in the bubble plot.

Author(s)

Leqi Tian (<leqitian@link.cuhk.edu.cn>)

See Also

`metapone`

Examples

```r
data(hmdbCompMZ.metapone)
data(pa)
data(pos)
data(neg)
dat <- list(pos, neg)
type <- list("pos", "neg")
r<-metapone(dat, type, pa, hmdbCompMZ=hmdbCompMZ.metapone, p.threshold=0.05, n.permu=100,fractional.count.power=0.5, max.match.count=10)
bbplot2d(ptable(r)) # p_thres = 0.05
```
ftable

Accessor functions for the feature mapping table in a metaponeResult object.

Description

Returns a list containing the mapped features in each pathway.

Usage

S4 method for signature 'metaponeResult'
ftable(object)

Arguments

object A metaponeResult object.

Details

Each pathway is represented by a data.frame as an item in the list object. The dataframe include information of m.z, retention.time, p.value, statistic, HMDB_ID, theoretical m.z, ion.type, fractional counts.

Value

The method returns a list. Each item is for a pathway. Matched significant metabolites are included.

Author(s)

Tianwei Yu <yutianwei@cuhk.edu.cn>

See Also

ptable

Examples

data(hmdbCompMZ.metapone)
data(pa)
data(pos)
data(neg)
dat <- list(pos, neg)
type <- list("pos", "neg")
r<-metapone(dat, type, pa, hmdbCompMZ=hmdbCompMZ.metapone, p.threshold=0.05, n.permu=100, fractional.count.power=0.5, max.match.count=10)
ftable(r)[1:6]
hmdbCompMZ
the m/z values of common adduct ions of HMDB metaboites

Description

Monoisotopic mass of common adduct ions.

Usage

data("hmdbCompMZ")

Format

A data frame with 5704350 observations on the following 3 variables.

- **HMDB_ID**: HMDB ID.
- **ion.type**: Adduct ion type.
- **m.z**: the m/z of the adduct ion.

Source

https://hmdb.ca/

References

https://hmdb.ca/

Examples

data(hmdbCompMZ)

hmdbCompMZ.metapone
the m/z values of common adduct ions of metapone metaboites

Description

Monoisotopic mass of common adduct ions, limited to those included in the pathways in metapone.

Usage

data("hmdbCompMZ.metapone")
metapone

Format

A data frame with 79350 observations on the following 3 variables.

- **HMDB_ID** HMDB ID.
- **ion.type** Adduction type.
- **m.z** the m/z of the adduct ion.

Details

The main difference of using this dataset vs using hmdbCompMZ, is the metabolite universe in testing is limited to those metabolites matched to metapone pathways, not all HMDB metabolites.

Source

The Human Metabolome Database

References

The Human Metabolome Database

Examples

```r
data(hmdbCompMZ)
```

Description

Metapone conducts pathway tests for untargeted metabolomics data. It has three main characteristics: (1) expanded database combining SMPDB and Mummichog databases, with manual cleaning to remove redundancies; (2) A new weighted testing scheme to address the issue of metabolite-feature matching uncertainties; (3) Can consider positive mode and negative mode data in a single analysis.

Usage

```r
```

Arguments

dat The list of test results. An element in the list should be positive ion mode test results or negative ion mode test results with four columns: m/z, retention time, p-value, test statistic. The package doesn’t require both pos and neg to be present. One ion mode result is sufficient. Multiple ion mode results are allowed.

type The list of corresponding ion mode of each element in dat. Each element in the list should be "pos" or "neg". The size of type should be consistent with the size of dat.

pa Pathway information. A data frame with five columns: database pathway ID, pathway name, HMDB ID, KEGG ID, category of pathway.

hmdbCompMZ the m/z values of common adduct ions of HMDB metabolites. See the help file of hmdbCompMZ for details.

pos.adductlist The vector of positive adduct ions to be considered.

neg.adductlist The vector of negative adduct ions to be considered.

use.fractional.count A lot of features match to multiple metabolites by m/z. Whether to discount such matches by using fractional counts.

match.tol.ppm The ppm level when conducting m/z match.

p.threshold The threshold of p-values of metabolic features to be considered significant.

n.permu The number of permutations in permutation test.

fractional.count.power The fractional counts are taken to this power to transform the weights.

max.match.count When calculating fractional counts, some features might be matched to too many. In that case the number of matches is capped by the value of max.match.count.

use.fgsea Whether to use a GSEA type test when performing pathway testing. When it is FALSE, a permutation-based weighted hypergeometric test is performed.

use.meta Whether to perform a GSEA type test with weighted metabolites. When it is FALSE, a GSEA type test is performed on weighted features.

Value

The method returns a generic S4 object of class "metapone.result":

@test.results A matrix with 8 columns: "p_value", "n_significant_metabolites", "n_mapped_metabolites", "n_metabolites", "significant_metabolites", "mapped_metabolites", "lfdr", "adjusted.p". Each row is for a pathway. When using GSEA test, "ES", "NES", "nMoreExtreme" are returned additionally.

@mapped.features A list. Each item is for a pathway. The item lists matched significant metabolites.

The columns in test.result are the following:

p_value The p-value for each enrichment.
n_significant_metabolites
The number of weighted significant metabolites associated with the enrichment.

n_mapped_metabolites
The number of weighted metabolites associated with the enrichment.

n_metabolites
The number of metabolites associated with the enrichment.

significant_metabolites
A string with the names of significant metabolites that drive the enrichment.

mapped_metabolites
A string with the names of metabolites that drive the enrichment.

lfdr
The local fdr value for each enrichment.

adjust.p
The enrichment BH-adjusted p-value for each enrichment.

ES
The enrichment score (Available in GSEA test).

NES
The enrichment score normalized to mean enrichment of random samples of the same size (Available in GSEA test).

nMoreExtreme
The number of times a random metabolite set had a more extreme enrichment score value (Available in GSEA test).

Author(s)
Tianwei Yu (<ytianwei@cuhk.edu.cn>) Leqi Tian (<leqitian@link.cuhk.edu.cn>)

References
Small Molecule Pathway Database
Mummichog

See Also
pa, hmdbCompMZ

Examples

data(hmdbCompMZ.metapone)
data(pa)
data(pos)
data(neg)
dat <- list(pos, neg)
type <- list("pos", "neg")
Permutation-based weighted hypergeometric test
r<-metapone(dat, type, pa, hmdbCompMZ=hmdbCompMZ.metapone, p.threshold=0.05,
 n.permu=100, fractional.count.power=0.5, max.match.count=10)
hist(ptable(r)[,1])

Metabolites based GSEA test
r<-metapone(dat, type, pa, hmdbCompMZ=hmdbCompMZ.metapone, p.threshold=0.05,
 n.permu=100, fractional.count.power=0.5, max.match.count=10, use.fgsea = TRUE, use.meta = TRUE)
hist(ptable(r)[,1])
```r
# Features based GSEA test
r<-metapone(dat, type, pa, hmdbCompMZ=hmdbCompMZ.metapone, p.threshold=0.05,
            n.permu=100, fractional.count.power=0.5, max.match.count=10, use.fgsea = FALSE, use.meta = FALSE)
hist(ptable(r)[,1])
```

metaponeResult-class

Class "metaponeResult"

Description

This class represents the results of pathway testing. The testing result contains two major components: the significant level of each pathway, and the features matched to each pathway.

Objects from the Class

Objects can be created by calls of the form `new("metaponeResult", ...)`.

Slots

- `test.result`: A dataframe containing `p_value`, `n_significant metabolites`, `n_mapped metabolites`, `n_metabolites`, significant metabolites, mapped_metabolite IDs, lfdr and pathway name.

- `mapped.features`: A list containing `n` entries, where `n` is the number of pathways. Each entry is a data frame, containing the features mapped to this pathway. The information include `m.z`, `retention.time`, `p.value`, `statistic`, `HMDB_ID`, theoretical `m.z`, `ion.type`, fractional counts.

Methods

- `ptable` signature(`object = "metaponeResult"`): return the data.frame of test statistics for each pathway, including `p_value`, `n_significant metabolites`, `n_mapped metabolites`, `n_metabolites`, significant metabolites, mapped_metabolite IDs lfdr and and pathway name.

- `ftable` signature(`object = "metaponeResult"`): Returns a list containing the mapped features in each pathway. Each pathway is represented by a data.frame as an item in the list object. The dataframe include information of `m.z`, `retention.time`, `p.value`, `statistic`, `HMDB_ID`, theoretical `m.z`, `ion.type`, fractional counts.

Author(s)

Tianwei Yu
Example negative mode data from the Metabolome Atlas of the Aging Mouse Brain

Description

The data is generated from the hypocampus data of the Metabolome Atlas of the Aging Mouse Brain (ST001888) dataset. The p-values and test statistics were obtained by contrasting mouse hypocampus metabolome between prime-age mice and aging mice.

Usage

data("neg")

Format

A data frame with 6947 observations on the following 4 variables.

- m.z: a numeric vector. The mass-to-charge ratio of the features.
- retention.time: a numeric vector. The retention time of the features.
- p.value: a numeric vector. The p-values of the features.
- statistic: a numeric vector. The test statistics of the features.

References

https://www.metabolomicsworkbench.org/data/DRCCMetadata.php?Mode=Study&DataMode=FactorsData&StudyID=ST001888

Examples

data(neg)

Pathway-metabolite match file.

Description

mapps pathways with metabolites.

Usage

data("pa")
Format

A data frame with 5395 observations on the following 5 variables.

- **database**: a character vector
- **pathway.name**: a character vector
- **HMDB.ID**: a character vector
- **KEGG.ID**: a character vector
- **category**: a character vector

Source

Small Molecule Pathway Database
Mummichog

Examples

data(pa)

Description

The data is generated from the hippocampus data of the Metabolome Atlas of the Aging Mouse Brain (ST001888) dataset. The p-values and test statistics were obtained by contrasting mouse hippocampus metabolome between prime-age mice and aging mice.

Usage

data("pa")

Format

A data frame with 10085 observations on the following 4 variables.

- **m.z**: a numeric vector. The mass-to-charge ratio of the features.
- **retention.time**: a numeric vector. The retention time of the features.
- **p.value**: a numeric vector. The p-values of the features.
- **statistic**: a numeric vector. The test statistics of the features.

References

https://www.metabolomicsworkbench.org/data/DRCCMetadata.php?Mode=Study&DataMode=FactorsData&StudyID=ST001888

Examples

data(pos)
Acessor functions for the test result table in a metaponeResult object.

Description

return the data.frame of test statistics for each pathway.

Usage

S4 method for signature 'metaponeResult'
ptable(object)

Arguments

object A metaponeResult object.

Details

Includes p_value, n_significant metabolites, n_mapped_metabolites, n_metabolites, significant metabolites, mapped_metabolite IDs and pathway name.

Value

The method returns a data frame with 6 columns: "p_value", "n_significant metabolites", "n_mapped_metabolites", "n_metabolites", "significant metabolites", "mapped_metabolites".

Author(s)

Tianwei Yu <yutianwei@cuhk.edu.cn>

See Also

ftable

Examples

data(hmdbCompMZ.metapone)
data(pa)
data(pos)
data(neg)
dat <- list(pos, neg)
type <- list("pos", "neg")
r<-metapone(dat, type, pa, hmdbCompMZ=hmdbCompMZ.metapone,
 p.threshold=0.05, n.permu=100, fractional.count.power=0.5, max.match.count=10)
head(ptable(r))
Index

* classes
 metaponeResult-class, 10
* datasets
 hmdbCompMZ, 6
 hmdbCompMZ.metapone, 6
 neg, 11
 pa, 11
 pos, 12
* package
 metapone-package, 2

bbplot1d, 3
bbplot2d, 4

ftable, 5
ftable, metaponeResult-method
 (metaponeResult-class), 10
ftable, metaponeResult-method (ftable), 5

hmdbCompMZ, 6, 9
hmdbCompMZ.metapone, 6

metapone, 3, 4, 7
metapone-package, 2
metaponeResult (metaponeResult-class),
 10
metaponeResult-class, 10
metaponeResult-method
 (metaponeResult-class), 10

neg, 11

pa, 9, 11
pos, 12
ptable, 13
ptable, metaponeResult-method
 (metaponeResult-class), 10
ptable, metaponeResult-method (ptable),
 13