Package ‘methylumi’

May 30, 2024

Type Package
Title Handle Illumina methylation data
Version 2.50.0
Date 2021-10-27
Author Sean Davis, Pan Du, Sven Bilke, Tim Triche, Jr., Moiz Bootwalla
Depends Biobase, methods, R (>= 2.13), scales, reshape2, ggplot2, matrixStats, FDb.InfiniumMethylation.hg19 (>= 2.2.0), minfi
Imports BiocGenerics, S4Vectors, IRanges, GenomeInfoDb, GenomicRanges, SummarizedExperiment, Biobase, graphics, lattice, annotate, genefilter, AnnotationDbi, minfi, stats4, illuminaio, GenomicFeatures
Suggests lumi, lattice, limma, xtable, SQN, MASS, matrixStats, parallel, rtracklayer, Biostrings, TCGAMethylation450k, IlluminaHumanMethylation450kanno.imln12.hg19, FDb.InfiniumMethylation.hg18 (>= 2.2.0), Homo.sapiens, knitr
biocViews DNAMethylation, TwoChannel, Preprocessing, QualityControl, CpGIsland
Maintainer Sean Davis <seandavi@gmail.com>
Description This package provides classes for holding and manipulating Illumina methylation data. Based on eSet, it can contain MIAME information, sample information, feature information, and multiple matrices of data. An "intelligent" import function, methylumiR can read the Illumina text files and create a MethyLumiSet. methylumiDAT can directly read raw IDAT files from HumanMethylation27 and HumanMethylation450 microarrays. Normalization, background correction, and quality control features for GoldenGate, Infinium, and Infinium HD arrays are also included.
VignetteBuilder knitr

BugReports https://github.com/seandavi/methylumi/issues/new

License GPL-2
Encoding UTF-8
RoxygenNote 7.1.2

Contents
methylumi-package .. 3
CpGs ... 4
estimateM .. 4
extractBarcodeAndPosition ... 5
featureFilter ... 6
getAssayDataNameSubstitutions 7
IDATsToMatrices ... 8
IDATtoMatrix .. 8
methylData-class .. 9
MethyLumi-accessors .. 10
MethyLumi-class ... 10
MethyLumi-stripers .. 12
methylumiIDAT ... 13
methylumiGenerics .. 14
MethyLumiM-class .. 14
MethyLumiQC-class .. 16
methylumiR .. 18
MethyLumiSet-class .. 19
mldat ... 22
normalizeMethyLumiSet ... 22
plotSampleIntensities ... 23
qcplot ... 24
tcgaPipeline .. 25
varFilter .. 25

Index 27
methylumi-package

Description

This package contains a class structure for handling methylation data from Illumina as well as utility functions for loading the data from files generated by Illumina. Normalization that attempts to correct for dye bias is also included.

Important data classes include: MethyLumiSet and MethyLumiQC, both of which are subsets of the MethyLumi class, which is a subset of the eSet class.

A worked example of the use of the package can be found by typing: openVignette().

A full listing of the available documentation can be obtained by typing help.start() and selecting methylumi from the Packages link or by typing library(help="methylumi").

If you use the methylumiIDAT function or its out-of-band preprocessing mechanisms in your work, a citation to the paper "Low-level processing of Illumina Infinium DNA methylation beadarrays" by TJ Triche, DJ Weisenberger, D Van Den Berg, KD Siegmund, and PW Laird, Nucleic acids research, 2013, would be appreciated.

Details

 Package: methylumi
 Type: Package
 License: GPL

Author(s)

Sean Davis <sdavis2@mail.nih.gov>

References

 http://watson.nci.nih.gov/~sdavis/software/R

See Also

 Biobase
CpGs

Data frame describing loci on the 27 and 450k arrays.

Description

Data frame describing loci on the 27 and 450k arrays.

Usage

data(CpGs)

Examples

data(CpGs)
head(CpGs)

estimateM

Estimate methylation M-value matrix

Description

Estimate methylation M-value matrix from MethyLumiM-class object or eSet-class object, which include methylated and unmethylated probe intensities.

Usage

estimateM(methyLumiM, returnType=c("ExpressionSet", "matrix"), offset=100)

Arguments

methyLumiM MethyLumiM-class object or eSet-class object, which include methylated and unmethylated probe intensities

returnType determine whether return an ExpressionSet (MethyLumiM in this case) or matrix object

offset offset added to the methylated and unmethylated probe intensities when estimating the M-value

Details

M-value is the log2 ratio between Illumina methylated and unmethylated probe intensities. As variations of small intensities can cause big changes in the ratio estimation, so an offset is added to methylated and unmethylated probe intensities when estimating the M-value.

Please check the lumi package for more details of estimateM function.
extractBarcodeAndPosition

Value
A MethyLumiM or matrix object of methylation M-value

Author(s)
Pan DU

References

extractBarcodeAndPosition
Extract the Barcode and Position Information from Sentrix ID

Description
The sentrix IDs from an illumina sentrix array contain positional information that might be useful. This function simply extracts that information from the ID itself.

Usage
extractBarcodeAndPosition(sentrixids)

Arguments
sentrixids A character vector of sentrix IDs that look like: 1632405013_R001_C001

Value
A data.frame with three columns:
sentrix numeric, the sentrix ID
row numeric, the sentrix row
column numeric, the sentrix column

Author(s)
Sean Davis <sdavis2@mail.nih.gov>

See Also
methylumiR

Examples
extractBarcodeAndPosition(c('12341234_R001_C001'))
Annotation-based Filtering of Features (CpG sites) in a MethyLumiSet or MethyLumiM object

Description

Features with insufficient annotation carry little value for the subsequent data analysis. The function `featureFilter` provides options of filtering features (CpG sites) from a MethyLumiSet (or MethyLumiM) object based on available annotation data.

Usage

```r
featureFilter(eset, require.entrez=FALSE, require.GOBP=FALSE, require.GOCC=FALSE, require.GOMF=FALSE, exclude.ChrX=FALSE, require.closeToTSS=FALSE, range.DistToTSS=c(-500, 300), require.CpGisland=FALSE, ...)
```

Arguments

- `eset` A MethyLumiSet or MethyLumiM object.
- `require.entrez` If TRUE, filter out features without an Entrez Gene ID annotation.
- `require.GOBP`, `require.GOCC`, `require.GOMF` If TRUE, filter out features whose target genes are not annotated to at least one GO term in BP, CC and MF ontology, respectively.
- `exclude.ChrX` If TRUE, filter out features in chromosome X to avoid gender effect.
- `require.closeToTSS` If TRUE, filter out features that are not close to transcription start site (TSS). Features without annotation of distance to TSS will also be removed. Can only be used for GoldenGate platform.
- `range.DistToTSS` Ignored if `require.closeToTSS` is FALSE. A vector of numeric values of length 2, indicating the range of tolerable distance from transcription start site (TSS) in basepair (bp). If `require.closeToTSS` is TRUE, features whose distance to TSS falls outside this designated range will be removed. The default value is `c(-500, 300)`, where -500 represents the distance to TSS from the left and 300 the distance from the right.
- `require.CpGisland` If TRUE, filter out features that are not in CpG islands.
- `...` Unused, but available for specializing methods.

Value

The function `featureFilter` returns a list consisting of:

- `eset` The filtered MethyLumiSet or MethyLumiM object.
filter.log A list giving details of how many probe sets where removed for each annotation-based filtering step performed.

Author(s)
Chao-Jen Wong <cwon2@fhcrc.org>

References

See Also
nsFilter

Description
The Illumina methylation platforms use two distinct platforms, the "goldengate" platform and the "infinium" platform. Each of these uses different file formats as well as different assay technologies. To make the downstream data handling more straightforward and uniform between the two different systems, a simple mapping from the column names in the output files from the Illumina software is used to convert things from Red/Green or Cy5/Cy3 to unmethylated/methylated. This function simply returns that mapping.

Usage
getAssayDataNameSubstitutions()

Details
A file in the extdata directory called "substitutions.txt" contains two columns. The function loads this file and uses the first column as a match against column names in the data file (with the "sample part" removed). If matched, the second column gives the replacement.

Value
A data.frame with two columns, regex and replacement.

Author(s)
Sean Davis <seandavi@gmail.com>

Examples
getAssayDataNameSubstitutions()
IDATsToMatrices
convert multiple idats to matrices

Description
convert multiple idats to matrices

Usage
IDATsToMatrices(
 barcodes,
 fileExts = list(Cy3 = "Grn", Cy5 = "Red"),
 parallel = F,
 idatPath = "."
)

Arguments
 barcodes character()
 fileExts character()
 parallel logical(1)
 idatPath character(1)

IDATtoMatrix
process a single IDAT (just the mean intensities)

Description
process a single IDAT (just the mean intensities)

Usage
IDATtoMatrix(x, fileExts = list(Cy3 = "Grn", Cy5 = "Red"), idatPath = ".")

Arguments
 x character(1)
 fileExts named list
 idatPath character(1)
methylData-class

Class "methylData", superclass for MethyLumiSet and MethyLumiM

Description

A superclass (virtual) for MethyLumiSet and MethyLumiM.

Objects from the Class

A virtual Class: No objects may be created from it.

Methods

- **diagnostics** signature(x = "methylData"): diagnostic plots of data
- **methylated.N** signature(object = "methylData"): accessor for assayData element of the same name
- **methylated.N<-** signature(object = "methylData", value = "matrix"): replace method for assayData element of the same name
- **plotNAs** signature(object = "methylData"): ...
- **pval.detect** signature(object = "methylData"): accessor for assayData element of the same name
- **pval.detect<-** signature(object = "methylData", value = "numeric"): replace method for assayData element of the same name
- **unmethylated.N** signature(object = "methylData"): accessor for assayData element of the same name
- **unmethylated.N<-** signature(object = "methylData", value = "matrix"): replace method for assayData element of the same name

Author(s)

Tim Triche, Jr.

See Also

MethyLumiSet, MethyLumiM

Examples

```
showClass("methylData")
```
MethyLumi-accessors methylumi accessors

Description

These functions serve as getters and setters for information in methylumi classes.

Usage

betas(object)
pvals(object)
methylated(object)
unmethylated(object)
getHistory(object)
QCdata(object)

Arguments

object an object of class MethyLumi or a subclass

Details

See the methods definitions in MethyLumiSet and MethyLumiQC for details.

Author(s)

Sean Davis <sdavis2@mail.nih.gov>

See Also

normalizeMethyLumiSet, MethyLumiSet, MethyLumiQC, eSet

MethyLumi-class The base class for storing Illumina Methylation data

Description

This class inherits from eSet from the Biobase package and is used as a base class for the other two methylumi classes, MethyLumiSet and MethyLumiQC.

Objects from the Class

The MethyLumi class is a virtual class and is not meant to be instantiated. Instead, one should instantiate a MethyLumiSet or a MethyLumiQC object.
MethyLumi-class

Slots

assayData: Object of class "AssayData"

phenoData: Object of class "AnnotatedDataFrame"

featureData: Object of class "AnnotatedDataFrame" that will hold the annotation columns from the Beadstudio output, if they are available.

experimentData: Object of class "MIAME"

annotation: Object of class "character"; note that this slot is not currently used, but may be used in the future to store the character name of the annotation package, if available.

.__classVersion__: Object of class "Versions"

Extends

Class "eSet", directly. Class "VersionedBiobase", by class "eSet", distance 2. Class "Versioned", by class "eSet", distance 3.

Methods

pvals<- signature(object = "MethyLumi", value = "matrix"): Set the assayData slot of the same name and stores the P-values from BeadStudio

pvals signature(object = "MethyLumi"): Get the assayData slot of the same name

betas<- signature(object = "MethyLumi", value = "matrix"): Set the assayData slot of the same name and represents the methylation values for the samples, analogous to exprs() in gene expression data.

betas signature(object = "MethyLumi"): Get the assayData slot of the same name

methylated<- signature(object = "MethyLumi", value = "matrix"): Set the assayData slot that represents the Methylated single-channel signal

methylated signature(object = "MethyLumi"): Get the assayData slot that represents the Methylated single-channel signal

unmethylated<- signature(object = "MethyLumi", value = "matrix"): Set the assayData slot that represents the Unmethylated single-channel signal

unmethylated signature(object = "MethyLumi"): Get the assayData slot that represents the Unmethylated single-channel signal

controlTypes signature(object = "MethyLumi"): Find the unique control type beeds in the QC-data slot.

cqplot signature(object = "MethyLumi",what,...): Plot of QC data. This plot can be useful for diagnosing the problems associated with specific samples or arrays. The value for "what" is one of the control types (which can be found by using controlTypes() on the object.

summary signature(object = "MethyLumi",...): summary method for MethyLumi objects.

Author(s)

Sean Davis <sdavis2@mail.nih.gov>
MethyLumi-stripers

See Also
methyumiR, MethyLumiSet, MethyLumiQC, eSet

Examples

The class structure
showClass("MethyLumi")
read in some data
Read in sample information
samps <- read.table(system.file("extdata/samples.txt", package = "methyumi"), sep="\t", header=TRUE)
Perform the actual data reading
This is an example of reading data from a
Sentrix Array format file (actually two files,
one for data and one for QC probes)
mldat <- methylumiR(system.file('extdata/exampledata.samples.txt', package = "methyumi"),
 qcfile=system.file('extdata/exampledata.controls.txt',
 package = "methyumi"),
 sampleDescriptions=samps)
mldat
Get history information
getHistory(mldat)
Get QC data, which is another eSet-derived object
QCdata(mldat)

MethyLumi-stripers Strip excessive probe-level data from MethyLumiSets

Description

450k datasets with probe-level stderrs, out-of-band intensities, and bead numbers can become huge. These functions help to manage their growth in memory, at least until preprocessing and QC is completed, whereupon the summary data can be exported to a RangedData-based object of some sort for integration.

Usage

stripMethyLumiSet(object)
stripBeadNs(object)
stripBeadSDs(object)
stripOOB(object)

Arguments

object an object of class MethyLumi or a subclass

Author(s)

Tim Triche, Jr. <tim.triche@gmail.com>
methylumIDAT

Description
Read a directory of methylumi idat files and return a MethylumiSet.

Usage
methylumIDAT(barcodes = NULL, pdat = NULL, parallel = F, n = F, n.sd = F, oob = T, idatPath=getwd(), ...)

Arguments
- **barcodes**: A vector of barcodes to read. Either this argument or pdat must be specified.
- **pdat**: A data.frame describing the samples. A special column named "barcodes" can be used to specify the barcodes to be read.
- **parallel**: If TRUE, an attempt will be made to process using multiple cores on a multicore machine.
- **n**: Keep the bead numbers? (Default: no)
- **n.sd**: Keep the bead-level SD? (Default: no)
- **oob**: Keep the out-of-band (OOB) or opposite-channel signals? (Default: yes)
- **idatPath**: The path to the directory containing the idat files.
- **...**: Additional arguments to be passed to sub-functions.

Details
Read a set of .idat files and return a MethylumiSet object. If you use this function to any significant degree in your analysis, we would appreciate your citing the paper describing it, "Low-level processing of Illumina Infinium DNA methylation beadarrays", TJ Triche, DJ Weisenberger, D Van Den Berg, KD Siegmund, and PW Laird, Nucleic acids research, 2013.

Value
A MethylumiSet object.

Author(s)
Tim Triche, Jr.

See Also
The “methylum450k” vignette: vignette("methylum450k", package="methylum")
Examples

```r
## Not run:
if(require('IlluminaHumanMethylation450k.db')) {
  barcodes <- c('6005486014_R04C02',
               '6005486023_R05C01')
  lumi450k <- methylumIDAT(barcodes, idatPath = system.file('extdata/idat', package = 'methylumi')) # no normalization
  sampleNames(lumi450k) <- c('TCGA1', 'TCGA2')
  show(lumi450k)
}
## End(Not run)
```

methylumiGenerics
Generics defined in methylumi

Description

See the individual classes for details of methods.

Author(s)

Sean Davis, Pan Du, and Tim Triche, Jr.

MethyLumiM-class
Class "MethyLumiM": for Illumina Methylation microarray data using logRatios

Description

MethyLumiM is a class inherited from ExpressionSet-class. It is designed for Illumina Methylation microarray data. The exprs dataMatrix included in the assayData slot of MethyLumiM object includes a matrix of M-values, which is the log2 ratio of methylated and unmethylated probe intensities. The MethyLumiM class include a boxplot function uniquely designed for two-mode histogram data. It also include a coerce function to map from MethyLumi-class, MethyLumiSet-class or other eSet-class inherited object to MethyLumiM class object.

Objects from the Class

Objects can be created by calls of the form `new("MethyLumiM", exprs, methylated, unmethylated, detection, methylated.N, unmethylated.N, ..., assayData)`. The "exprs" is a matrix of M-values, which is the log2 ratio of methylated and unmethylated probe intensities; "methylated" and "unmethylated" are intensity matrix measured by methylated and unmethylated probes of Illumina Infinium methylation microarray; "detection" is the detection p-value outputted by Illumina GenomeStudio software; "methylated.N" and "unmethylated.N" are bead numbers for methylated and unmethylated probes. "exprs", "methylated" and "unmethylated" information are required for MethyLumiM class. When creating a new MethyLumiM object, the information of "exprs", "methylated", "unmethylated" and "detection" can also be provided directly through "assayData".
MethyLumiM-class

Slots

- **history**: Object of class "data.frame" recording the operation history of the LumiBatch object.
- **controlData**: Object of class "MethyLumiQC" to keep the QC probe measurement information.
- **dataType**: The type of data stored in the "exprs" data matrix in "assayData". It can be "M" (M-value), "Beta" (Beta-value) or "Intensity" (Intensity of CpG-site).
- **phenodata**: Object of class "AnnotatedDataFrame", See eSet-class
- **featureData**: Object of class "AnnotatedDataFrame", See eSet-class
- **experimentData**: Object of class "MIAME", See eSet-class
- **annotation**: Object of class "character", See eSet-class
- **protocolData**: Object of class "AnnotatedDataFrame", See eSet-class
- **__classVersion__**: Object of class "Versions", See eSet-class

Extends

Class "ExpressionSet", directly. Class "eSet", by class "ExpressionSet", distance 2. Class "VersionedBiobase", by class "ExpressionSet", distance 3. Class "Versioned", by class "ExpressionSet", distance 4.

Methods

- **boxplot** signature(x = "MethyLumiM"): plot distribution of M-value
- **coerce** signature(from = "eSet", to = "MethyLumiM"): map from MethyLumi-class, MethyLumiSet-class or other eSet-class inherited object to MethyLumiM class object. MethyLumiM object will only keep "exprs", "methylated", "unmethylated" and "detection" data matrix in the assayData.
- **getHistory** signature(object = "MethyLumiM"): access the operation history of MethyLumiM object.
- **initialize** signature(.Object = "MethyLumiM"): class initialization
- **methylated** signature(object = "MethyLumiM"): retrieve the data matrix measured by methylated probes
- **methylated<-** signature(object = "MethyLumiM"): set the data matrix measured by methylated probes
- **unmethylated** signature(object = "MethyLumiM"): retrieve the data matrix measured by unmethylated probes
- **unmethylated<-** signature(object = "MethyLumiM"): set the data matrix measured by unmethylated probes
- **methylated.N** signature(object = "MethyLumiM"): retrieve the data matrix keeping the number of beads of methylated probes
- **methylated.N<-** signature(object = "MethyLumiM"): set the data matrix keeping the number of beads of methylated probes
- **unmethylated.N** signature(object = "MethyLumiM"): retrieve the data matrix keeping the number of beads of unmethylated probes
MethyLumiQC-class

unmethylated.N<- signature(object = "MethyLumiM"): set the data matrix keeping the number of beads of unmethylated probes
detection signature(object = "MethyLumiM"): retrieve detection data matrix in AssayData-class
detection<- signature(object = "MethyLumiM"): set detection data matrix in AssayData-class
controlData signature(object = "MethyLumiM"): retrieve the controlData in MethyLumiQC-class
controlData<- signature(object = "MethyLumiM"): set controlData in MethyLumiQC-class
dataType signature(object = "MethyLumiM"): retrieve the dataType, by default it is "M", it can also be "Beta" or "Intensity"
dataType<- signature(object = "MethyLumiM"): set dataType in MethyLumiM-class, the value can be "M", "Beta" or "Intensity"

Author(s)

Pan DU

References

See Also

MethyLumi-class and MethyLumiSet-class

Examples

showClass("MethyLumiM")

MethyLumiQC-class

Class "MethyLumiQC" for holding Illumina methylation QC data

Description

This class inherits from the MethyLumi class (and therefore, from eSet in Biobase) and is designed to hold QC data from Illumina Beadstudio output. These data can be potentially useful when determining the cause for quality problems.

Objects from the Class

Objects can be created by calls of the form new("MethyLumiQC", assayData, phenoData, featureData, experimentData, annotation, betas).
MethyLumiQC-class

Slots

assayData: Object of class "AssayData"
phenoData: Object of class "AnnotatedDataFrame"
featureData: Object of class "AnnotatedDataFrame" containing the annotation columns from
the Illumina Beadstudio output. In particular, the names of the probes describe the types of
control probes.
experimentData: Object of class "MIAME"
annotation: Object of class "character", not currently used
__classVersion__: Object of class "Versions"

Extends

Class "MethyLumi", directly. Class "eSet", by class "MethyLumi", distance 2. Class "VersionedBiobase",

Methods

initialize signature(.Object = "MethyLumiQC")
Cy3.N signature(object = "MethyLumiQC"): ...
Cy3<- signature(object = "MethyLumiQC", value = "matrix"): ...
Cy5.N signature(object = "MethyLumiQC"): ...
Cy5<- signature(object = "MethyLumiQC", value = "matrix"): ...
QCdata<- signature(object = "MethyLumiSet", value = "MethyLumiQC"): ...
combine signature(x = "MethyLumiQC", y = "MethyLumiQC"): ...
controlData<- signature(object = "MethyLumiSet", value = "MethyLumiQC"): ...
controlTypes signature(object = "MethyLumiQC"): determine the character vector of control
types from the QCdata information
hist signature(x = "MethyLumiQC"): ...
intensitiesByChannel signature(object = "MethyLumiQC"): ...
methylated signature(object = "MethyLumiQC"): ...
negctls.stderr signature(object = "MethyLumiQC", channel = "character"): ...
negctls.stderr signature(object = "MethyLumiQC", channel = "missing"): ...
negctls signature(object = "MethyLumiQC", channel = "character"): ...
negctls signature(object = "MethyLumiQC", channel = "missing"): ...
negnorm signature(object = "MethyLumiQC", channel = "character"): ...
negnorm signature(object = "MethyLumiQC", channel = "missing"): ...
normctls signature(object = "MethyLumiQC"): ...
qcplot signature(object = "MethyLumiQC", what, ...): QC plots of various controltypes
unmethylated signature(object = "MethyLumiQC"): ...
Author(s)
Sean Davis <sdavis2@mail.nih.gov>

See Also
methylumiR, MethyLumiSet, MethyLumi.eSet

Examples
showClass("MethyLumiQC")

methylumiR
Load data from Illumina methylation platform

Description
This function is useful for loading Illumina methylation data into a MethyLumiSet object. Sample information can be supplied and will then be incorporated into the resulting phenoData slot.

Usage
methylumiR(filename, qcfile=NULL, sampleDescriptions = NULL, sep = NULL, ...)

Arguments
filename A filename of the excel-like file from BeadStudio
cqfile A filename of the excel-like file from BeadStudio
sampleDescriptions A data.frame that contains at least one column, SampleID (case insensitive). This column MUST match the part of the column headers before the .Avg_Beta, etc. Also, if a column called SampleLabel (case insensitive), it is used for sample labels, IF the sampleLabel column contains unique identifiers
sep separator used in the BeadStudio (or GenomeStudio) output file. If it is NULL, the function will automatically estimate it.
...
Passed into read.delim()

Details
Used to construct a MethyLumiSet object....

Value
A MethyLumiSet object

Author(s)
Sean Davis <sdavis2@mail.nih.gov>
MethyLumiSet-class

Class "MethyLumiSet" for containing Illumina methylation data

Description

This class inherits from the MethyLumi class (and therefore, from eSet in Biobase) and is designed to hold both the intensities and the calculated betas, as well as pvalues if present.

Objects from the Class

Objects can be created by calls of the form `new("MethyLumiSet", assayData, phenoData, featureData, experimentData, annotation, betas)`. An object of this type is the main storage class for methylation data from Illumina. Subsetting, etc., works as normal (rows represent genes, columns represent samples). There is also a rudimentary history tracking system that is modeled after that from the lumi package.

Slots

QC: Object of class "QCDataOrNULL", containing either the MethyLumiQC object or NULL

history: Object of class "data.frame", containing a running history of transforms to the data contained herein

assayData: Object of class AssayData

phenoData: Object of class AnnotatedDataFrame

featureData: Object of class AnnotatedDataFrame, containing the annotation columns from the Illumina Beadstudio output

experimentData: Object of class MIAME

annotation: Object of class "character", not currently used

__classVersion__: Object of class "Versions"

protocolData: Object of class "AnnotatedDataFrame" that contains protocol information, including scan date if available

Examples

```r
## Read in sample information
samps <- read.table(system.file("extdata/samples.txt", package = "methylumi"), sep="\t", header=TRUE)

## Perform the actual data reading
## This is an example of reading data from an
## Sentrix Array format file (actually two files,
## one for data and one for QC probes)
mdat <- methylumiR(system.file('extdata/exampledata.samples.txt', package='methylumi'),
                    qcfile=system.file('extdata/exampledata.controls.txt', package='methylumi'),
                    sampleDescriptions=samps)
mdat
```

See Also

MethyLumiSet-class, MethyLumiQC-class
MethyLumiSet-class

Extends

Methods

Methods

\[\text{signature(x = "MethyLumiSet")}: \text{subsetting, genes as rows, samples as columns} \]

\text{betas<- signature(object = "MethyLumiSet", value = "matrix")}: \text{Set the assayData slot of the same name} \]

\text{betas signature(object = "MethyLumiSet")}: \text{Get the assayData slot of the same name} \]

\text{boxplot signature(x = "MethyLumiSet")}: \text{boxplot of all sample betas} \]

\text{combine signature(x = "MethyLumiSet", y = "MethyLumiSet")} \]

\text{corplot signature(x = "MethyLumiSet")} \]

\text{exprs signature(object = "MethyLumiSet")}: \text{returns m-values} \]

\text{getHistory signature(object = "MethyLumiSet")}: \text{returns a data.frame containing the history for this object} \]

\text{hist signature(x = "MethyLumiSet")}: \text{histogram of the betas for the data} \]

\text{initialize signature(.Object = "MethyLumiSet")} \]

\text{pairs signature(x = "MethyLumiSet")}: \text{pairs plot of the betas for the object. Note that pairs plots of more than a few samples are not very useful.} \]

\text{plotSampleIntensities signature(x = "MethyLumiSet")}: \text{The intensities as output by the Beadstudio software often show a considerable amount of dye bias. This method shows a graphical example of this dye bias. In short, for each of the Cy3 and Cy5 channels, a cutoff in beta is used to calculate which Cy3 and Cy5 values should be plotted at high-methylation and low-methylation status. Any offset between Cy3 and Cy5 when plotted in this way likely represents dye bias and will lead to biases in the estimate of beta.} \]

\text{QCdata<- signature(object = "MethyLumiSet", value = "MethyLumiQC")}: \text{assign QC data to the QC slot} \]

\text{QCdata signature(object = "MethyLumiSet")}: \text{retrieve the QC data.} \]

\text{show signature(object = "MethyLumiSet")} \]

\text{methylated<- signature(object = "MethyLumiSet", value = "matrix")}: \text{Set the assayData slot associated with methylated intensity} \]

\text{methylated signature(object = "MethyLumiSet")}: \text{Get the assayData slot associated with methylated intensity} \]

\text{unmethylated<- signature(object = "MethyLumiSet", value = "matrix")}: \text{Set the assayData slot associated with unmethylated intensity} \]

\text{unmethylated signature(object = "MethyLumiSet")}: \text{Get the assayData slot associated with unmethylated intensity} \]

\text{qcplot signature(object = "MethyLumiSet", what, ...): QC plots of various controltypes} \]

\text{controlTypes signature(object = "MethyLumiSet")}: \text{determine the character vector of control types from the QCdata information} \]
Cy3.N signature(object = "MethyLumiSet"): ...
Cy5.N signature(object = "MethyLumiSet"): ...
combine27k450k signature(x = "MethyLumiSet", y = "MethyLumiSet"): ...
controlData signature(object = "MethyLumiSet"): ...
controlData<- signature(object = "MethyLumiSet", value = "MethyLumiQC"): ...
featureFilter signature(eset = "MethyLumiSet"): ...
intensities.IB signature(x = "MethyLumiSet", channel = "character"): ...
intensities.IB signature(x = "MethyLumiSet", channel = "missing"): ...
intensities.M signature(x = "MethyLumiSet", channel = "character"): ...
intensities.M signature(x = "MethyLumiSet", channel = "missing"): ...
intensities.OOB.allelic signature(x = "MethyLumiSet", channel = "character", allele = "character"): ...
intensities.OOB.allelic signature(x = "MethyLumiSet", channel = "missing", allele = "missing"): ...
intensities.OOB signature(x = "MethyLumiSet", channel = "character"): ...
intensities.OOB signature(x = "MethyLumiSet", channel = "missing"): ...
intensities.U signature(x = "MethyLumiSet", channel = "character"): ...
intensities.U signature(x = "MethyLumiSet", channel = "missing"): ...
intensitiesByChannel signature(object = "MethyLumiSet"): ...
egnctls.stderr signature(object = "MethyLumiSet", channel = "character"): ...
egnctls.stderr signature(object = "MethyLumiSet", channel = "missing"): ...
egnctls signature(object = "MethyLumiSet", channel = "character"): ...
egnctls signature(object = "MethyLumiSet", channel = "missing"): ...
egnorm signature(object = "MethyLumiSet", channel = "character"): ...
egnorm signature(object = "MethyLumiSet", channel = "missing"): ...
normctls signature(object = "MethyLumiSet"): ...
plotSampleIntensities signature(x = "MethyLumiSet"): ...
probeNAs signature(object = "MethyLumiSet"): ...
sampleNAs signature(object = "MethyLumiSet"): ...
total.intensity signature(object = "MethyLumiSet"): ...
varFilter signature(eset = "MethyLumiSet"): ...

Author(s)
Sean Davis & Tim Triche, Jr.

See Also
methylumiR, normalizeMethyLumiSet, methylumIDAT, MethyLumiQC, eSet

Examples
showClass("MethyLumiSet")
normalizeMethyLumiSet

mldat

Example SAM format Illumina methylation dataset

Description
This is an example MethyLumiSet object.

Usage
data(mldat)

Examples
data(mldat)

normalizeMethyLumiSet Normalize a MethyLumiSet, accounting for dye bias

Description

The Illumina GoldenGate methylation platform uses two colors, one to represent the unmethylated state and the other to represent the methylated state. This function corrects that dye bias and recalculates the betas based on the corrected intensities.

For HumanMethylation27 data, the function does nothing.

For HumanMethylation450 data, the function delegates to normalizeViaControls() the task of scaling red and green intensities against a reference array (chip) which uses the closest-to-equal chip (i.e., which.min(abs(R.G.ratio - 1))).

The code to do this is based on code from the 'minfi' package and uses the built-in red and green normalization control probes on the hm450 arrays to scale the channels of the samples, so that a consistent degree of dye bias is maintained for Infinium II probes across an experiment or set of experiments.

Usage
normalizeMethyLumiSet(x, beta.cuts = c(0.2, 0.8), mapfun = c("atan", "ratio"))

Arguments

x A MethyLumiSet object
beta.cuts Two numeric values with the first less than the second and between 0 and 1, representing the beta cutoffs that will be used when determining the median intensities to which to correct. See details below.
mapfun Either "atan" or "ratio". See details below.
Details
For HumanMethylation450 data, the function delegates to normalizeViaControls() the task of scaling red and green intensities against a reference array (chip) which defaults to the first chip in a set. The code to do this is based on code from the 'minfi' package and uses the built-in normalization controls to scale the channels of the samples, so that a consistent degree of dye bias is maintained for Infinium II probes across an experiment or set of experiments. The remainder of the documentation below is specific to GoldenGate data.

The Illumina GoldenGate methylation platform uses two colors, one to represent the unmethylated state and the other to represent the methylated state. This function corrects that dye bias and recalculates the betas based on the corrected intensities.

As a first step, the medians for each of Cy3 and Cy5 are calculated at high and low betas, representing the (nearly) fully methylated state and the (nearly) fully unmethylated states. Values of Cy3 and Cy5 that are negative are set to zero for this process. Then, the Cy5 medians are adjusted to match those of the Cy3 channel, thereby correcting the dye bias.

To map the new intensities back to betas, one of two map functions can be used. The default is the atan(Cy3/Cy5). The ratio maps using the function (Cy3/Cy3+Cy5). The differences should be very small, but we feel that the atan map function is probably the mathematically appropriate way of doing this.

Value
A new "MethyLumiSet" that contains the corrected betas and the adjusted intensities.

Author(s)
Sean Davis <sdavis2@mail.nih.gov>

Examples
```r
## Read in sample information
samps <- read.table(system.file("extdata/samples.txt", package = "methylumi"), sep="\t", header=TRUE)

## Perform the actual data reading
## This is an example of reading data from an
## Sentrix Array format file (actually two files,
## one for data and one for QC probes)
mldat <- methylumiR(system.file("extdata/exampledata.samples.txt", package="methylumi"),
                     qcfile=system.file("extdata/exampledata.controls.txt", package="methylumi"),
                     sampleDescriptions=samps)
mldatnorm <- normalizeMethyLumiSet(mldat)
```

Description
The Illumina methylation platforms all show a significant dye bias. The plotSampleIntensities method shows the density plots for the two channels allowing direct visualization of the effect.
qcplot

Usage

plotSampleIntensities(x, beta.cuts, s)

Arguments

x an object of class MethyLumi or a subclass
beta.cuts cutoffs for low and high beta values
s sample number to plot

Examples

data(mldat)
plotSampleIntensities(mldat, s=1)

qcplot

Methods for dealing with control data for Illumina methylation data.

Description

The qcplot function simply generates a plot of the control probe information for a given controlType.

Usage

qcplot(object, controltype, ...)
controlTypes(object, ...)

Arguments

object An object of class MethyLumiSet or MethyLumiQC
controltype A single character value representing the bead type to plot from the quality control data. The available types are accessible via the controlTypes method.
... passed to plot function

Details

The descriptions of the various control types can be obtained from the Illumina methylation user’s guides.

Author(s)

Sean Davis <sdavis2@mail.nih.gov>

See Also

MethyLumiSet, MethyLumiQC
Examples

```r
data(mldat)
controlTypes(mldat)
qcplot(mldat,controlTypes(mldat)[3])
```

tcgaPipeline
Total convenience function for processing IDATs like tcga

Description

Total convenience function for processing IDATs like tcga

Usage

```r
tcgaPipeline(IDATs)
```

Arguments

- **IDATs** character() of idat files

varFilter
Variation-based Filtering of Features (CpG sites) in a MethyLumiSet or MethyLumiM object

Description

The function `varFilter` removes features exhibiting little variation across samples. Such non-specific filtering can be advantageous for downstream data analysis.

Usage

```r
varFilter(eset, var.func=IQR, var.cutoff=0.5, filterByQuantile=TRUE, ...)
```

Arguments

- **eset** An MethyLumiSet or MethyLumiM object.
- **var.func** The function used as the per-feature filtering statistics.
- **var.cutoff** A numeric value indicating the cutoff value for variation. If `filterByQuantile` is TRUE, features whose value of `var.func` is less than `var.cutoff`-quantile of all `var.func` value will be removed. It FALSE, features whose values are less than `var.cutoff` will be removed.
- **filterByQuantile** A logical indicating whether `var.cutoff` is to be interpreted as a quantile of all `var.func` (the default), or as an absolute value.
- **...** Unused, but available for specializing methods.
Details

This function is a counterpart of functions nsFilter and varFilter available from the genefilter package. See R. Bourgon et. al. (2010) and nsFilter for detail.

It is proven that non-specific filtering, for which the criteria does not depend on sample class, can increase the number of discoveries. Inappropriate choice of test statistics, however, might have adverse effect. limma’s moderated t-statistics, for example, is based on empirical Bayes approach which models the conjugate prior of gene-level variance with an inverse of χ^2 distribution scaled by observed global variance. As the variance-based filtering removes the set of genes with low variance, the scaled inverse χ^2 no longer provides a good fit to the data passing the filter, causing the limma algorithm to produce a posterior degree-of-freedom of infinity (Bourgon 2010). This leads to two consequences: (i) gene-level variance estimate will be ignore, and (ii) the p-value will be overly optimistic (Bourgon 2010).

Value

The function featureFilter returns a list consisting of:

- eset: The filtered MethyLumiSet or MethyLumiM object.
- filter.log: Shows many low-variant features are removed.

Author(s)

Chao-Jen Wong <cwon2@fhcrc.org>

References

See Also

nsFilter

Examples

data(mldat)
keep top 75 percent
filt <- varFilter(mldat, var.cutoff=0.25)
filt$filter.log
dim(filt$eset)
Index

* **IO**
 - getAssayDataNameSubstitutions, 7
 - MethyLumi-accessors, 10
 - methylumi-package, 3
 - methylumIDAT, 13
 - methylumiR, 18

* **classes**
 - methylData-class, 9
 - MethyLumi-class, 10
 - MethyLumiM-class, 14
 - MethyLumiQC-class, 16
 - MethyLumiSet-class, 19

* **datasets**
 - CpGs, 4
 - mldat, 22

* **hplot**
 - plotSampleIntensities, 23
 - qcplot, 24

* **manip**
 - extractBarcodeAndPosition, 5
 - normalizeMethyLumiSet, 22

* **methods**
 - estimateM, 4
 - [,MethyLumiM,ANY,ANY,ANY-method (MethyLumiM-class), 14
 - [,MethyLumiM,ANY-method (MethyLumiM-class), 14
 - [,MethyLumiSet,ANY,ANY,ANY-method (MethyLumiSet-class), 19
 - [,MethyLumiSet,ANY-method (MethyLumiSet-class), 19

 - AnnotatedDataFrame, 19
 - AssayData, 19

 - betas,MethyLumiM-method (MethyLumiM-class), 14
 - betas,MethyLumiSet-method (MethyLumiSet-class), 14
 - betas,RangedSummarizedExperiment-method (methylumiGenerics), 14
 - betas<- (MethyLumi-accessors), 10
 - betas<-,MethyLumiSet,matrix-method (MethyLumiSet-class), 19
 - Biobase, 3
 - boxplot,MethyLumiSet-method (MethyLumiSet-class), 19

 - combine,MethyLumiM,MethyLumiM-method (MethyLumiM-class), 14
 - combine,MethyLumiQC,MethyLumiQC-method (MethyLumiQC-class), 16
 - combine,MethyLumiSet,MethyLumiSet-method (MethyLumiSet-class), 19
 - combine27k450k (methylumiGenerics), 14
 - combine27k450k,MethyLumiSet,MethyLumiSet-method (MethyLumiSet-class), 19
 - controlData (methylumiGenerics), 14
 - controlData,MethyLumiM-method (MethyLumiM-class), 14
 - controlData,MethyLumiSet-method (MethyLumiSet-class), 19
 - controlData<-(methylumiGenerics), 14
 - controlData<-,MethyLumiM,ANY-method (MethyLumiM-class), 14
 - controlData<-,MethyLumiSet (MethyLumiSet-class), 19
 - controlData<-,MethyLumiSet,MethyLumiQC-method (MethyLumiQC-class), 16
 - controlTypes, 24
 - controlTypes (qcplot), 24
 - controlTypes,MethyLumiM-method (MethyLumiM-class), 14
 - controlTypes,MethyLumiQC-method (MethyLumiQC-class), 16
negnorm,MethyLumiQC,character-method (MethyLumiQC-class), 16
negnorm,MethyLumiQC,missing-method (MethyLumiQC-class), 16
negnorm,MethyLumiSet,character-method (MethyLumiSet-class), 19
negnorm,MethyLumiSet,missing-method (MethyLumiSet-class), 19
normalizeMethyLumiSet, 10, 21, 22
normctls (methylumiGenerics), 14
normctls,MethyLumiM-method (MethyLumiM-class), 14
normctls,MethyLumiQC-method (MethyLumiQC-class), 16
normctls,MethyLumiSet-method (MethyLumiSet-class), 19
nsFilter, 7, 26
pairs,MethyLumiSet-method (MethyLumiSet-class), 19
plotNAs (methylumiGenerics), 14
plotNAs,MethyLumiM-method (MethyLumiM-class), 14
plotNAs,MethyLumiQC-method (MethyLumiQC-class), 16
plotNAs,MethyLumiSet-method (MethyLumiSet-class), 19
psummary (methylumiGenerics), 14
pval.detect (methylumiGenerics), 14
pval.detect,MethyLumiM-method (MethyLumiM-class), 14
pval.detect<-,methylData-method (methylData-class), 9
pval.detect<-,methylumiGenerics, 14
pval.detect<-,methylData-method (methylData-class), 9
pval.detect<-,methylumiGenerics, 14
pvals (MethyLumi-accessors), 10
pvals,MethyLumi-method (MethyLumi-class), 10
pvals,MethyLumiM-method (MethyLumiM-class), 14
pvals<-(MethyLumi-accessors), 10
pvals<-,MethyLumi,matrix-method (MethyLumi-class), 10
qc.probe.plot (methylumiGenerics), 14
QCdata (MethyLumi-accessors), 10
QCdata,MethyLumiM-method (MethyLumiM-class), 14
QCdata,MethyLumiSet-method (MethyLumiSet-class), 19
QCdata<-,MethyLumi-accessors), 10
QCdata<-,MethyLumi-set (MethyLumiSet-class), 19
QCdata<-,MethyLumiSet,MethyLumiQC-method (MethyLumiQC-class), 16
qcplot, 24
qcplot,MethyLumi-method (MethyLumi-class), 10
qcplot,MethyLumiQC-method (MethyLumiQC-class), 16
qcplot,MethyLumiSet-method (MethyLumiSet-class), 19
sampleNAs (methylumiGenerics), 14
sampleNAs,MethyLumiM-method (MethyLumiM-class), 14
sampleNAs,MethyLumiSet-method (MethyLumiSet-class), 19
sampleNAs,MethyLumi-strippers), 12
tcgaPipeline, 25
total.intensity (methylumiGenerics), 14
total.intensity,MethyLumiM-method (MethyLumiM-class), 14
total.intensity,MethyLumiSet-method (MethyLumiSet-class), 19
unmethylated (MethyLumi-accessors), 10
unmethylated,MethyLumiSet-method (methylumiGenerics), 14
unmethylated,MethyLumi-set (MethyLumi-class), 10
unmethylated,MethyLumiM-method (MethyLumiM-class), 14
unmethylated,MethyLumiM-method (MethyLumiM-class), 14
unmethylated,MethyLumiMQc-method (MethyLumiQC-class), 16
unmethylated,MethyLumiSet-method
(MethyLumiSet-class), 19
unmethylated.N (methylumiGenerics), 14
unmethylated.N,methylData-method
(methylData-class), 9
unmethylated.N,MethyLumiM-method
(MethyLumiM-class), 14
unmethylated.N<- (methylumiGenerics), 14
unmethylated.N<-,methylData,matrix-method
(methylData-class), 9
unmethylated.N<-,MethyLumiM,ANY-method
(MethyLumiM-class), 14
unmethylated<- (MethyLumi-accessors), 10
unmethylated<-,MethyLumi,matrix-method
(MethyLumi-class), 10
unmethylated<-,MethyLumiM,ANY-method
(MethyLumiM-class), 14
unmethylated<-,MethyLumiSet,matrix-method
(MethyLumiSet-class), 19

varFilter, 25
varFilter,MethyLumiM-method
(varFilter), 25
varFilter,MethyLumiSet-method
(varFilter), 25
Versioned, 11, 15, 17, 20
VersionedBiobase, 11, 15, 17, 20