Package ‘methrix’

March 19, 2024

Title Fast and efficient summarization of generic bedGraph files from Bisulfite sequencing

Version 1.16.0

Description Bedgraph files generated by Bisulfite pipelines often come in various flavors. Critical downstream step requires summarization of these files into methylation/coverage matrices. This step of data aggregation is done by Methrix, including many other useful downstream functions.

License MIT + file LICENSE

Encoding UTF-8

LazyData false

Depends R (>= 3.6), data.table (>= 1.12.4), SummarizedExperiment

Imports rtracklayer, DelayedArray, HDF5Array, BSgenome, DelayedMatrixStats, parallel, methods, ggplot2, S4Vectors, matrixStats, graphics, stats, utils, GenomicRanges, IRanges

RoxygenNote 7.1.1

Suggests knitr, rmarkdown, DSS, hsseq, plotly, BSgenome.Mmusculus.UCSC.mm9, MafDb.1Kgenomes.phase3.GRCh38, MafDb.1Kgenomes.phase3.hs37d5, BSgenome.Hsapiens.UCSC.hg19, GenomicScores, Biostrings, RColorBrewer, GenomeInfoDb, testthat (>= 2.1.0)

VignetteBuilder knitr

biocViews DNAMethylation, Sequencing, Coverage

URL https://github.com/CompEpigen/methrix

BugReports https://github.com/CompEpigen/methrix/issues

git_url https://git.bioconductor.org/packages/methrix

git_branch RELEASE_3_18

git_last_commit 6ed5233

git_last_commit_date 2023-10-24

Repository Bioconductor 3.18

Date/Publication 2024-03-18
Author Anand Mayakonda [aut, cre] (<https://orcid.org/0000-0003-1162-687X>),
Reka Toth [aut] (<https://orcid.org/0000-0002-6096-1052>),
Rajbir Batra [ctb],
Clarissa Feuerstein-Akgöz [ctb],
Joschka Hey [ctb],
Maximilian Schönung [ctb],
Pavlo Lutsik [ctb]

Maintainer Anand Mayakonda <anand_mt@hotmail.com>

R topics documented:

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>combine_methrix</td>
<td>3</td>
</tr>
<tr>
<td>convert_HDF5_methrix</td>
<td>3</td>
</tr>
<tr>
<td>convert_methrix</td>
<td>4</td>
</tr>
<tr>
<td>coverage_filter</td>
<td>5</td>
</tr>
<tr>
<td>extract_CPGs</td>
<td>6</td>
</tr>
<tr>
<td>get_matrix</td>
<td>6</td>
</tr>
<tr>
<td>get_region_summary</td>
<td>7</td>
</tr>
<tr>
<td>get_stats</td>
<td>8</td>
</tr>
<tr>
<td>load_HDF5_methrix</td>
<td>9</td>
</tr>
<tr>
<td>mask_methrix</td>
<td>10</td>
</tr>
<tr>
<td>methrix-class</td>
<td>11</td>
</tr>
<tr>
<td>methrix2bsseq</td>
<td>11</td>
</tr>
<tr>
<td>methrix_data</td>
<td>12</td>
</tr>
<tr>
<td>methrix_pca</td>
<td>12</td>
</tr>
<tr>
<td>methrix_report</td>
<td>13</td>
</tr>
<tr>
<td>order_by_sd</td>
<td>14</td>
</tr>
<tr>
<td>plot_coverage</td>
<td>15</td>
</tr>
<tr>
<td>plot_density</td>
<td>16</td>
</tr>
<tr>
<td>plot_pca</td>
<td>17</td>
</tr>
<tr>
<td>plot_stats</td>
<td>18</td>
</tr>
<tr>
<td>plot_violin</td>
<td>19</td>
</tr>
<tr>
<td>read_bedgraphs</td>
<td>20</td>
</tr>
<tr>
<td>region_filter</td>
<td>22</td>
</tr>
<tr>
<td>remove_snps</td>
<td>23</td>
</tr>
<tr>
<td>remove_uncovered</td>
<td>24</td>
</tr>
<tr>
<td>save_HDF5_methrix</td>
<td>25</td>
</tr>
<tr>
<td>subset_methrix</td>
<td>25</td>
</tr>
<tr>
<td>write_bedgraphs</td>
<td>26</td>
</tr>
<tr>
<td>write_bigwigs</td>
<td>28</td>
</tr>
</tbody>
</table>

Index 29
combine_methrix Combine methrix objects

Description
Combine methrix objects

Usage
combine_methrix(m1, m2, by = c("row", "col"))

Arguments
m1 Frist methrix object
m2 Second methrix object
by The direction of combine. ‘column’ (cbind) combines samples with same regions, ‘row’ combines different regions, e.g. different chromosomes.

Details
Takes two methrix objects and combines them row- or column-wise

Value
An object of class methrix

convert_HDF5_methrix Converts HDF5 methrix object to standard in-memory object.

Description
Converts HDF5 methrix object to standard in-memory object.

Usage
convert_HDF5_methrix(m = NULL)

Arguments
m An object of class methrix, HDF5 format

Details
Takes a methrix object and returns with the same object with in-memory assay slots.
Value

An object of class `methrix`

Examples

```r
data(methrix_data)
m2 <- convert_methrix(m=methrix_data)
m <- convert_HDF5_methrix(m=m2)
```

convert_methrix

Converts an in-memory object to an on-disk HDF5 object.

Description

Converts an in-memory object to an on-disk HDF5 object.

Usage

```r
convert_methrix(m = NULL)
```

Arguments

- `m` An object of class `methrix`

Details

Takes a `methrix` object and returns with the same object with delayed array assay slots with HDF5 backend. Might take long time!

Value

An object of class `methrix`, HDF5 format

Examples

```r
data(methrix_data)
m2 <- convert_methrix(m=methrix_data)
```
coverage_filter

Filter matrices by coverage

Description

Filter matrices by coverage

Usage

coverage_filter(
 m,
 cov_thr = 1,
 min_samples = 1,
 prop_samples = 0,
 group = NULL,
 n_chunks = 1,
 n_cores = 1
)

Arguments

m
\texttt{methrix} object

cov_thr
minimum coverage required to call a loci covered

min_samples
Minimum number of samples that should have a loci with coverage \(\geq \text{cov}_\text{thr} \). If group is given, then this applies per group. Only need one of prop_samples or min_samples.

prop_samples
Minimum proportion of samples that should have a loci with coverage \(\geq \text{cov}_\text{thr} \). If group is given, then this applies per group. Only need one of prop_samples or min_samples.

group
a column name from sample annotation that defines groups. In this case, the number of min_samples will be tested group-wise.
n_chunks
Number of chunks to split the \texttt{methrix} object in case it is very large. Default = 1.
n_cores
Number of parallel instances. n_cores should be less than or equal to n_chunks. If n_chunks is not specified, then n_chunks is initialized to be equal to n_cores. Default = 1.

Details

Takes \texttt{methrix} object and filters CpGs based on coverage statistics

Value

An object of class \texttt{methrix}
Examples

```r
data('methrix_data')
# Keep only CpGs which are covered by at-least 1 read across 3 samples
coverage_filter(m = methrix_data, cov_thr = 1, min_samples = 3)
```

effect_CPGs Extracts all CpGs from a genome

Description

Extracts all CpGs from a genome

Usage

```r
effect_CPGs(ref_genome = NULL)
```

Arguments

- `ref_genome` BSgenome object or name of the installed BSgenome package. Example: BSgenome.Hsapiens.UCSC.hg19

Value

- a list of data.table containing number of CpGs and contig lengths

Examples

```r
## Not run:
hg19_cpgs = methrix::effect_CPGs(ref_genome = 'BSgenome.Hsapiens.UCSC.hg19')
## End(Not run)
```

get_matrix Extract methylation or coverage matrices

Description

Extract methylation or coverage matrices

Usage

```r
get_matrix(m, type = "M", add_loci = FALSE, in_granges = FALSE)
```
get_region_summary

Arguments

- `m` *methrix* object
- `type` can be M or C. Default 'M'
- `add_loci` Default FALSE. If TRUE adds CpG position info to the matrix and returns as a `data.table`
- `in_granges` Do you want the outcome in GRanges?

Details

Takes methrix object and returns user specified methylation or coverage matrix

Value

Coverage or Methylation matrix

Examples

```r
data('methrix_data')
#Get methylation matrix
get_matrix(m = methrix_data, type = 'M')
#Get methylation matrix along with loci
get_matrix(m = methrix_data, type = 'M', add_loci = TRUE)
#Get methylation data as a GRanges object
get_matrix(m = methrix_data, type = 'M', add_loci = TRUE, in_granges=TRUE)
```

get_region_summary
Extract and summarize methylation or coverage info by regions of interest

Description

Extract and summarize methylation or coverage info by regions of interest

Usage

```r
get_region_summary(
  m,
  regions = NULL,
  type = "M",
  how = "mean",
  overlap_type = "within",
  na_rm = TRUE,
  elementMetadata.col = NULL,
  verbose = TRUE,
  n_chunks = 1,
  n_cores = 1
)
```
get_stats

Estimate descriptive statistics

Arguments

m methrix object
regions genomic regions to be summarized. Could be a data.table with 3 columns (chr, start, end) or a GenomicRanges object
type matrix which needs to be summarized. Could be ‘M’, ‘C’. Default ‘M’
how mathematical function by which regions should be summarized. Can be one of the following: mean, sum, max, min. Default ‘mean’
overlap_type defines the type of the overlap of the CpG sites with the target region. Default value is ‘within’. For detailed description, see the findOverlaps function of the IRanges package.
na_rm Remove NA’s? Default TRUE
elementMetadata.col columns in rowData(methrix) which needs to be summarised. Default = NULL.
verbose Default TRUE
n_chunks Number of chunks to split the methrix object in case it is very large. Default = 1.
n_cores Number of parallel instances. n_cores should be less than or equal to n_chunks. If n_chunks is not specified, then n_chunks is initialized to be equal to n_cores. Default = 1.

Details

Takes methrix object and summarizes regions

Value

a coverage or methylation matrix

Examples

data('methrix_data')
get_region_summary(m = methrix_data,
regions = data.table(chr = 'chr21', start = 27867971, end = 27868103),
type = 'M', how = 'mean')

data('methrix_data')
get_stats(m = methrix_data, per_chr = TRUE)

Description

Estimate descriptive statistics

Usage

get_stats(m, per_chr = TRUE)
Arguments

- `m` - methrix object
- `per_chr` - Estimate stats per chromosome. Default TRUE

Details

Calculate descriptive statistics

Value

data.table of summary stats

See Also

plot_stats

Examples

```r
data('methrix_data')
get_stats(methrix_data)
```

Description

Loads HDF5 methrix object

Usage

```r
load_HDF5_methrix(dir = NULL, ...)
```

Arguments

- `dir` - The directory to read in from. Default NULL
- `...` - Parameters to pass to loadHDF5SummarizedExperiment

Details

Takes directory with a previously saved HDF5Array format methrix object and loads it

Value

An object of class methrix
Examples

data('methrix_data')
methrix_data_h5 <- convert_methrix(m=methrix_data)
target_dir = paste0(getwd(), '/temp1/')
save_HDF5_methrix(methrix_data_h5, dir = target_dir, replace = TRUE)
load_HDF5_methrix(target_dir)

mask_methrix

Masks too high or too low coverage

Description

Masks too high or too low coverage

Usage

mask_methrix(m, low_count = NULL, high_quantile = 0.99, n_cores = 1)

Arguments

m methrix object

low_count The minimal coverage allowed. Everything below, will get masked. Default = NULL, nothing gets masked.

high_quantile The quantile limit of coverage. Quantiles are calculated for each sample and everything that belongs to a higher quantile than the defined will be masked. Default = 0.99.

n_cores Number of parallel instances. Can only be used if methrix is in HDF5 format. Default = 1.

Details

Takes methrix object and masks sites with too high or too low coverage by putting NA for coverage and beta value. The sites will remain in the object.

Value

An object of class methrix

Examples

data('methrix_data')
mask_methrix(m = methrix_data, low_count = 5, high_quantile = 0.99)
Class Methrix

Description

S4 class Methrix

Slots
- **assays** A list of two matrices containing 'Methylation' and 'Coverage' information
- **elementMetadata** A DataFrame describing rows in corresponding assay matrices.
- **colData genome**; the name of the BSgenome that was used to extract CpGs, isHDF5: is it stored in HDF5 Array format
- **metadata** A list of metadata associated with the assays
- **NAMES** NULL

methrix2bsseq

Convert Methrix to bsseq object

Description

Convert methrix to bsseq object

Usage

methrix2bsseq(m)

Arguments

- **m** methrix object

Details

Takes methrix object and returns a bsseq object

Value

An object of class bsseq

Examples

```r
## Not run:
data('methrix_data')
methrix2bsseq(m = methrix_data)

## End(Not run)
```
methrix_data

WGBS for colon cancer, chr21 and chr22

Description

This is a subset of original 'bsseqData' converted to 'methrix' containing Whole-genome bisulfite sequencing data (WGBS) for colon cancer on chromosome 21 and 22.

Usage

data('methrix_data')

Format

An object of class 'methrix'

References

Examples

data('methrix_data')
methrix_data

methrix_pca

Principal Component Analysis

Description

Principal Component Analysis

Usage

methrix_pca(
 m,
 var = "top",
 top_var = 1000,
 ranges = NULL,
 pheno = NULL,
 do_plot = TRUE,
 n_pc = 2
)
methrix_report

Arguments

- **m**: Input `methrix` object
- **var**: Choose between random CpG sites ('rand') or most variable CpGs ('top').
- **top_var**: Number of variable CpGs to use. Default 1000 Set it to NULL to use all CpGs (which is not recommended due to memory requirements). This option is mutually exclusive with `ranges`.
- **ranges**: Genomic regions to be summarized. Could be a data.table with 3 columns (chr, start, end) or a GenomicRanges object.
- **pheno**: Column name of colData(m). Default NULL. Will be used as a factor to color different groups.
- **do_plot**: Should a plot be generated?
- **n_pc**: Default 2.

Value

PCA results

Examples

```r
data('methrix_data')
methrix_pca(methrix_data, do_plot = FALSE)
```

methrix_report

Creates a detailed interactive html summary report from Methrix object

Description

Creates a detailed interactive html summary report from Methrix object. If the directory contains required files (from previous run), it directly proceeds to generate html report.

Usage

```r
methrix_report(
  meth,
  output_dir = NULL,
  recal_stats = FALSE,
  plot_beta_dist = TRUE,
  beta_nCpG = 10000,
  prefix = NULL,
  n_thr = 4
)
```
order_by_sd

Arguments

meth methrix object
output_dir Output directory name where the files should be saved. If NULL creates a tempdir
recal_stats Whether summary statistics should be recalculated? If you are using subsetted methrix object set this to TRUE.
plot_beta_dist Default TRUE. Can be time consuming.
beta_nCpG Number of CpGs to use for estimating beta value distribution. Default 10000
prefix If provided, the name of the report and the intermediate files will start with the prefix.
n_thr Default 4. Only used if plot_beta_dist is TRUE

Value
an interactive html report

Examples

```r
## Not run:
data('methrix_data')
methrix::methrix_report(meth = methrix_data)
## End(Not run)
```

Description
Order methrix object by SD

Usage

```r
order_by_sd(m)
```

Arguments

m methrix object

Details
Takes methrix object and reorganizes the data by standard deviation

Value
An object of class methrix
Examples

data('methrix_data')
order_by_sd(m = methrix_data)

plot_coverage(methrix_data)

plot_coverage

Description

Coverage QC Plots

Usage

plot_coverage(
 m,
 type = c("hist", "dens"),
 pheno = NULL,
 perGroup = FALSE,
 lim = 100,
 size.lim = 1e+06,
 col_palette = "RdYlGn"
)

Arguments

m Input methrix object
type Choose between 'hist' (histogram) or 'dens' (density plot).
pheno Column name of colData(m). Will be used as a factor to color different groups in the plot.
perGroup Color the plots in a sample-wise manner?
lim Maximum coverage value to be plotted.
size.lim The maximum number of observations (sites*samples) to use. If the dataset is larger that this, random sites will be selected from the genome.
col_palette Name of the RColorBrewer palette to use for plotting.

Value

ggplot2 object

Examples

data('methrix_data')
plot_coverage(m = methrix_data)
Description

Density Plot of β-Values

Usage

```r
plot_density(
  m,
  ranges = NULL,
  n_cpgs = 25000,
  pheno = NULL,
  col_palette = "RdYlGn"
)
```

Arguments

- `m`: Input `methrix` object
- `ranges`: genomic regions to be summarized. Could be a data.table with 3 columns (chr, start, end) or a GenomicRanges object
- `n_cpgs`: Use these many random CpGs for plotting. Default 25000. Set it to `NULL` to use all - which can be memory expensive.
- `pheno`: Column name of `colData(m)`. Will be used as a factor to color different groups in the violin plot.
- `col_palette`: Name of the RColorBrewer palette to use for plotting.

Value

`ggplot2` object

Examples

```r
data('methrix_data')
plot_density(m = methrix_data)
```
plot_pca

Plot PCA results

Description

Plot PCA results

Usage

plot_pca(
 pca_res,
 m = NULL,
 col_anno = NULL,
 shape_anno = NULL,
 pc_x = "PC1",
 pc_y = "PC2",
 show_labels = FALSE
)

Arguments

 pca_res Results from methrix_pca
 m optinal methrix object. Default NULL
 col_anno Column name of colData(m). Default NULL. Will be used as a factor to color
different groups. Required methrix object
 shape_anno Column name of colData(m). Default NULL. Will be used as a factor to shape
different groups. Required methrix object
 pc_x Default 'PC1'
 pc_y Default 'PC2'
 show_labels Default FLASE

Value

 ggplot2 object

Examples

data('methrix_data')
mpc = methrix_pca(methrix_data, do_plot = FALSE)
plot_pca(mpc)
plot_stats

Plot descriptive statistics

Description
Plot descriptive statistics

Usage
plot_stats(
 plot_dat,
 what = "M",
 stat = "mean",
 ignore_chr = NULL,
 samples = NULL,
 n_col = NULL,
 n_row = NULL
)

Arguments
plot_dat results from get_stats
what Can be M or C. Default M
stat Can be mean or median. Default mean
ignore_chr Chromosomes to ignore. Default NULL
samples Use only these samples. Default NULL
n_col number of columns. Passed to ‘facet_wrap’
n_row number of rows. Passed to ‘facet_wrap’

Details
plot descriptive statistics results from get_stats

Value
ggplot2 object

See Also
get_stats

Examples
data('methrix_data')
gs = get_stats(methrix_data)
plot_stats(gs)
Description

Violin Plot for β-Values

Usage

```r
plot_violin(
  m,
  ranges = NULL,
  n_cpgs = 25000,
  pheno = NULL,
  col_palette = "RdYlGn"
)
```

Arguments

- `m` Input methrix object
- `ranges` genomic regions to be summarized. Could be a data.table with 3 columns (chr, start, end) or a GenomicRanges object
- `n_cpgs` Use these many random CpGs for plotting. Default 25000. Set it to NULL to use all - which can be memory expensive.
- `pheno` Column name of colData(m). Will be used as a factor to color different groups in the violin plot.
- `col_palette` Name of the RColorBrewer palette to use for plotting.

Value

ggplot2 object

Examples

```r
data('methrix_data')
plot_violin(m = methrix_data)
```
read_bedgraphs Versatile BedGraph reader.

Description

Versatile BedGraph reader.

Usage

read_bedgraphs(
 files = NULL,
 pipeline = NULL,
 zero_based = TRUE,
 stranded = FALSE,
 collapse_strands = FALSE,
 ref_cpgs = NULL,
 ref_build = NULL,
 contigs = NULL,
 vect = FALSE,
 vect_batch_size = NULL,
 coldata = NULL,
 chr_idx = NULL,
 start_idx = NULL,
 end_idx = NULL,
 beta_idx = NULL,
 M_idx = NULL,
 U_idx = NULL,
 strand_idx = NULL,
 cov_idx = NULL,
 synced_coordinates = FALSE,
 n_threads = 1,
 h5 = FALSE,
 h5_dir = NULL,
 h5temp = NULL,
 verbose = TRUE
)

Arguments

files bedgraph files.
pipeline Default NULL. Currently supports "Bismark_cov", "MethylDackel", "MethylcTools", "BisSNP", "BSseeker2_CGmap" If not known use idx arguments for manual column assignments.
zero_based Are bedgraph regions zero based? Default TRUE
stranded Default FALSE
read_bedgraphs

collapse_strands
If TRUE collapses CpGs on different crick strand into watsion. Default FALSE

ref_cpgs
BSgenome object, or name of the installed BSgenome package, or an output from `extract_CPGs`. Example: BSgenome.Hsapiens.UCSC.hg19

ref_build
reference genome for bedgraphs. Default NULL. Only used for additional details. Doesnt affect in any way.

contigs
contigs to restrict genomic CpGs to. Default all autosomes and allosomes - ignoring extra contigs.

vect
To use vectorized code. Default FALSE. Set to TRUE if you don’t have large number of BedGraph files.

vect_batch_size
Default NULL. Process samples in batches. Applicable only when vect = TRUE

coldata
An optional DataFrame describing the samples. Row names, if present, become the column names of the matrix. If NULL, then a DataFrame will be created with basename of files used as the row names.

chr_idx
column index for chromosome in bedgraph files

start_idx
column index for start position in bedgraph files

end_idx
column index for end position in bedgraph files

beta_idx
column index for beta values in bedgraph files

M_idx
column index for read counts supporting Methylation in bedgraph files

U_idx
column index for read counts supporting Un-methylation in bedgraph files

strand_idx
column index for strand information in bedgraph files

cov_idx
column index for total-coverage in bedgraph files

synced_coordinates
Are the start and end coordinates of a stranded bedgraph are synchronized between + and - strands? Possible values: FALSE (default), TRUE if the start coordinates are the start coordinates of the C on the plus strand.

n_threads
number of threads to use. Default 1. Be-careful - there is a linear increase in memory usage with number of threads. This option is does not work with Windows OS.

h5
Should the coverage and methylation matrices be stored as 'HDF5Array'

h5_dir
directory to store H5 based object

h5temp
temporary directory to store hdf5

verbose
Be little chatty ? Default TRUE.

Details
Reads BedGraph files and generates methylation and coverage matrices. Optionally arrays can be serialized as on-disk HDF5 arrays.

Value
An object of class `methrix`
region_filter

Filter matrices by region

Description

Filter matrices by region

Usage

region_filter(m, regions, type = "within")

Arguments

m methrix object

regions genomic regions to filter-out. Could be a data.table with 3 columns (chr, start, end) or a GenomicRanges object

type defines the type of the overlap of the CpG sites with the target regions. Default value is 'within'. For detailed description, see the foverlaps function of the data.table package.

Details

Takes methrix object and filters CpGs based on supplied regions in data.table or GRanges format

Value

An object of class methrix

Examples

data('methrix_data')
region_filter(m = methrix_data,
regions = data.table(chr = 'chr21', start = 27867971, end = 27868103))
remove_snps

Description

Removes CpG sites from the object if they overlap with common SNPs

Usage

```r
remove_snps(
  m,
  populations = NULL,
  maf_threshold = 0.01,
  reduce_filtering = FALSE,
  forced = FALSE,
  keep = FALSE,
  n_chunks = 1,
  n_cores = 1
)
```

Arguments

- **m** methrix object
- **populations** Populations to use. Default is all.
- **maf_threshold** The frequency threshold, above which the SNPs will be removed. Default is 0.01
- **reduce_filtering** If TRUE, the SNPs with a MAF < 0.1 will be evaluated and only the highly variable ones will be removed. Default FALSE.
- **forced** The reduce_filtering is not recommended with less than 10 samples, but can be forced. Default is FALSE.
- **keep** Do you want to keep the sites that were filtered out? In this case, the function will return with a list of wo methrix objects.
- **n_chunks** Number of chunks to split the methrix object in case it is very large. Can only be used if input data is in HDF5 format. Default = 1.
- **n_cores** Number of parallel instances. Can only be used if input data is in HDF5 format. n_cores should be less than or equal to n_chunks. If n_chunks is not specified, then n_chunks is initialized to be equal to n_cores. Default = 1.

Details

Takes methrix object and removes common SNPs. SNPs overlapping with a CpG site and have a minor allele frequency (MAF) above a threshold in any of the populations used will be selected and the corresponding CpG sites will be removed from the methrix object. With the reduce_filtering option, SNPs with MAP < 0.1 will be further evaluated. If they show low variance in the dataset, there is probably no genotype variability in the population, therefore the corresponding CpG site won’t be removed. Please keep in mind that variance thresholds are
remove_uncovered

Value
methrix object or a list of methrix objects

Examples
data('methrix_data')
remove_snps(m = methrix_data, maf_threshold=0.01)

Description
Remove loci that are uncovered across all samples

Usage
remove_uncovered(m)

Arguments
m methrix object

Details
Takes methrix object and removes loci that are uncovered across all samples

Value
An object of class methrix

Examples
data('methrix_data')
remove_uncovered(m = methrix_data)
save_HDF5_methrix

Saves HDF5 methrix object

Description

Saves HDF5 methrix object

Usage

save_HDF5_methrix(m = NULL, dir = NULL, replace = FALSE, ...)

Arguments

m methrix object

dir The directory to use. Created, if not existing. Default NULL

replace Should it overwrite the pre-existing data? FALSE by default.

... Parameters to pass to saveHDF5SummarizedExperiment

Details

Takes methrix object and saves it

Value

Nothing

Examples

data('methrix_data')
methrix_data_h5 <- convert_methrix(m=methrix_data)
target_dir = paste0(getwd(), '/temp/')
save_HDF5_methrix(methrix_data_h5, dir = target_dir, replace = TRUE)

subset_methrix

Subsets methrix object based on given conditions.

Description

Subsets methrix object based on given conditions.
Usage

subset_methrix(
 m,
 regions = NULL,
 contigs = NULL,
 samples = NULL,
 overlap_type = "within"
)

Arguments

 m methrix object
 regions genomic regions to subset by. Could be a data.table with 3 columns (chr, start, end) or a GenomicRanges object
 contigs chromosome names to subset by
 samples sample names to subset by
 overlap_type defines the type of the overlap of the CpG sites with the target region. Default value is 'within'. For detailed description, see the foverlaps function of the data.table package.

Details

Takes methrix object and filters CpGs based on coverage statistics

Value

An object of class methrix

Examples

data('methrix_data')
#Subset to chromosome 1
subset_methrix(methrix_data, contigs = 'chr21')

write_bedgraphs

Writes bedGraphs from methrix object

Description

Writes bedGraphs from methrix object
write_bedgraphs

Usage

write_bedgraphs(
 m,
 output_dir = NULL,
 rm_NA = TRUE,
 force = FALSE,
 n_thr = 4,
 compress = TRUE,
 SeqStyle = "UCSC",
 multiBed = NULL,
 metilene = FALSE,
 phenoCol = NULL,
 add_coverage = FALSE
)

Arguments

m methrix object
output_dir Output directory name where the files should be saved. If NULL creates a tempdir
rm_NA remove NAs
force forces to create files if they are existing
n_thr Default 4.
compress Whether to compress the output. Default TRUE
SeqStyle Default ‘UCSC’ with ‘chr’ prefix.
multiBed Default NULL. If provided a filename, a single bedGraph file with all samples included is generated.
metilene Default FALSE. If TRUE outputs bedgraphs in ‘metilene’ format that can be directly used for DMR calling with ‘metilene’. This option works only when multiBed = TRUE.
phenoCol Default NULL. ‘condition’ column from colData. Only applicable if metilene = TRUE
add_coverage Should the output file contain information on coverage? Default FALSE

Value

writes bedgraph files to output

Examples

data('methrix_data')
write_bedgraphs(m = methrix_data, output_dir = './temp')
#Export to metline format for DMR calling with metline
write_bedgraphs(m = methrix_data, output_dir = './temp', rm_NA = FALSE,
 metilene = TRUE, multiBed = "metline_ip", phenoCol = "Condition")
write_bigwigs Exports methrix object as bigWigs

Description
Exports methrix object as bigWigs

Usage
write_bigwigs(m, output_dir = getwd(), samp_names = NULL)

Arguments

 m methrix object
 output_dir Output directory name where the files should be saved. Default getwd()
 samp_names sample names to export

Examples

data('methrix_data')
write_bigwigs(m = methrix_data, output_dir = './temp')
Index

* datasets
 methrix_data, 12

 combine_methrix, 3
 convert_HDF5_methrix, 3
 convert_methrix, 4
 coverage_filter, 5

 data.table, 22, 26

 extract_CPGs, 6, 21

 get_matrix, 6
 get_region_summary, 7
 get_stats, 8, 18

 IRanges, 8

 load_HDF5_methrix, 9

 mask_methrix, 10
 methrix, 3–5, 7–11, 13–16, 19, 21–28
 methrix (methrix-class), 11
 methrix-class, 11
 methrix2bsseq, 11
 methrix_data, 12
 methrix_pca, 12, 17
 methrix_report, 13

 order_by_sd, 14

 plot_coverage, 15
 plot_density, 16
 plot_pca, 17
 plot_stats, 9, 18
 plot_violin, 19

 read_bedgraphs, 20
 region_filter, 22
 remove_snps, 23
 remove_uncovered, 24

 save_HDF5_methrix, 25
 subset_methrix, 25

 write_bedgraphs, 26
 write_bigwigs, 28