Package ‘methylSig’

May 21, 2024

Title MethylSig: Differential Methylation Testing for WGBS and RRBS

Data

Version 1.16.0

Date 2020-04-22

Description MethylSig is a package for testing for differentially methylated cytosines (DMCs) or regions (DMRs) in whole-genome bisulfite sequencing (WGBS) or reduced representation bisulfite sequencing (RRBS) experiments. MethylSig uses a beta binomial model to test for significant differences between groups of samples. Several options exist for either site-specific or sliding window tests, and variance estimation.

Depends R (>= 3.6)

Imports bsseq, DelayedArray, DelayedMatrixStats, DSS, IRanges, GenomeInfoDb, GenomicRanges, methods, parallel, stats, S4Vectors

Suggests BiocStyle, bsseqData, knitr, rmarkdown, testthat (>= 2.1.0), covr

License GPL-3

BugReports https://github.com/sartorlab/methylSig/issues

biocViews DNAMethylation, DifferentialMethylation, Epigenetics, Regression, MethylSeq

Encoding UTF-8

LazyData true

VignetteBuilder knitr

RoxygenNote 7.1.0

git_url https://git.bioconductor.org/packages/methylSig

git_branch RELEASE_3_19

git_last_commit 09e9352

git_last_commit_date 2024-04-30

Repository Bioconductor 3.19
bsseq_destranded

Date/Publication 2024-05-20
Author Yongseok Park [aut],
Raymond G. Cavalcante [aut, cre]
Maintainer Raymond G. Cavalcante <rcavalca@umich.edu>

Contents

bsseq_destranded ... 2
bsseq_multichrom .. 3
bsseq_stranded .. 3
diff_binomial ... 4
diff_dss_fit .. 5
diff_dss_test ... 6
diff_methylsig ... 8
filter_loci_by_coverage 10
filter_loci_by_group_coverage 11
filter_loci_by_location 12
methylSig .. 12
promoters_gr .. 13
tile_by_regions .. 14
tile_by_windows ... 14

Index 16

bsseq_destranded BSseq object read from destranded coverage files

Description
Data contains 6 methylation loci and 2 samples

Usage
bsseq_destranded

Format
A BSseq object

Source
data-raw/02-create_bsseq_rda.R

Examples
data(bsseq_destranded, package = 'methylSig')
bsseq_multichrom
BSseq object with loci on multiple chromosomes

Description
Data contains 4 methylation loci for 2 samples on 2 chromosomes

Usage
bsseq_multichrom

Format
A BSseq object

Source
data-raw/02-create_bsseq_rda.R

Examples
data(bsseq_multichrom, package = 'methylSig')

bsseq_stranded
BSseq object read from stranded coverage files

Description
Data contains 11 methylation loci and 2 samples

Usage
bsseq_stranded

Format
A BSseq object

Source
data-raw/02-create_bsseq_rda.R

Examples
data(bsseq_stranded, package = 'methylSig')
Diff_binomial

Differential methylation analysis using binomial model

Description

This function calculates differential methylation statistics using a binomial-based approach. See ‘Warning’ message below.

Usage

diff_binomial(bs, group_column, comparison_groups)

Arguments

bs
A BSseq-class object to calculate differential methylation statistics. See methylSigReadData for how to read in methylation data.

group_column
a character string indicating the column of pData(bs) to use for determining group membership.

comparison_groups
a named character vector indicating the case and control factors of group_column for the comparison.

Details

This function uses a binomial-based model to calculate differential methylation statistics. It is nearly identical to the methylKit::calculateDiffMeth function in the methylKit R package except that only the likelihood ratio test and p.adjust(..., method='BH') are used to calculate significance levels. It is significantly faster than methylKit::calculateDiffMeth function.

Value

A GRanges object containing the following mcols:

meth_case: Methylation estimate for case.

meth_control: Methylation estimate for control.

meth_diff: The difference meth_case - meth_control.

direction: The group for which the locus is hyper-methylated. Note, this is not subject to significance thresholds.

pvalue: The p-value from the t-test (t_approx = TRUE) or the Chi-Square test (t_approx = FALSE).

fdr: The Benjamini-Hochberg adjusted p-values using p.adjust(method = 'BH').

log_lik_ratio: The log likelihood ratio.

Warning

This function does not take into account the variability among samples in each group being compared.
Examples

```r
data(BS.cancer.ex, package = 'bsseqData')

bs = filter_loci_by_group_coverage(
  bs = BS.cancer.ex,
  group_column = 'Type',
  c('cancer' = 2, 'normal' = 2))

small_test = bs[1:50]

diff_gr = diff_binomial(
  bs = small_test,
  group_column = 'Type',
  comparison_groups = c('case' = 'cancer', 'control' = 'normal'))
```

diff_dss_fit

Performs model fit for general experimental design

Description

This function is a wrapper for DSS::DMLfit.multiFactor.

Usage

```r
diff_dss_fit(bs, design, formula)
```

Arguments

- `bs`: a BSseq object to calculate differential methylation statistics.
- `design`: a data.frame or DataFrame for experimental design. Should contain as many rows as there are columns (samples) in `bs`, and the order of the rows should match the columns of `bs`. If omitted, will default to `pData(bs)`.
- `formula`: a formula for the linear model. It should refer to column names from `design`. NOTE: The intercept is included by default if omitted. One can omit the intercept with a formula such as `~ 0 + group`. For clarity, it helps to include the intercept explicitly as in `~ 1 + group`.

Value

A list object with:

- `gr`: a GRanges object with loci fit.
- `design`: the data.frame input as the experimental design.
- `formula`: the formula representing the model. Can be character or formula.
- `X`: the design matrix used in regression based on the design and formula. This should be consulted to determine the appropriate contrast to use in `dss_fit_test()`.
- `fit`: a list with model fitting results. It has components `beta`, the estimated coefficients, and `var.beta` the estimated variance/covariance matrix for beta.
Examples

data(BS.cancer.ex, package = 'bsseqData')

bs = filter_loci_by_group_coverage(
 bs = BS.cancer.ex,
 group_column = 'Type',
 c('cancer' = 2, 'normal' = 2))

small_test = bs[1:50]

diff_fit = diff_dss_fit(
 bs = small_test,
 design = bsseq::pData(bs),
 formula = '~ Type')

diff_dss_test

Calculates differential methylation statistics under general experimen-
tal design

Description

This function is a wrapper for DSS::DMLtest.multiFactor with the added feature of reporting methylation rates alongside the test results via the methylation_group_column and methylation_groups parameters. See documentation below.

Usage

diff_dss_test(
 bs, diff_fit, contrast, methylation_group_column = NA, methylation_groups = NA
)

Arguments

bs a BSseq, the same used used to create diff_fit.
diff_fit a list object output by diff_dss_fit().
contrast a contrast matrix for hypothesis testing. The number of rows should match the number of columns design. Consult diff_fit$X to ensure the contrast correponds to the intended test.
methylation_group_column Optionally, a column from diff_fit$design by which to group samples and capture methylation rates. This column can be a character, factor, or numeric. In the case of numeric the samples are grouped according to the top and bottom
diff_dss_test

25 percentiles of the covariate, and the mean methylation for each group is calculated. If not a numeric, use the methylation_groups parameter to specify case and control.

methylation_groups
Optionally, a named character vector indicating the case and control factors of methylation_group_column by which to group samples and capture methylation rates. If specified, must also specify methylation_group_column.

Value
A GRanges object containing the following mcols:

stat: The test statistic.
pvalue: The p-value.
fdr: The Benjamini-Hochberg adjusted p-values using \texttt{p.adjust(method = 'BH')}.

If methylation_group_column is specified, also the following mcols:

meth_case: Methylation estimate for case.
meth_control: Methylation estimate for control.
meth_diff: The difference \texttt{meth_case - meth_control}.
direction: The group for which the locus is hyper-methylated. Note, this is not subject to significance thresholds.

Examples

\begin{verbatim}
data(BS.cancer.ex, package = 'bsseqData')

bs = filter_loci_by_group_coverage(
 bs = BS.cancer.ex,
 group_column = 'Type',
 c('cancer' = 2, 'normal' = 2))

small_test = bs[1:50]

diff_fit = diff_dss_fit(
 bs = small_test,
 design = \texttt{bsseq::pData(bs)},
 formula = '- Type')

result = diff_dss_test(
 bs = small_test,
 diff_fit = diff_fit,
 contrast = \texttt{matrix(c(0,1), ncol = 1)})

result_with_meth = diff_dss_test(
 bs = small_test,
 diff_fit = diff_fit,
 contrast = \texttt{matrix(c(0,1), ncol = 1)},
 methylation_group_column = 'Type',
\end{verbatim}
diff_methylsig

methylation_groups = c('case' = 'cancer', 'control' = 'normal')

diff_methylsig
Calculates differential methylation statistics using a Beta-binomial approach

Description

The function calculates differential methylation statistics between two groups of samples using a beta-binomial approach to calculate differential methylation statistics, accounting for variation among samples within each group. The function can be applied to a BSseq object subjected to `filter_loci_by_coverage()`, `filter_loci_by_snps()`, `filter_loci_by_group_coverage()` or any combination thereof. Moreover, the function can be applied to a BSseq object which has been tiled with `tile_by_regions()` or `tile_by_windows()`.

Usage

```r
diff_methylsig(
  bs,
  group_column,
  comparison_groups,
  disp_groups,
  local_window_size = 0,
  local_weight_function,
  t_approx = TRUE,
  n_cores = 1
)
```

Arguments

- **bs**
a BSseq object.
- **group_column**
a character string indicating the column of `pData(bs)` to use for determining group membership.
- **comparison_groups**
a named character vector indicating the case and control factors of `group_column` for the comparison.
- **disp_groups**
a named logical vector indicating the whether to use case, control, or both to estimate the dispersion.
- **local_window_size**
an integer indicating the size of the window for use in determining local information to improve mean and dispersion parameter estimations. In addition to a the distance constraint, a maximum of 5 loci upstream and downstream of the locus are used. The default is 0, indicating no local information is used.
local_weight_function

A weight kernel function. The default is the tri-weight kernel function defined as
function(u) = (1-u^2)^3. The domain of any given weight function should
be [-1,1], and the range should be [0,1].

t_approx

A logical value indicating whether to use squared t approximation for the like-
lihood ratio statistics. Chi-square approximation (t_approx = FALSE) is recom-
mended when the sample size is large. Default is TRUE.

n_cores

An integer denoting how many cores should be used for differential methyla-
tion calculations.

Value

A GRanges object containing the following mcols:

meth_case: Methylation estimate for case.

meth_control: Methylation estimate for control.

meth_diff: The difference meth_case - meth_control.

direction: The group for which the locus is hyper-methylated. Note, this is not subject to signifi-
cance thresholds.

pvalue: The p-value from the t-test (t_approx = TRUE) or the Chi-Square test (t_approx = FALSE).

fdr: The Benjamini-Hochberg adjusted p-values using p.adjust(method = 'BH').

disp_est: The dispersion estimate.

log_lik_ratio: The log likelihood ratio.

df: Degrees of freedom used when t_approx = TRUE.

Examples

data(BS.cancer.ex, package = 'bsseqData')

bs = filter_loci_by_group_coverage(
 bs = BS.cancer.ex,
 group_column = 'Type',
 c('cancer' = 2, 'normal' = 2))

small_test = bs[seq(50)]

diff_gr = diff_methylsig(
 bs = small_test,
 group_column = 'Type',
 comparison_groups = c('case' = 'cancer', 'control' = 'normal'),
 disp_groups = c('case' = TRUE, 'control' = TRUE),
 local_window_size = 0,
 t_approx = TRUE,
 n_cores = 1)
filter_loci_by_coverage

Filter BSeq object by coverage

Description

Used after bsseq::read.bismark to mark loci in samples below min_count or above max_count to 0. These loci will then be removed prior to differential analysis by filter_loci_by_group_coverage() if there are not a sufficient number of samples with appropriate coverage.

Usage

filter_loci_by_coverage(bs, min_count = 5, max_count = 500)

Arguments

bs a BSeq object resulting from bsseq::read.bismark or constructed manually by the user.

min_count an integer giving the minimum coverage required at a locus.

max_count an integer giving the maximum coverage allowed at a locus.

Value

A BSeq object with samples/loci in the coverage and methylation matrix set to 0 where the coverage was less than min_count or greater than max_count. The number of samples and loci are conserved.

Examples

bis_cov_file1 = system.file('extdata', 'bis_cov1.cov', package = 'methylSig')
bis_cov_file2 = system.file('extdata', 'bis_cov2.cov', package = 'methylSig')
test = bsseq::read.bismark(
 files = c(bis_cov_file1, bis_cov_file2),
 colData = data.frame(row.names = c('test1', 'test2')),
 nmZeroCov = FALSE,
 strandCollapse = FALSE
)
test = filter_loci_by_coverage(bs = test, min_count = 10, max_count = 500)
Filter loci by group coverage

Filter loci based on coverage threshold per sample per group

Description

An optional function to remove loci not satisfying coverage thresholds from filter_loci_by_coverage in a minimum number of samples per group.

Usage

filter_loci_by_group_coverage(bs, group_column, min_samples_per_group)

Arguments

bs a BSseq object.

group_column a character string indicating the column of pData(bs) to use for determining group membership.

min_samples_per_group a named integer vector indicating the minimum number of samples with non-zero coverage required for maintaining a locus.

Details

The filter_loci_by_coverage function marked locus/sample pairs in the coverage matrix as 0 if said pair had coverage less than minCount or more than maxCount. This function enforces a threshold on the minimum number of samples per group required for a locus to be tested in downstream testing functions.

Value

A BSseq object with only those loci having min_samples_per_group.

Examples

data(BS.cancer.ex, package = 'bsseqData')

filter_loci_by_group_coverage(
 bs = BS.cancer.ex,
 group_column = 'Type',
 min_samples_per_group = c('cancer' = 3, 'normal' = 3)
)

filter_loci_by_location

Remove loci by overlap with a GRanges object

Description

A function to remove loci from a BSseq object based on intersection with loci in a GRanges object.

Usage

filter_loci_by_location(bs, gr)

Arguments

bs a BSseq object.
gr a GRanges object.

Value

A BSseq object with loci intersecting gr removed.

Examples

data(bsseq_stranded, package = 'methylSig')
regions = GenomicRanges::GRanges(
 seqnames = c('chr1', 'chr1', 'chr1', 'chr1'),
 ranges = IRanges::IRanges(
 start = c(5,25,45,70),
 end = c(15,40,55,80)
)
)
filtered = filter_loci_by_location(bs = bsseq_stranded, gr = regions)

methylSig

MethylSig: Differential Methylation Testing for WGBS and RRBS

Description

MethylSig is a package for testing for differentially methylated cytosines (DMCs) or regions (DMRs) in whole-genome bisulfite sequencing (WGBS) or reduced representation bisulfite sequencing (RRBS) experiments. MethylSig uses a beta binomial model to test for significant differences between groups of samples. Several options exist for either site-specific or sliding window tests, and variance estimation.
methylSig functions

- `filter_loci_by_coverage()`
- `filter_loci_by_snps()`
- `tile_by_regions()`
- `tile_by_windows()`
- `filter_loci_by_group_coverage()`
- `diff_binomial()`
- `diff_methylsig()`
- `diff_methylsig_dss()`
- `annotate_diff()`
- `visualize_diff()`
- `region_enrichment_diff()`

Author(s)

Maintainer: Raymond G. Cavalcante <rcavalca@umich.edu>
Authors:

- Yongseok Park <yongpark@pitt.edu>

See Also

Useful links:

- Report bugs at https://github.com/sartorlab/methylSig/issues

| promoters_gr | GRanges object with collapsed promoters on chr21 and chr22 |

Description

Data contains 1466 promoters for use in the vignette

Usage

```r
promoters_gr
```

Format

A GRanges object

Source

data-raw/02-create.bsseq.rda.R

Examples

```r
data(promoters_gr, package = 'methylSig')
```
tile_by_regions

Group cytosine / CpG level data into regions based on genomic regions

Description

An optional function to aggregate cytosine / CpG level data into regions based on a GRanges set of genomic regions.

Usage

```
tile_by_regions(bs, gr)
```

Arguments

- `bs` a BSseq object.
- `gr` a GRanges object.

Value

A BSseq object with loci of regions matching `gr`. Coverage and methylation read count matrices are aggregated by the sums of the cytosines / CpGs in the regions per sample.

Examples

```r
data(bsseq_stranded, package = 'methylSig')
regions = GenomicRanges::GRanges(
  seqnames = c('chr1', 'chr1', 'chr1'),
  ranges = IRanges::IRanges(
    start = c(5,35,75),
    end = c(30,70,80)
  )
)
tiled = tile_by_regions(bs = bsseq_stranded, gr = regions)
```

tile_by_windows

Group cytosine / CpG level data into regions based on genomic windows

Description

An optional function to aggregate cytosine / CpG level data into regions based on a tiling of the genome by `win_size`.

Usage

```
tile_by_windows(bs, win_size = 200)
```
tile_by_windows

Arguments

bs a BSseq object.

win_size an integer indicating the size of the tiles. Default is 200bp.

Value

A BSseq object with loci consisting of a tiling of the genome by win_size bp tiles. Coverage and methylation read count matrices are aggregated by the sums of the cytosines / CpGs in the regions per sample.

Examples

data(bsseq_stranded, package = 'methylSig')

tiled = tile_by_windows(bs = bsseq_stranded, win_size = 50)
Index

* **datasets**
 - bsseq_destranded, 2
 - bsseq_multichrom, 3
 - bsseq_stranded, 3
 - promoters_gr, 13

* **internal**
 - methylSig, 12

bsseq_destranded, 2
bsseq_multichrom, 3
bsseq_stranded, 3

diff_binomial, 4
diff_dss_fit, 5
diff_dss_test, 6
diff_methylsig, 8

filter_loci_by_coverage, 10
filter_loci_by_group_coverage, 11
filter_loci_by_location, 12

methylSig, 12
methylSig-package (methylSig), 12

promoters_gr, 13

tile_by_regions, 14
tile_by_windows, 14