Package ‘microbiomeExplorer’

April 4, 2024

Type Package

Title Microbiome Exploration App

Version 1.12.0

Date 2022-09-01

Description The MicrobiomeExplorer R package is designed to facilitate the analysis and visualization of marker-gene survey feature data. It allows a user to perform and visualize typical microbiome analytical workflows either through the command line or an interactive Shiny application included with the package. In addition to applying common analytical workflows the application enables automated analysis report generation.

License MIT + file LICENSE

Imports shinyjs (>= 2.0.0), shinydashboard, shinycssloaders, shinyWidgets, markdown (>= 1.9.0), DESeq2, RColorBrewer, dplyr, tidyr, purrr, rlang, knitr, readr, DT (>= 0.12.0), biomformat, tools, stringr, vegan, matrixStats, heatmaply, car, broom, limma, reshape2, tibble,forcats, lubridate, methods, plotly (>= 4.9.1)

Depends shiny, magrittr, metagenomeSeq, Biobase

Suggests V8, testthat (>= 2.1.0)

DeploySubPath microbiomeExplorer

biocViews Classification, Clustering, GeneticVariability, DifferentialExpression, Microbiome, Metagenomics, Normalization, Visualization, MultipleComparison, Sequencing, Software, ImmunoOncology

Encoding UTF-8

RoxygenNote 7.2.1

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/microbiomeExplorer

git_branch RELEASE_3_18

git_last_commit 83eb131
git_last_commit_date 2023-10-24
Repository Bioconductor 3.18
Date/Publication 2024-04-03
Author Joseph Paulson [aut],
 Janina Reeder [aut, cre],
 Mo Huang [aut],
 Genentech [cph, fnd]
Maintainer Janina Reeder <reederj1@gene.com>

R topics documented:

abundanceHeatmap .. 4
abundanceHeatmapUI .. 5
addFeatData .. 6
addPhenoData ... 6
add_plotly_config .. 7
add_plotly_layout .. 7
aggFeatures ... 8
aggregationTab .. 8
aggregationTabUI ... 9
alphaDiversity .. 10
alphaDiversityUI .. 11
avgAbundance ... 11
avgAbundanceUI ... 12
betaDiversity .. 13
betaDiversityUI .. 14
betaInput ... 14
betaInputUI .. 15
buildEmptyPlotlyPlot .. 15
buildPlottingDF ... 16
calculatePCAs ... 17
computeCI_Interval .. 17
computeDistMat ... 18
corrAnalysis .. 18
corrAnalysisUI ... 19
corrFeature .. 20
corrInput .. 21
corrInputUI .. 22
corrPhenotype ... 23
createHeader .. 24
dataInput .. 25
dataInputUI .. 26
designPairs ... 26
diffAnalysis .. 27
diffAnalysisUI .. 28
diffInput ... 28
R topics documented:

- diffInputUI ... 29
- diffTable ... 29
- diffTableUI ... 30
- extendPhenoData ... 31
- featAbundance .. 31
- featAbundanceUI ... 32
- featureAnalysis .. 33
- featureAnalysisUI ... 34
- featureCorr ... 34
- featureCorrUI ... 35
- featureInput ... 36
- featureInputUI ... 37
- featureTable ... 37
- featureTableUI .. 38
- fileUpload .. 39
- fileUploadUI ... 40
- filterByPheno .. 40
- filterMEData ... 41
- generateReport ... 42
- getFeatModCode .. 43
- getFeatSplitCode ... 43
- getFileType ... 44
- getFilterChoices ... 44
- getLegendLevel .. 45
- getPhenoChanges ... 45
- getPhenoModCode ... 46
- getWidths .. 46
- heatmapInput ... 47
- heatmapInputUI .. 47
- interAnalysis ... 48
- interAnalysisUI ... 49
- intraAnalysis ... 49
- intraAnalysisUI ... 50
- intraInput .. 51
- intraInputUI .. 52
- longAnalysis ... 52
- longAnalysisUI ... 53
- longInput ... 54
- longInputUI .. 55
- longResults ... 55
- longResultsUI ... 56
- makeQCPlot ... 57
- normalizeData .. 58
- parseInteractionName 58
- phenotypeCorr .. 59
- phenotypeCorrUI .. 60
- phenotypeTable .. 60
- phenotypeTableUI ... 61
abundanceHeatmap

Description

Abundance Heatmap module - server

Usage

abundanceHeatmap(
 input,
 output,
 session,
 aggDat,
 featLevel,
 colorOptions,
 levelOpts,
 hmSort,
 hmFeatList,
 reset
)
abundanceHeatmapUI

Arguments

- **input**
 shiny input
- **output**
 shiny output
- **session**
 shiny session
- **aggDat**
 aggregated MRExperiment
- **featLevel**
 chosen feature level (aggregation level)
- **colorOptions**
 reactive storing filters selected via data input
- **levelOpts**
 all available level choices for this dataset
- **hmSort**
 reactive storing sorting method for heatmap
- **hmFeatList**
 reactive storing list of features to include in heatmap
- **reset**
 boolean reactive which resets the module if TRUE

Value

R code needed to generate the heatmap

Author(s)

Janina Reeder

abundanceHeatmapUI
Abundance Heatmap module - UI

Description

Abundance Heatmap module - UI

Usage

```r
abundanceHeatmapUI(id)
```

Arguments

- **id**
 namespace identifier

Value

box holding the UI code

Author(s)

Janina Reeder
addFeatData

Add feature data to MRobj.

Description

This function adds feature data to the featureData slot in an MRexperiment object.

Usage

addFeatData(MRobj, featdata = NULL)

Arguments

 MRobj An MRexperiment object.
 featdata Feature data frame or file path.

Value

An updated MRexperiment object.

addPhenoData

Add phenotype data to object.

Description

This function adds phenotype data to the phenoData slot in an MRexperiment object.

Usage

addPhenoData(MRobj, phenodata = NULL)

Arguments

 MRobj An MRexperiment object.
 phenodata Phenotype data frame or file path.

Value

An updated MRexperiment object.
add_plotly_config

Description

Adds a config call based on plotly::config

Usage

```
add_plotly_config(.data)
```

Arguments

- `.data` plotly data object to apply the config call to

Value

plotly::config call

add_plotly_layout

Description

Adds a layout call based on plotly::layout

Usage

```
add_plotly_layout(.data, plotTitle, xaxis_text, ylab)
```

Arguments

- `.data` plotly data object to apply the layout call to
- `plotTitle` plot title to use
- `xaxis_text` x axis label to use
- `ylab` y axis label to use

Value

plotly::layout call
aggFeatures

Aggregates counts by level

Description

This function aggregates counts by a level specified in the featureData slot of the MRexperiment object.

Usage

```r
aggFeatures(MRobj, level = NULL, sort = TRUE)
```

Arguments

- `level`: Level to aggregate over. If NULL, no aggregation occurs.
- `sort`: boolean determining if resulting aggregated MRexperiment should be sorted based on rowSums; default is TRUE

Value

Aggregated MRexperiment object or matrix depending on `out`.

Examples

```r
data("mouseData", package = "metagenomeSeq")
aggFeatures(mouseData, level = "genus")
```

aggregationTab

Aggregation module server function

Description

Aggregation module server function

Usage

```r
aggregationTab(
    input, output, session, resetInput, levelOpts, chosenLevel, meData
)
```
aggregationTabUI

Description
Aggregation module ui function

Usage
aggregationTabUI(id)

Arguments
id namespace identifier

Value
box holding aggregation input elements

Author(s)
Janina Reeder

Examples
aggregationTabUI("atu_id")
alphaDiversity
Alpha Diversity module - server

Description

Alpha Diversity module - server

Usage

```r
alphaDiversity(
  input,
  output,
  session,
  aggDat,
  featLevel,
  intraSettings,
  colorOptions,
  reset
)
```

Arguments

- **input**: shiny input
- **output**: shiny output
- **session**: shiny session
- **aggDat**: aggregated MRExperiment
- **featLevel**: chosen feature level (aggregation level)
- **intraSettings**: analysis settings as passed over from analysis input module
- **colorOptions**: phenotype selections: used for color choices
- **reset**: boolean reactive which resets the module if TRUE

Value

R code used to make the alpha diversity plot

Author(s)

Janina Reeder
alphaDiversityUI

Alpha Diversity module - UI

Description

Alpha Diversity module - UI

Usage

alphaDiversityUI(id)

Arguments

- **id**: namespace identifier

Value

box holding the UI code

Author(s)

Janina Reeder

avgAbundance

Relative abundance plot module - server

Description

Relative abundance plot module - server

Usage

avgAbundance(
 input,
 output,
 session,
 aggDat,
 featLevel,
 featureSettings,
 normalizedData,
 reset
)
avgAbundanceUI

Arguments

input shiny input
output shiny output
session shiny session
aggDat aggregated MRExperiment
featLevel chosen feature level (aggregation level)
featureSettings analysis input settings passed over to this module
normalizedData boolean indicating whether data has been normalized
reset boolean reactive which resets the module if TRUE

Value

list storing plot clicks and number of features displayed (passed to feature plot module) as well as the R code to make plot

Description

Relative abundance plot module - UI

Usage

avgAbundanceUI(id)

Arguments

id namespace identifier

Value

box containing the ui code

Author(s)

Janina Reeder
betaDiversity

Beta Diversity module - server

Description

Beta Diversity module - server

Usage

```r
betaDiversity(
  input,
  output,
  session,
  aggDat,
  aggLevel,
  colorOptions,
  shapeOptions,
  betadistance,
  betaSettings,
  reset
)
```

Arguments

- **input**: shiny input
- **output**: shiny output
- **session**: shiny session
- **aggDat**: MRExperiment storing data
- **aggLevel**: aggregation level
- **colorOptions**: phenotype selection options for color
- **shapeOptions**: phenotype selection options for shape
- **betadistance**: distance measured used for beta diversity analysis
- **betaSettings**: input choices for beta diversity
- **reset**: boolean reactive which resets the module if TRUE

Value

R code needed to generate the beta diversity plot

Author(s)

Janina Reeder
betaDiversityUI
Beta Diversity module - UI

Description

Beta Diversity module - UI

Usage

betaDiversityUI(id)

Arguments

| id | namespace identifier |

Value

box holding the ui code

Author(s)

Janina Reeder

betaInput
Server side for the analysis input module handling analysis control

Description

Server side for the analysis input module handling analysis control

Usage

betaInput(input, output, session, meData, adonisOptions, reset)

Arguments

<table>
<thead>
<tr>
<th>input</th>
<th>shiny input</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td>shiny output</td>
</tr>
<tr>
<td>session</td>
<td>shiny session</td>
</tr>
<tr>
<td>meData</td>
<td>MRExperiment object storing all data</td>
</tr>
<tr>
<td>adonisOptions</td>
<td>phenodata columns ready for adonis analysis</td>
</tr>
<tr>
<td>reset</td>
<td>reactive boolean determining if all inputs should be reset</td>
</tr>
</tbody>
</table>
betaInputUI

Value
list holding all chosen values and the selected feature

Author(s)
Janina Reeder

betaInputUI

Main beta analysis input module. Set up to handle all analysis tabs in the app depending on given parameters

buildEmptyPlotlyPlot

Creates an empty plotly plot using the given labels on the x and y axis

Description

Creates an empty plotly plot using the given labels on the x and y axis

Usage

`buildEmptyPlotlyPlot(xaxis_text, ylab)`

Arguments

- `xaxis_text` x axis label
- `ylab` y axis label
buildPlottingDF

Sets up a dataframe used by several plotting functions by joining the required data with relevant phenotype data

Description

Sets up a dataframe used by several plotting functions by joining the required data with relevant phenotype data

Usage

```
buildPlottingDF(
  df, phenoTable,
  x_var = NULL, facet1 = NULL, facet2 = NULL, col_by = NULL,
  col_name = col_by, id_var = NULL
)
```

Arguments

df dataframe storing plotting data values
phenoTable pData of the MRexperiment; all following parameters must be a column of the phenoTable
x_var main plotting variable
facet1 column-based faceting (can be NULL)
facet2 row-based faceting (can be NULL)
col_by coloring factor (can be NULL)
col_name character to be used as name for col_by
id_var variable used to connect samples longitudinally (can be NULL)

Value

dataframe obtained by joining df and relevant columns of phenoTable
calculatePCAs

Function to compute the PCAs for a given distance matrix

Description

Function to compute the PCAs for a given distance matrix

Usage

```r
calculatePCAs(distmat, pcas)
```

Arguments

- `distmat`: the distance matrix
- `pcas`: 2-element vector of PCAs to include in results

Value

The x slot limited to pcas after calling stats::prcomp on distmat

Examples

```r
data("mouseData", package = "metagenomeSeq")
aggdat <- aggFeatures(mouseData, level = "genus")
distmat <- computeDistMat(aggdat, dist_method = "bray")
calculatePCAs(distmat, c(1,2))
```

computeCI_Interval

Helper function to calculate the confidence interval for a cor.test

Description

Helper function to calculate the confidence interval for a cor.test

Usage

```r
computeCI_Interval(num, mS, method)
```

Arguments

- `num`: number of samples
- `mS`: results of cor.test
- `method`: statistical method used for cor.test

Value

Named vector holding lower and upper thresholds
computeDistMat

Function to compute the distance matrix using vegdist from the vegan package

Description

Function to compute the distance matrix using vegdist from the vegan package

Usage

computeDistMat(aggdat, dist_method, log = TRUE, nfeatures = nrow(aggdat))

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aggdat</td>
<td>aggregated MRExperiment</td>
</tr>
<tr>
<td>dist_method</td>
<td>distance method from vegan package (See `vegan::vegdist for details)</td>
</tr>
<tr>
<td>log</td>
<td>transform count matrix to log2; default is TRUE</td>
</tr>
<tr>
<td>nfeatures</td>
<td>number of features to use; default is all</td>
</tr>
</tbody>
</table>

Value

distance as dist

Examples

data("mouseData", package = "metagenomeSeq")
aggdat <- aggFeatures(mouseData, level = "genus")
computeDistMat(aggdat, dist_method = "bray")

corrAnalysis

corr Analysis Module - server

Description

corr Analysis Module - server
Usage

corrAnalysisUI(id)

Arguments

id namespace identifier

Value

fluidRow containing the ui code
Author(s)

Janina Reeder

Examples

corrAnalysisUI("coranalysis_id")

corrFeature Scatterplot of two features

Description

This function plots a scatterplot of two features along with sample correlation statistics.

Usage

corrFeature(
 aggdat,
 feat1,
 feat2,
 log = TRUE,
 method = c("spearman", "pearson", "kendall"),
 addRegression = TRUE,
 col_by = NULL,
 facet1 = NULL,
 facet2 = NULL,
 plotTitle = "",
 xlab = NULL,
 ylab = NULL,
 allowWebGL = TRUE,
 pwidth = 550,
 pheight = 200
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aggdat</td>
<td>aggregated MRExperiment</td>
</tr>
<tr>
<td>feat1</td>
<td>Feature 1.</td>
</tr>
<tr>
<td>feat2</td>
<td>Feature 2.</td>
</tr>
<tr>
<td>log</td>
<td>Log2 transform data. Default is TRUE.</td>
</tr>
<tr>
<td>method</td>
<td>Correlation coefficient. One of "spearman" (default), "pearson", or "kendall".</td>
</tr>
<tr>
<td>addRegression</td>
<td>boolean parameter indicating whether linear regression line should be drawn; default: TRUE</td>
</tr>
<tr>
<td>col_by</td>
<td>Phenotype for coloring.</td>
</tr>
</tbody>
</table>
Description

Server side for the analysis input module handling analysis control

Usage

```r
corrInput(  
  input,  
  output,  
  session,  
  type,  
  meData,  
  facetOptions = NULL,  
  reset,  
  aggDat = reactive(NULL)  
)
```
Arguments

- **input**: shiny input
- **output**: shiny output
- **session**: shiny session
- **type**: of the correlation (feature vs phenotype)
- **meData**: MRExperiment object storing all data
- **facetOptions**: named vector of available facet choices
- **reset**: reactive boolean determining if all inputs should be reset
- **aggDat**: aggregated MRExperiment object (default is NULL)

Value

- list holding all chosen values and the selected feature

Author(s)

Janina Reeder

corrInputUI

Main correlation analysis input module. Handles correlation analysis tab in the app

Description

Main correlation analysis input module. Handles correlation analysis tab in the app

Usage

`corrInputUI(id, type)`

Arguments

- **id**: element identifier - namespace
- **type**: determines if 'feature' or 'pheno' correlation

Value

- box containing ui element

Author(s)

Janina Reeder
corrPhenotype
Scatterplot of a feature and a phenotype

Description

This function plots a scatterplot of a feature and a phenotype along with sample correlation statistics.

Usage

```r
corrPhenotype(
  aggdat,  
  feature,  
  phenotype,  
  log = TRUE,  
  method = c("spearman", "pearson", "kendall"),  
  addRegression = TRUE,  
  col_by = NULL,  
  facet1 = NULL,  
  facet2 = NULL,  
  plotTitle = "",  
  xlab = NULL,  
  ylab = NULL,  
  allowWebGL = TRUE,  
  pwidth = 550,  
  pheight = 200
)
```

Arguments

- `aggdat`: aggregated MRExperiment
- `feature`: Feature input.
- `phenotype`: Phenotype input (must be numeric)
- `log`: Log2 transform data. Default is TRUE.
- `method`: Correlation coefficient. One of "spearman" (default), "pearson", or "kendall".
- `addRegression`: boolean parameter indicating whether linear regression line should be drawn; default: TRUE
- `col_by`: Phenotype for coloring.
- `facet1`: Phenotype for facet 1.
- `facet2`: Phenotype for facet 2. (WIP/TODO)
- `plotTitle`: Plot title. Default is no title.
- `xlab`: X-axis label. Default is `feat1`.
- `ylab`: Y-axis label. Default is `feat2`.
- `allowWebGL`: boolean indicating if WebGL should be used for large data
- `pwidth`: overall plot width; default is 550
- `pheight`: overall plot height; default is 200
Value

list holding plotly plot and lm fit

Examples

data("mouseData", package = "metagenomeSeq")
aggdat <- aggFeatures(mouseData, level = "genus")
corrPhenotype(aggdat, feature = "Bacteroides", phenotype = "relativeTime")

createHeader

Makes header for R script

Description

This function makes the header for the report R script to be rendered by knitr into Rmarkdown and rendered into HTML, PDF, or Word.

Usage

createHeader(
 title = "MicrobiomeExplorer Report",
 author = "",
 date = "",
 data.source = "",
 output =getOption("me.reportformat"),
 toc = TRUE
)

Arguments

title Title of the report.
author Author of the report.
date Date of the report.
data.source R code used to obtain the dataset
output Output of Rmarkdown file.
toc Table of contents. Default is TRUE.

Details

This was adapted from https://yihui.name/knitr/demo/stitch/

Value

A character vector where each element is a line in the R script.
dataInput

Main Data input server where the user selects files to upload to the app or connects to database

Description

Main Data input server where the user selects files to upload to the app or connects to database

Usage

dataInput(
 input,
 output,
 session,
 dataSource,
 dataFilterRep,
 qcRep,
 addPheno,
 resetReports
)

Arguments

input module input
output module output
session app session
dataSource reactive Value storing commands for loading data
dataFilterRep reactive Value storing commands for filtering data
qcRep reactive Value storing commands for producing qc plots
addPheno reactive boolean keeping track of phenodata changes
resetReports reactive boolean indicating whether reports need to be reset

Value

list of reactives containing the uploaded and filtered data as well as the filterChoices on phenotypes

Author(s)

Janina Reeder
dataInputUI
Main Data input UI where the user selects files to upload to the app or connects to database

Description
Main Data input UI where the user selects files to upload to the app or connects to database

Usage

dataInputUI(id)

Arguments
id
module identifier

Value
fluidRow holding UI interface

Author(s)
Janina Reeder

Examples

dataInputUI("datainput_id")

designPairs
Produce design matrix of pairwise comparisons

Description
This function takes in the levels of a factor phenotype and outputs a design matrix of all pairwise comparisons.

Usage

designPairs(levels)

Arguments
levels
Character vector of the levels of a factor phenotype

Value
A model matrix
diffAnalysis

diff Analysis Module - server

Description

diff Analysis Module - server

Usage

```r
diffAnalysis(
    input,
    output,
    session,
    data,
    levelOpts,
    chosenLevel,
    resetInput,
    aggData,
    normalizedData
)
```

Arguments

- **input**: shiny input
- **output**: shiny output
- **session**: shiny session
- **data**: the main data object returned from data_input_module
- **levelOpts**: available levels to aggregate on (depends on input data)
- **chosenLevel**: previously selected level (passed from different instance)
- **resetInput**: reactive boolean determining if reset is required
- **aggData**: the aggregated MRExperiment object
- **normalizedData**: boolean indicating if normalization was done

Value

reactive holding code to be used in reports

Author(s)

Janina Reeder
`diffAnalysisUI`
Diff Analysis Module - UI

Description

Diff Analysis Module - UI

Usage

```r
diffAnalysisUI(id)
```

Arguments

- `id`
 namespace identifier

Value

fluidRow containing the ui code

Author(s)

Janina Reeder

Examples

```r
diffAnalysisUI("diffanalysis_id")
```

`diffInput`
Server side for the analysis input module handling analysis control

Description

Server side for the analysis input module handling analysis control

Usage

```r
diffInput(input, output, session, meData, facetOptions = NULL, reset)
```

Arguments

- `input`
 shiny input
- `output`
 shiny output
- `session`
 shiny session
- `meData`
 MRExperiment object storing all data
- `facetOptions`
 named vector of available facet choices
- `reset`
 reactive boolean determining if all inputs should be reset
diffInputUI

Value

list holding all chosen values and the selected feature

Author(s)

Janina Reeder

diffInputUI

Main diffanalysis input module. Set up to handle diff analysis tabs in the app depending on given parameters

Description

Main diffanalysis input module. Set up to handle diff analysis tabs in the app depending on given parameters

Usage

diffInputUI(id)

Arguments

id element identifier - namespace

Value

box containing ui element

Author(s)

Janina Reeder

diffTable

Differential analysis module server code

Description

Differential analysis module server code
Usage

diffTable(
 input,
 output,
 session,
 aggDat,
 featLevel,
 diffSettings,
 reset,
 normalized
)

Arguments

input shiny input
output shiny output
session shiny session
aggDat aggregated MRExperiment
featLevel chosen feature level (aggregation level)
diffSettings reactive storing values selected in analysis input interface
reset boolean reactive which resets the module if TRUE
normalized boolean reactive indicating if data has been normalized

Value

list containing R code for analysis and for feature plots

Author(s)

Janina Reeder
extendPhenoData

Value
 row containing the UI elements

Author(s)
 Janina Reeder

extendPhenoData Extends existing phenodata for an object

Description
 This function adds phenotype data to the phenoData slot in an MRexperiment object.

Usage
 extendPhenoData(MRobj, phenodata = NULL)

Arguments
 MRobj An MRexperiment object.
 phenodata Phenotype data frame or file path.

Value
 An updated MRexperiment object.

featAbundance Feature plot module - server

Description
 Feature plot module - server

Usage
 featAbundance(
 input,
 output,
 session,
 aggDat,
 featLevel,
 intraSettings,
 selectedFeat,
 featName,
)
`featAbundanceUI` Feature plot module - UI

Description

Feature plot module - UI

Usage

`featAbundanceUI(id)`

Arguments

- `id` namespace identifier

Value

box holding the UI code
Description

feature Analysis Module - server

Usage

featureAnalysis(input, output, session, data, resetInput, aggData, normalizedData)

Arguments

input shiny input
output shiny output
session shiny session
data the main data object returned from data_input_module
resetInput reactive boolean determining if reset is required
aggData the aggregated MRExperiment object
normalizedData boolean indicating if normalization was done

Value

reactive holding code to be used in reports

Author(s)

Janina Reeder
featureAnalysisUI feature Analysis Module - UI

Description
feature Analysis Module - UI

Usage
featureAnalysisUI(id)

Arguments
id namespace identifier

Value
fluidRow containing the ui code

Author(s)
Janina Reeder

Examples
featureAnalysisUI("featureanalysis_id")

featureCorr Feature correlation analysis server module

Description
Feature correlation analysis server module

Usage
featureCorr(
 input,
 output,
 session,
 aggDat,
 colorOptions,
 corFeatBase,
 corFeat2,
 corFacet1,
featureCorrUI

```r
corfacet2, corMethod, reset
)
```

Arguments

- `input` module input
- `output` module output
- `session` app session
- `aggDat` aggregated MRExperiment
- `colorOptions` reactive storing filters available via data input
- `corFeatBase` first correlation feature
- `corFeat2` second correlation feature
- `corFacet1` first correlation facet
- `corFacet2` second correlation facet
- `corMethod` correlation method to use
- `reset` boolean reactive which resets the module if TRUE

Value

R code used to do the correlation analysis (character)

Author(s)

Janina Reeder

featureCorrUI
Feature correlation analysis module UI

Description

Feature correlation analysis module UI

Usage

```r
featureCorrUI(id)
```

Arguments

- `id` namespace identifier

Value

box containing the UI elements
featureInput

Server side for the feature analysis input module

Description

Server side for the feature analysis input module

Usage

```r
featureInput(
  input,
  output,
  session,
  meData,
  facetOptions = NULL,
  reset,
  aggDat = reactive(NULL)
)
```

Arguments

- **input**: shiny input
- **output**: shiny output
- **session**: shiny session
- **meData**: MRExperiment object storing all data
- **facetOptions**: named vector of available facet choices
- **reset**: reactive boolean determining if all inputs should be reset
- **aggDat**: aggregated MRExperiment object (default is NULL)

Value

list holding all chosen values and the selected feature

Author(s)

Janina Reeder
featureInputUI

Main feature analysis input module. Set up to handle all analysis tabs in the app depending on given parameters

Description
Main feature analysis input module. Set up to handle all analysis tabs in the app depending on given parameters

Usage
featureInputUI(id)

Arguments
id element identifier - namespace

Value
box containing ui element

Author(s)
Janina Reeder

featureTable
Feature table module server code

Description
Feature table module server code

Usage
featureTable(input, output, session, meData, featureModRep)

Arguments
input shiny input
output shiny output
session shiny session
meData MRExperiment storing the data
featureModRep reactiveValue storing modifications performed on fData
featureTableUI

Feature table UI module

Value

feature table server fragment - no return value

Author(s)

Janina Reeder

featureTableUI

Feature table UI module

Description

Feature table UI module

Usage

featureTableUI(id)

Arguments

id

namespace identifier

Value

fluidRow containing the UI code for feature tables

Author(s)

Janina Reeder

Examples

featureTableUI("feature_id")
Description

Module handling file upload for the application: server

Usage

```r
fileUpload(
  input,
  output,
  session,
  meData,
  meName,
  initializeData,
  addPheno,
  dataSource,
  resetFile = reactive(NULL)
)
```

Arguments

- `input`: module input
- `output`: module output
- `session`: app session
- `meData`: main reactive storing the MRexperiment data
- `meName`: main reactive storing the filename uploaded
- `initializeData`: reactiveVal keeping track of new uploads to reset data
- `addPheno`: reactiveVal keeping track of phenodata changes
- `dataSource`: reactive Value storing commands for loading data
- `resetFile`: indicating if module should be reset

Value

boolean denoting successful upload of a file

Author(s)

Janina Reeder
fileUploadUI
Module handling file upload for the application: UI In a deployed version this module should be replaced with database access

Description
Module handling file upload for the application: UI In a deployed version this module should be replaced with database access

Usage
```
fileUploadUI(id)
```

Arguments
- **id** module identifier

Value
div holding ui elements

Author(s)
Janina Reeder

filterByPheno
Function to filter the MReperiment by certain phenotype values

Description
Function to filter the MReperiment by certain phenotype values

Usage
```
filterByPheno(MObj, rm_phenovalues)
```

Arguments
- **MObj** the MReperiment to subset
- **rm_phenovalues** list of named vectors with names corresponding to column names in pData and values representing phenotypes within the column

Value
the filtered MObj
filterMEData

Author(s)

Janina Reeder

Examples

data("mouseData", package = "metagenomeSeq")
filterByPheno(MRobj = mouseData,
 rm_phenovalues = list("diet" = c("BK"),"mouseID" = c("PM1","PM10")))

filterMEData

Function to filter the MRexperiment data by numerical parameters

Description

Function to filter the MRexperiment data by numerical parameters

Usage

filterMEData(MRobj, minpresence = 1, minfeats = 2, minreads = 2)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRobj</td>
<td>MRExperiment object to filter</td>
</tr>
<tr>
<td>minpresence</td>
<td>minimum sample presence per feature</td>
</tr>
<tr>
<td>minfeats</td>
<td>minimum number of features per sample</td>
</tr>
<tr>
<td>minreads</td>
<td>minimum number of reads per sample</td>
</tr>
</tbody>
</table>

Value

the filtered MRobj

Author(s)

Janina Reeder

Examples

data("mouseData", package = "metagenomeSeq")
filterMEData(MRobj = mouseData, minpresence = 4, minfeats = 300)
generateReport

Generates report

Description

This function generates the pieces of the report, which includes the R script, Rmarkdown file, and any Rmarkdown outputs.

Usage

```r
generateReport(
    rcode,
    filename = "report",
    dir = "out",
    title = "MicrobiomeExplorer Report",
    author = "",
    date = "`r format(Sys.time(), '%d %B, %Y')`",
    data.source = "",
    output = c("html_document"),
    toc = TRUE,
    intro_text = NULL
)
```

Arguments

- `rcode`: A named list where each element corresponds to a different analysis (Alpha diversity, Beta diversity). The name of the list is used to denote the first part of the code chunks in each analysis section (alpha, beta). Each element is itself a list of R commands corresponding to a code chunk.
- `filename`: Name of output files. Default is "report".
- `dir`: Directory of output. Default is "out".
- `title`: Title of the report.
- `author`: Author of the report.
- `date`: Date of the report.
- `data.source`: R code used to obtain the dataset
- `output`: Output of Rmarkdown file. Options defined in global.R
- `toc`: Table of contents. Default is TRUE.
- `intro_text`: Introductory text to include with the report (optional)

Details

Adapted from https://yihui.name/knitr/demo/stitch/

Value

A character vector where each element is a line in the R script.
getFeatModCode

Helper function returning the fData modifications as strings for report generation

Description

Helper function returning the fData modifications as strings for report generation

Usage

getFeatModCode(featureanno)

Arguments

featureanno type of feature annotation; values are "Mark unknown" or "Roll down"

Value

String containing R code performing the modification

getFeatSplitCode

Helper function returning the fData modifications as strings for report generation

Description

Helper function returning the fData modifications as strings for report generation

Usage

getFeatSplitCode(splittaxonomy)

Arguments

splittaxonomy name of column to split on

Value

String containing R code performing the modification
getFileType

Helper function assigning different file extensions to specific short texts identifying the types

Description

Helper function assigning different file extensions to specific short texts identifying the types

Usage

```
getFileType(fileext)
```

Arguments

- `fileext`: the file extension found after '.'

Value

character string for the filetype

Author(s)

Janina Reeder

getFilterChoices

Helper function to filter phenodata for interesting phenotypes to be used for filtering or subsetting

Description

Helper function to filter phenodata for interesting phenotypes to be used for filtering or subsetting

Usage

```
getFilterChoices(MRobj)
```

Arguments

- `MRobj`: the MRexperiment storing the data

Value

list of named vectors with names being pData column headers and values being unique entries; columns with only one entry or those with different values for each samples are omitted

Author(s)

Janina Reeder
getLegendLevel

Function to find a non-empty facet in the last row. This will be the one to be connected to the plot legend to avoid duplicates within.

Description

Function to find a non-empty facet in the last row. This will be the one to be connected to the plot legend to avoid duplicates within.

Usage

getLegendLevel(df2, facets, facet2s)

Arguments

df2: plotting data frame
facets: column facets
facet2s: row facets

Value

the name of the column-based facet which can be used as legend

getPhenoChanges

Helper function returning the code used to modify the data types of the pheno table.

Description

Helper function returning the code used to modify the data types of the pheno table.

Usage

getPhenoChanges(phenotype, datatype)

Arguments

phenotype: name of the phenotype column header
datatype: variable type to assign to column

Value

String storing code to perform modification

Author(s)

Janina Reeder
getPhenoModCode
Helper function returning the code used to modify the phenotable as a string

Description

Helper function returning the code used to modify the phenotable as a string

Usage

```r
getPhenoModCode(name, pheno1, pheno2)
```

Arguments

- **name**: interaction name
- **pheno1**: first interaction phenotype
- **pheno2**: second interaction phenotype

Value

String storing code to perform modification

Author(s)

Janina Reeder

getWidths
Helper function to account for issues plotly has with very small widths (these end up being 1 and cover the entire plotting area)

Description

Helper function to account for issues plotly has with very small widths (these end up being 1 and cover the entire plotting area)

Usage

```r
getWidths(df2, facets, x_var, drop = TRUE)
```

Arguments

- **df2**: dataframe storing plotting data
- **facets**: column facets
- **x_var**: x variable
- **drop**: passed on as .drop to dplyr::group_by
Value

widths for each facet

heatmapInput

Server side for the analysis input module handling analysis control

Description

Server side for the analysis input module handling analysis control

Usage

heatmapInput(input, output, session, meData, reset, aggDat = reactive(NULL))

Arguments

input shiny input
output shiny output
session shiny session
meData MRExperiment object storing all data
reset reactive boolean determining if all inputs should be reset
aggDat aggregated MRExperiment object (default is NULL)

Value

list holding all chosen values and the selected feature

Author(s)

Janina Reeder

heatmapInputUI

Heatmap analysis input module. Set up to handle all analysis tabs in the app depending on given parameters

Description

Heatmap analysis input module. Set up to handle all analysis tabs in the app depending on given parameters

Usage

heatmapInputUI(id)
interAnalysis

Arguments

id element identifier - namespace

Value

box containing ui element

Author(s)

Janina Reeder

interAnalysis inter Analysis Module - server

Description

inter Analysis Module - server

Usage

interAnalysis(
 input,
 output,
 session,
 data,
 levelOpts,
 chosenLevel,
 resetInput,
 aggData
)

Arguments

input shiny input
output shiny output
session shiny session
data the main data object returned from data_input_module
levelOpts available levels to aggregate on (depends on input data)
chosenLevel previously selected level (passed from different instance)
resetInput reactive boolean determining if reset is required
aggData the aggregated MRExperiment object

Value

reactive holding code to be used in reports
interAnalysisUI

inter Analysis Module - UI

Description

inter Analysis Module - UI

Usage

interAnalysisUI(id)

Arguments

- **id**: namespace identifier

Value

fluidRow containing the ui code

Author(s)

Janina Reeder

Examples

interAnalysisUI("interanalysis_id")

intraAnalysis

Intra Analysis Module - server

Description

Intra Analysis Module - server

Usage

intraAnalysis(
 input,
 output,
 session,
 data,
 levelOpts,
 chosenLevel,
 resetInput,
 aggData,
 normalizedData
)
Arguments

- **input**: shiny input
- **output**: shiny output
- **session**: shiny session
- **data**: the main data object returned from `data_input_module`
- **levelOpts**: available levels to aggregate on (depends on input data)
- **chosenLevel**: previously selected level (passed from different instance)
- **resetInput**: reactive boolean determining if reset is required
- **aggData**: the aggregated MRExperiment object
- **normalizedData**: boolean indicating if normalization was done

Value

reactive holding code to be used in reports

Author(s)

Janina Reeder

Description

Intra Analysis Module - UI

Usage

`intraAnalysisUI(id)`

Arguments

- **id**: namespace identifier

Value

fluidRow containing the ui code

Author(s)

Janina Reeder

Examples

`intraAnalysisUI("intraanalysis_id")`
intraInput

Server side for the intra analysis input module

Description

Server side for the intra analysis input module

Usage

intraInput(
 input,
 output,
 session,
 meData,
 facetOptions = NULL,
 reset,
 aggDat = reactive(NULL)
)

Arguments

input shiny input
output shiny output
session shiny session
meData MRExperiment object storing all data
facetOptions named vector of available facet choices
reset reactive boolean determining if all inputs should be reset
aggDat aggregated MRExperiment object (default is NULL)

Value

list holding all chosen values and the selected feature

Author(s)

Janina Reeder
Description

Main intra analysis input module. Set up to handle all analysis tabs in the app depending on given parameters.

Usage

```plaintext
intraInputUI(id)
```

Arguments

- **id**: element identifier - namespace

Value

box containing ui element

Author(s)

Janina Reeder

longAnalysis

long Analysis Module - server

Description

long Analysis Module - server

Usage

```plaintext
longAnalysis(
    input,
    output,
    session,
    data,
    levelOpts,
    chosenLevel,
    resetInput,
    aggData,
    normalizedData
)
```
Arguments

- input: shiny input
- output: shiny output
- session: shiny session
- data: the main data object returned from data_input_module
- levelOpts: available levels to aggregate on (depends on input data)
- chosenLevel: previously selected level (passed from longerent instance)
- resetInput: reactive boolean determining if reset is required
- aggData: the aggregated MRExperiment object
- normalizedData: boolean indicating if normalization was done

Value

reactive holding code to be used in reports

Author(s)

Janina Reeder

Description

Long Analysis Module - UI

Usage

longAnalysisUI(id)

Arguments

- id: namespace identifier

Value

fluidRow containing the ui code

Author(s)

Janina Reeder

Examples

longAnalysisUI("longanalysis_id")
longInput

Server side for the analysis input module handling analysis control

Description

Server side for the analysis input module handling analysis control

Usage

longInput(
 input,
 output,
 session,
 meData,
 facetOptions = NULL,
 reset,
 aggDat = reactive(NULL)
)

Arguments

input shiny input
output shiny output
session shiny session
meData MRexperiment object storing all data
facetOptions named vector of available facet choices
reset reactive boolean determining if all inputs should be reset
aggDat aggregated MRexperiment

Value

list holding all chosen values and the selected feature

Author(s)

Janina Reeder
longInputUI

Main diffanalysis input module. Set up to handle diff analysis tabs in the app depending on given parameters

Description

Main diffanalysis input module. Set up to handle diff analysis tabs in the app depending on given parameters

Usage

longInputUI(id)

Arguments

id element identifier - namespace

Value

box containing ui element

Author(s)

Janina Reeder

longResults

Longitudinal analysis module server code

Description

Longitudinal analysis module server code

Usage

longResults(
 input,
 output,
 session,
 aggDat,
 featLevel,
 longSettings,
 normalizedData,
 reset
)
Arguments

- **input**: shiny input
- **output**: shiny output
- **session**: shiny session
- **aggDat**: aggregated MRExperiment
- **featLevel**: chosen feature level (aggregation level)
- **longSettings**: reactive storing values selected in analysis input interface
- **normalizedData**: reactive boolean indicating if data has been normalized
- **reset**: boolean reactive which resets the module if TRUE

Value

List containing R code for analysis and for feature plots

Author(s)

Janina Reeder

longResultsUI Longitudinal Analysis module UI

Description

Longitudinal Analysis module UI

Usage

longResultsUI(id)

Arguments

- **id**: namespace identifier

Value

Row containing the UI elements

Author(s)

Janina Reeder
Description

This function makes a scatterplot of read and feature counts for each sample. It was adjusted based on original work by Mo Huang

Usage

```r
makeQCPlot(
  MObj,  # metagenomeSeq object to be plotted
  col_by = NULL,  # factor by which to color the points
  log = "none",  # character indicating which (if any) axes should be shown as log
  filter_feat = 0,  # Numeric Y-coordinate to draw horizontal dashed line to indicate feature filtering. If 0 (default), no line is drawn.
  filter_read = 0,  # Numeric X-coordinate to draw vertical dashed line to indicate read count filtering. If 0 (default), no line is drawn.
  allowWebGL = TRUE,  # boolean indicating if webGL should be added
  pwidth = 550,  # overall plot width; default is 550 (125 are added for legend)
  pheight = 550  # overall plot height; default is 550
)
```

Arguments

- `MObj` metagenomeSeq object to be plotted
- `col_by` factor by which to color the points
- `log` character indicating which (if any) axes should be shown as log
- `filter_feat` Numeric Y-coordinate to draw horizontal dashed line to indicate feature filtering. If 0 (default), no line is drawn.
- `filter_read` Numeric X-coordinate to draw vertical dashed line to indicate read count filtering. If 0 (default), no line is drawn.
- `allowWebGL` boolean indicating if webGL should be added
- `pwidth` overall plot width; default is 550 (125 are added for legend)
- `pheight` overall plot height; default is 550

Value

the plotly QC plot

Author(s)

Janina Reeder

Examples

```r
data("mouseData", package = "metagenomeSeq")
makeQCPlot(mouseData)
```
normalizeData

Calls appropriate normalization functions depending on input parameter. The two available methods included in the package are based on either calculating proportions or by using cumulative sum scaling (CSS), Paulson, et al. Nat Meth 2013.

Description

Calls appropriate normalization functions depending on input parameter. The two available methods included in the package are based on either calculating proportions or by using cumulative sum scaling (CSS), Paulson, et al. Nat Meth 2013.

Usage

```r
normalizeData(MRobj, norm_method)
```

Arguments

- `MRobj` the MReperiment
- `norm_method` method to use for normalization; CSS or Proportional

Value

the normalized MReobj

Examples

```r
data("mouseData", package = "metagenomeSeq")
normalizeData(mouseData, norm_method = "CSS")
```

parseInteractionName

Helper function used to build a correct interactionName based on the chosen columns.

Description

Helper function used to build a correct interactionName based on the chosen columns.

Usage

```r
parseInteractionName(interactionName)
```

Arguments

- `interactionName` as chosen by user. This may not be good to store internally.
phenotypeCorr

Description
Phenotype correlation analysis server module

Usage
```
phenotypeCorr(  
  input,  
  output,  
  session,  
  aggDat,  
  colorOptions,  
  corFeatBase,  
  corPheno,  
  corFacet1,  
  corFacet2,  
  corMethod,  
  reset  
)
```

Arguments
- `input` shiny input
- `output` shiny output
- `session` shiny session
- `aggDat` aggregated MRExperiment
- `colorOptions` reactive storing filters available via data input
- `corFeatBase` first correlation feature
- `corPheno` correlation phenotype
- `corFacet1` first correlation facet
- `corFacet2` second correlation facet
- `corMethod` correlation method to use
- `reset` boolean reactive which resets the module if TRUE

Value
R code used to do the correlation analysis (character)
phenotypeTable

Author(s)
Janina Reeder

phenotypeCorrUI
Phenotype correlation analysis module

Description
Phenotype correlation analysis module

Usage
phenotypeCorrUI(id)

Arguments
id namespace identifier

Value
box containing the UI element

Author(s)
Janina Reeder

phenotypeTable
Phenotype table server module

Description
Phenotype table server module

Usage
phenotypeTable(input, output, session, meData, phenoModRep, addPheno)

Arguments
input shiny input
output shiny output
session shiny session
meData MRExperiment storing the data
phenoModRep reactive Value storing any phenotable modifications made
addPheno reactive boolean keeping track of pheno data modifications
phenotypeTableUI

Value

phenotype table server fragment - no return value

Author(s)

Janina Reeder

Description

Phenotype table UI module

Usage

phenotypeTableUI(id)

Arguments

id namespace identifier

Value

fluidRow holding the ui code

Author(s)

Janina Reeder

Examples

phenotypeTableUI("phenotype_id")
Description

This function plots the relative abundance of the top abundant features.

Usage

```r
plotAbundance(
  aggdat,
  level,
  x_var = "SAMPLE_ID",
  ind = seq_len(10),
  plotTitle = "",
  ylab = "Reads",
  facet1 = NULL,
  facet2 = NULL,
  source = "A",
  pwidth = 650,
  pheight = 150
)
```

Arguments

- `aggdat`: aggregated MRExperiment object
- `level`: Feature level.
- `x_var`: Phenotype to aggregate over on X-axis. Default by "SAMPLE_ID".
- `ind`: Indices of top abundant features to plot. Rest of features are aggregated and displayed as "other".
- `plotTitle`: Plot title. Default shows no title.
- `ylab`: Y-axis label. Default is "Reads"
- `facet1`: Phenotype for facet 1.
- `facet2`: Phenotype for facet 2.
- `source`: name of the plot (needed for event handling); default is "A"
- `pwidth`: overall plot width; default is 650
- `pheight`: overall plot height; default is 150

Value

- plotly plot

Author(s)

Janina Reeder
plotAlpha

Plot alpha diversity

Examples

data("mouseData", package = "metagenomeSeq")
aggdat <- aggFeatures(mouseData, level = "genus")
plotAbundance(aggdat, level = "genus", x_var = "diet")

Description

This function plots the alpha diversity. See `?vegan::diversity` for details on the available index.

Usage

```r
plotAlpha(
  aggdat,
  level,
  index = c("shannon", "simpson", "invsimpson", "richness"),
  x_var = "SAMPLE_ID",
  ylab = index,
  col_by = NULL,
  facet1 = NULL,
  facet2 = NULL,
  plotTitle = "",
  pwidth = 500,
  pheight = 150
)
```

Arguments

- `aggdat` aggregated MRExperiment
- `level` Feature level
- `index` Diversity index, one of "shannon", "simpson", "invsimpson" or "richness" (=number of features). Default is "shannon".
- `x_var` Phenotype to aggregate over on X-axis. Default by "SAMPLE_ID".
- `ylab` Y-axis label. Default is "Reads".
- `col_by` Phenotype for coloring.
- `facet1` Phenotype for facet 1.
- `facet2` Phenotype for facet 2.
- `plotTitle` Plot title. By default, no title is used.
- `pwidth` overall plot width; default is 650
- `pheight` overall plot height; default is 150
Value

plotly plot object

Examples

data("mouseData", package = "metagenomeSeq")
aggdat <- aggFeatures(mouseData, level = "genus")
plotAlpha(aggdat, level = "genus", index = "shannon", x_var = "diet")

plotAvgAbundance

Plot average relative abundance

Description

This function plots the average relative abundance of the top abundant features.

Usage

plotAvgAbundance(
 aggdat,
 level,
 ind = seq_len(10),
 plotTitle = "",
 ylab = "Reads",
 facet1 = NULL,
 facet2 = NULL,
 source = "A",
 pwidth = 500,
 pheight = 150
)

Arguments

 aggdat aggregated MRExperiment object
 level Feature level.
 ind Indices of top abundant features to plot. Rest of features are aggregated and displayed as "other".
 plotTitle Plot title. Default shows no title.
 ylab Y-axis label. Default is "Reads"
 facet1 Phenotype for facet 1.
 facet2 Phenotype for facet 2.
 source name of the plot (needed for event handling); default is "A"
 pwidth overall plot width; default is 500
 pheight overall plot height; default is 150
plotBeta

Value

plotly plot

Author(s)

Janina Reeder

Examples

```r  
data("mouseData", package = "metagenomeSeq")  
aggdat <- aggFeatures(mouseData, level = "genus")  
plotAvgAbundance(aggdat, level = "genus")  
```

plotBeta

Plot beta diversity

Description

This functions plots the beta diversity as a PCoA plot.

Usage

```r  
plotBeta(  
  aggdat,  
  dim = c(1, 2),  
  log = TRUE,  
  dist_method = "bray",  
  pcas = NULL,  
  nfeatures = nrow(aggdat),  
  col_by = NULL,  
  shape_by = NULL,  
  plotTitle = "",  
  xlab = NULL,  
  ylab = NULL,  
  pt_size = 8,  
  plotText = NULL,  
  confInterval = NULL,  
  allowWebGL = TRUE,  
  pwidth = 550,  
  pheight = 550  
)  
```
Arguments

- `aggdat`: aggregated MRExperiment
- `dim`: Vector of length 2 specifying which dimensions to plot.
- `log`: Log2 transform data. Default is TRUE.
- `dist_method`: Which distance method to use. See `vegan::vegdist` for more `vegdist()` for options. Default is “bray”.
- `pcas`: precalculated pcas to avoid recalculation via CalcPCs
- `nfeatures`: Number of top features in terms of standard deviation. Default is all.
- `col_by`: Phenotype for coloring.
- `shape_by`: Phenotype for shape.
- `plotTitle`: Plot title. By default, becomes PCoA (dist.method).
- `xlab`: X-axis label. By default, shows dimension and percent variance explained.
- `ylab`: Y-axis label. By default, shows dimension and percent variance explained.
- `pt_size`: the size of the markers
- `plotText`: adonis text to be added to plot
- `confInterval`: numeric value indicating confidence level for ellipses
- `allowWebGL`: boolean indicating if WebGL should be used
- `pwidth`: overall plot width; default is 550 (125 are added for legend)
- `pheight`: overall plot height; default is 550

Value

- plotly plot object

Examples

data("mouseData", package = "metagenomeSeq")
aggdat <- aggFeatures(mouseData, level = "genus")
plotBeta(aggdat)

plotHeatmap

Plot heatmap

Description

This function plots a heatmap of feature abundance.
Usage

plotHeatmap(
 aggdat,
 features = NULL,
 log = TRUE,
 sort_by = c("Fano", "MAD", "Variance"),
 nfeat = 50,
 col_by = NULL,
 row_by = NULL,
 plotTitle = ""
)

Arguments

aggdat aggregated MRExperiment
features Vector of features to plot. If NULL, the top ‘nfeat’ features in terms of ‘sort_by’ will be plotted.
log Log2 transform data. Default is TRUE.
sort_by Dispersion measure to sort features, one of “Fano”, “MAD”, and “Variance”
nfeat Number of features to display. Default is 50.
col_by Vector of phenotypes for coloring.
row_by Name of feature level for coloring.
plotTitle Plot title. By default, no title.

Value

plotly heatmap

Examples

data("mouseData", package = "metagenomeSeq")
aggdat <- aggFeatures(mouseData, level = "genus")
plotHeatmap(aggdat, sort_by = "Fano")

plotLongFeature Plot longitudinal features

Description

This function plots the reads of a particular feature over different time points.
Usage

plotLongFeature(
 aggdat,
 feature,
 x_var,
 id_var = "SAMPLE_ID",
 plotTitle = NULL,
 ylab = "Reads",
 log = FALSE,
 showLines = TRUE,
 fixedHeight = NULL,
 x_levels = NULL,
 pwidth = 650
)

Arguments

aggdat aggregated MRExperiment
feature Feature to plot.
x_var Phenotype to show along on X-axis.
id_var phenotype used to connect data points. Default is "SAMPLE_ID"
plotTitle Plot title. Default shows no title.
ylab Y-axis label. Default is "Reads"
log Log2 transform data. Default is FALSE.
showLines add lines between the points
fixedHeight sets a specific plot height (differential analysis)
x_levels restrict to specific levels of x_var (differential analysis)
pwidth overall plot width; default is 650

Value

plotly object holding long feature plot

Author(s)

Janina Reeder, Mo Huang

Examples

data("mouseData", package = "metagenomeSeq")
aggdat <- aggFeatures(mouseData, level = "genus")
plotLongFeature(aggdat, feature = "Prevotella", x_var = "diet",
 id_var = "mouseID")
plotlyHistogram

Function plotting a plotly histogram on the given histvalue

Description

Function plotting a plotly histogram on the given histvalue

Usage

plotlyHistogram(
 histvalue,
 plotTitle,
 xaxisTitle = "",
 yaxisTitle = "",
 pwidth = 200,
 pheight = 200
)

Arguments

- histvalue: the value to plot as a histogram
- plotTitle: title of the plot
- xaxisTitle: name of xaxis; default is ""
- yaxisTitle: name of yaxis; default is ""
- pwidth: overall plot width; default is 200
- pheight: overall plot height; default is 200

Value

plotly plot object

Examples

data("mouseData", package = "metagenomeSeq")
plotlyHistogram(histvalue = colSums(MRcounts(mouseData) > 0),
 plotTitle = "Feature distribution",
 xaxisTitle = "features", yaxisTitle = "frequency")
plotlySampleBarplot Function plotting a barplot showing number of OTUs per samples

Description

Function plotting a barplot showing number of OTUs per samples

Usage

plotlySampleBarplot(
 MObj,
 col_by = NULL,
 xaxisTitle = "",
 yaxisTitle = "",
 pwidth = 600,
 pheight = 450,
 sortbyfreq = FALSE,
 pheno_sort = NULL,
 x_levels = NULL
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MObj</td>
<td>containing data to plot</td>
</tr>
<tr>
<td>col_by</td>
<td>phenotype to color bars by; default is NULL</td>
</tr>
<tr>
<td>xaxisTitle</td>
<td>name of xaxis; default is ""</td>
</tr>
<tr>
<td>yaxisTitle</td>
<td>name of yaxis; default is ""</td>
</tr>
<tr>
<td>pwidth</td>
<td>overall plot width; default is 600</td>
</tr>
<tr>
<td>pheight</td>
<td>overall plot height; default is 450</td>
</tr>
<tr>
<td>sortbyfreq</td>
<td>boolean determining if bars should be sorted by frequency; default is FALSE</td>
</tr>
<tr>
<td>pheno_sort</td>
<td>order of pheno levels to sort by; ignored if sortbyfreq is TRUE</td>
</tr>
<tr>
<td>x_levels</td>
<td>character vector holding x values in order to be shown</td>
</tr>
</tbody>
</table>

Value

plotly plot object

Examples

data("mouseData", package = "metagenomeSeq")
plotlySampleBarplot(mouseData)
plotSingleFeature

Plot features

Description

This function plots the reads of a particular feature or set of features.

Usage

plotSingleFeature(
 aggdat,
 feature = "other",
 x_var = "SAMPLE_ID",
 ind = seq_len(10),
 plotTitle = NULL,
 ylab = "Reads",
 xlab = NULL,
 facet1 = NULL,
 facet2 = NULL,
 log = FALSE,
 showPoints = FALSE,
 fixedHeight = NULL,
 x_levels = NULL,
 pwidth = 500
)

Arguments

aggdat aggregated MRExperiment
feature Feature to plot.
x_var Phenotype to aggregate over on X-axis. Default by "SAMPLE_ID".
ind Indices of top abundant features to plot. Needed to determine appropriate color
plotTitle Plot title. Default shows no title.
ylab Y-axis label. Default is "Reads"
xlab X-axis label. If NULL, x_var will be used as label.
facet1 Phenotype for facet 1.
facet2 Phenotype for facet 2.
log Log2 transform data. Default is FALSE.
showPoints add points for each sample on plot
fixedHeight sets a specific plot height (differential analysis)
x_levels restrict to specific levels of x_var (differential analysis)
pwidth overall plot width; default is 650
readData

Value

plotly plot object

Author(s)

Janina Reeder

Examples

data("mouseData", package = "metagenomeSeq")
aggdat <- aggFeatures(mouseData, level = "genus")
plotSingleFeature(aggdat, feature = "Prevotella", x_var = "diet")

Description

This function reads in an MRexperiment object saved as an RDS file, a Biom file, or a tab-delimited count matrix with features as rows and samples as columns.

Usage

readData(filepath, type = "RDS")

Arguments

filepath Relative or absolute file path of data object.
type The type of file to be read; default is "RDS", other options are "RDATA", "BIOM", "TAB", "CSV"

Value

An MRexperiment object.
Description

Relative abundance plot module - server

Usage

```r
relAbundance(
  input,
  output,
  session,
  aggDat,
  featLevel,
  intraSettings,
  normalizedData,
  reset
)
```

Arguments

- **input**: shiny input
- **output**: shiny output
- **session**: shiny session
- **aggDat**: aggregated MRExperiment
- **featLevel**: chosen feature level (aggregation level)
- **intraSettings**: analysis input settings passed over to this module
- **normalizedData**: boolean indicating whether data has been normalized
- **reset**: boolean reactive which resets the module if TRUE

Value

list storing plot clicks and number of features displayed (passed to feature plot module) as well as the R code to make plot
relAbundanceUI Relative abundance plot module - UI

Description
Relative abundance plot module - UI

Usage
relAbundanceUI(id)

Arguments
id namespace identifier

Value
box containing the ui code

Author(s)
Janina Reeder

replaceWithUnknown Helper function to replace any un-annotated features with the term unknown

Description
Helper function to replace any un-annotated features with the term unknown

Usage
replaceWithUnknown(featcol)

Arguments
featcol vector of entries to be replaced where needed (fData column)

Value
modified featcol

Author(s)
Janina Reeder
Examples

```r
data("mouseData", package = "metagenomeSeq")
featcol <- fData(mouseData)[["genus"]]
featcol[featcol == "NA"] <- NA
replaceWithUnknown(featcol)
```

Description

Report tab module server

Usage

```r
reportList(
  input, output, session, dataSource, preprocessRep, qcRep, analysisRep, aggIndex, reset
)
```

Arguments

- `input` module input
- `output` module output
- `session` app session
- `dataSource` R code to obtain data for rendering
- `preprocessRep` R code containing preprocessing steps of data
- `qcRep` R Code to generate QC plots
- `analysisRep` R Code to generate all analyses saved to reports
- `aggIndex` boolean value representing aggregation steps in analysisRep
- `reset` boolean reactive which resets the module if TRUE

Value

report list server fragment - no return value

Author(s)

Janina Reeder
reportListUI

Description

report tab ui

Usage

reportListUI(id)

Arguments

id namespace identifier

Value

fluidRow holding ui elements

Author(s)

Janina Reeder

Examples

reportListUI("reportlist_id")

reportRow

Description

Report Row

Usage

reportRow(input, output, session, type, content)

Arguments

input module input
output module output
session app session
type boolean indicating whether checkbox should be included
content R code to show
reportRowUI

Value
reactive boolean indicating whether row is selected

Author(s)
Janina Reeder

reportRowUI
Report row module consisting of a checkbox, image and description/R code area

Description
Report row module consisting of a checkbox, image and description/R code area

Usage

reportRowUI(id, type)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>namespace identifier</td>
</tr>
<tr>
<td>type</td>
<td>boolean indicating if a selector checkbox should be added</td>
</tr>
</tbody>
</table>

Value
div holding the UI code

Author(s)
Janina Reeder

rollDownFeatures
Helper function which rolls down annotated from closest higher order with annotation

Description
Helper function which rolls down annotated from closest higher order with annotation

Usage

rollDownFeatures(featrow)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>featrow</td>
<td>vector of entries to be replaced where needed (fData row)</td>
</tr>
</tbody>
</table>
Value
modified featurerow

Author(s)
Janina Reeder

Examples

data("mouseData", package = "metagenomeSeq")
featrow <- fData(mouseData)[5,]
rollDownFeatures(featrow)

diffTest = runDiffTest(aggdat, level, phenotype, phenolevels = NULL, log = TRUE, coef = NULL, method = c("limma", "Kruskal-Wallis", "DESeq2")

runDiffTest Performs differential abundance testing

Description
This function performs differential abundance testing between groups of a specified phenotype. Four methods are available: limma, Kruskal-Wallis, ZILN and DESeq2 (see details).

Usage
runDiffTest(
 aggdat, level, phenotype, phenolevels = NULL, log = TRUE, coef = NULL, method = c("limma", "Kruskal-Wallis", "DESeq2")
)

Arguments

aggdat aggregated MRExperiment
level Feature level.
phenotype Phenotype to test.
phenolevels levels of the phenotype to restrict the comparison to
log Log2 transform data. Default is TRUE.
coef Numeric which indicates which pairwise comparison to analyze when there are more than two groups. Corresponds to the column number of the model matrix produced by designPairs(). If NULL, a test of any difference between all groups is performed.
method Differential testing method. One of "limma" (default), "Kruskal-Wallis", or "DESeq2".
runMicrobiomeExplorer

Details

limma is a differential expression tool for microarray data using linear models. It can also be applied to microbiome data.

The Kruskal-Wallis test is a non-parametric rank test which examines if groups come from the same distribution. A significant result indicates at least one group is distributionally different than another group.

ZILN is a zero-inflated log-normal model implemented in `fitFeatureModel()` of the `metagenomeSeq` package.

DeSeq2 performs differential gene expression analysis based on the negative binomial distribution.

Value
data.frame holding results of the differential analysis

Examples
data("mouseData", package = "metagenomeSeq")
aggdat <- aggFeatures(mouseData, level = "genus")
runDiffTest(aggdat = aggdat, level = "genus",
 phenotype = "diet", method = "Kruskal-Wallis")

runMicrobiomeExplorer

Main function to start the Microbiome Explorer Shiny app via a command line call

Description

Main function to start the Microbiome Explorer Shiny app via a command line call

Usage

runcMicrobiomeExplorer()

Value

the shiny application
Index

abundanceHeatmap, 4
abundanceHeatmapUI, 5
add_plotly_config, 7
add_plotly_layout, 7
addFeatData, 6
addPhenoData, 6
aggFeatures, 8
aggregationTab, 8
aggregationTabUI, 9
alphaDiversity, 10
alphaDiversityUI, 11
avgAbundance, 11
avgAbundanceUI, 12
betaDiversity, 13
betaDiversityUI, 14
betaInput, 14
betaInputUI, 15
buildEmptyPlotlyPlot, 15
buildPlottingDF, 16
calculatePCAs, 17
computeCI_Interval, 17
computeDistMat, 18
corrAnalysis, 18
corrAnalysisUI, 19
corrFeature, 20
corrInput, 21
corrInputUI, 22
corrPhenotype, 23
createHeader, 24
dataInput, 25
dataInputUI, 26
designPairs, 26, 78
diffAnalysis, 27
diffAnalysisUI, 28
diffInput, 28
diffInputUI, 29
diffTable, 29
diffTableUI, 30
extendPhenoData, 31
featAbundance, 31
featAbundanceUI, 32
featureAnalysis, 33
featureAnalysisUI, 34
featureCorr, 34
featureCorrUI, 35
featureInput, 36
featureInputUI, 37
featureTable, 37
featureTableUI, 38
fileUpload, 39
fileUploadUI, 40
filterByPheno, 40
filterMEData, 41
fitFeatureModel, 79
generateReport, 42
getFeatModCode, 43
getFeatSplitCode, 43
gFileType, 44
getFilterChoices, 44
getLegendLevel, 45
getPhenoChanges, 45
getPhenoModCode, 46
getWidths, 46
heatmapInput, 47
heatmapInputUI, 47
interAnalysis, 48
interAnalysisUI, 49
intraAnalysis, 49
intraAnalysisUI, 50
intraInput, 51
intraInputUI, 52
longAnalysis, 52
INDEX

longAnalysisUI, 53
longInput, 54
longInputUI, 55
longResults, 55
longResultsUI, 56

makeQCPlot, 57

normalizeData, 58

parseInteractionName, 58
phenotypeCorr, 59
phenotypeCorrUI, 60
phenotypeTable, 60
phenotypeTableUI, 61
plotAbundance, 62
plotAlpha, 63
plotAvgAbundance, 64
plotBeta, 65
plotHeatmap, 66
plotLongFeature, 67
plotlyHistogram, 69
plotlySampleBarplot, 70
plotSingleFeature, 71

readData, 72
relAbundance, 73
relAbundanceUI, 74
replaceWithUnknown, 74
reportList, 75
reportListUI, 76
reportRow, 76
reportRowUI, 77
rollDownFeatures, 77
runDiffTest, 78
runMicrobiomeExplorer, 79

vegdist, 66