Package ‘microbiomeMarker’

March 28, 2024

Title microbiome biomarker analysis toolkit

Version 1.8.0

Description To date, a number of methods have been developed for microbiome marker discovery based on metagenomic profiles, e.g. LEfSe. However, all of these methods have its own advantages and disadvantages, and none of them is considered standard or universal. Moreover, different programs or softwares may be development using different programming languages, even in different operating systems. Here, we have developed an all-in-one R package microbiomeMarker that integrates commonly used differential analysis methods as well as three machine learning-based approaches, including Logistic regression, Random forest, and Support vector machine, to facilitate the identification of microbiome markers.

License GPL-3

biocViews Metagenomics, Microbiome, DifferentialExpression

URL https://github.com/yiluheiheimicrobiomeMarker

BugReports https://github.com/yiluheiheimicrobiomeMarker/issues

Depends R (>= 4.1.0)

Imports dplyr, phyloseq, magrittr, purrr, MASS, utils, ggplot2, tibble, rlang, stats, coin, ggtree, tidytrees, methods, IRanges, tidyvr, patchwork, ggsignif, metagenomeSeq, DESeq2, edgeR, BiocGenerics, Biostrings, yaml, biomformat, S4Vectors, Biobase, ComplexHeatmap, ANCOMBC, caret, limma, ALDEx2, multtest, plotROC, vegan, pROC, BiocParallel

Encoding UTF-8

RoxygenNote 7.2.3

Roxygen list(markdown = TRUE)

Suggests testthat, covr, glmnet, Matrix, kernlab, e1071, ranger, knitr, rmarkdown, BiocStyle, withr

VignetteBuilder knitr

Config/testthat/edition 3

git_url https://git.bioconductor.org/packages/microbiomeMarker
git_branch RELEASE_3_18
git_last_commit 577f9da
git_last_commit_date 2023-11-04
Repository Bioconductor 3.18
Date/Publication 2024-03-27
Author Yang Cao [aut, cre]
Maintainer Yang Cao <caoyang.name@gmail.com>

R topics documented:

microbiomeMarker-package .. 3
abundances ... 3
aggregate_taxa .. 4
assign-otu_table ... 5
compare_DA ... 6
confounder .. 7
data-caporaso ... 8
data-cid_ying ... 9
data-ecam ... 9
data-enterotypes_arumugam .. 10
data-kostic_crc .. 10
data-oxygen .. 11
data-pediatric_ibd ... 11
data-spontaneous_colitis .. 12
extract_posthoc_res ... 12
get_treedata_phyloseq .. 13
import_dada2 .. 14
import_picrust2 ... 15
import_qiime2 .. 16
marker_table .. 17
marker_table-class .. 18
marker_table<- .. 18
microbiomeMarker .. 19
microbiomeMarker-class .. 20
nmaker ... 21
normalize.phyloseq-method ... 22
phyloseq2DESeq2 ... 25
phyloseq2edgeR .. 25
phyloseq2metagenomeSeq .. 26
plot.compareDA .. 27
plot_abundance .. 27
plot_cladogram .. 28
plot_ef_bar .. 30
plot_heatmap ... 31
plot_postHocTest .. 32
plot_sl_roc ... 33
The microbiomeMarker package provides several methods to identify microbiome biomarker, such as lefse, deseq2.

Description

Extract taxa abundances from phyloseq objects.
aggregate_taxa

Usage

abundances(object, transform = c("identity", "log10", "log10p"), norm = FALSE)

S4 method for signature 'otu_table'
abundances(object, transform = c("identity", "log10", "log10p"), norm = FALSE)

S4 method for signature 'phyloseq'
abundances(object, transform = c("identity", "log10", "log10p"), norm = FALSE)

S4 method for signature 'microbiomeMarker'
abundances(object, transform = c("identity", "log10", "log10p"))

Arguments

object otu_table, phyloseq, or microbiomeMarker.
transform transformation to apply, the options include:
 • "identity", return the original data without any transformation.
 • "log10", the transformation is log10(object), and if the data contains ze-
 ros the transformation is log10(1 + object).
 • "log10p", the transformation is log10(1 + object).
norm logical, indicating whether or not to return the normalized taxa abundances.

Value

abundance matrix with taxa in rows and samples in columns.

See Also

otu_table, phyloseq, microbiomeMarker, transform_abundances

Examples

data(caporaso)
abd <- abundances(caporaso)

aggregate_taxa

Aggregate Taxa

Description

Summarize phyloseq data into a higher phylogenetic level.

Usage

aggregate_taxa(x, level, verbose = FALSE)
assign-otu_table

Arguments

x phyloseq-class object
level Summarization level (from rank_names(pseq))
verbose verbose

Details

This provides a convenient way to aggregate phyloseq OTUs (or other taxa) when the phylogenetic
tree is missing. Calculates the sum of OTU abundances over all OTUs that map to the same higher-
level group. Removes ambiguous levels from the taxonomy table. Returns a phyloseq object with
the summarized abundances.

Value

Summarized phyloseq object

Author(s)

Contact: Leo Lahti <microbiome-admin@googlegroups.com>

References

See citation('microbiome')

Examples

data(caporaso)
caporaso_phylum <- aggregate_taxa(caporaso, "Phylum")

assign-otu_table Assign a new OTU table

Description

Assign a new OTU table in microbiomeMarker object

Usage

S4 replacement method for signature 'microbiomeMarker,otu_table'
otu_table(x) <- value

S4 replacement method for signature 'microbiomeMarker,phyloseq'
otu_table(x) <- value

S4 replacement method for signature 'microbiomeMarker,microbiomeMarker'
otu_table(x) <- value
Arguments

- `x`: `microbiomeMarker`
- `value`: `otu_table`, `phyloseq`, or `microbiomeMarker`

Value

A `microbiomeMarker` object.

compare_DA

Comparing the results of differential analysis methods by Empirical power and False Discovery Rate

Description

Calculating power, false discovery rates, false positive rates and auc (area under the receiver operating characteristic (ROC) curve) for various DA methods.

Usage

```r
compare_DA(
  ps, group, taxa_rank = "none",
  methods, args = list(),
  n_rep = 20, effect_size = 5,
  k = NULL, relative = TRUE,
  BPPARAM = BiocParallel::SnowParam(progressbar = TRUE)
)
```

Arguments

- `ps`, `group`, `taxa_rank`
 - Main arguments of all differential analysis methods. `ps`: a `phyloseq::phyloseq` object; `group`, character, the variable to set the group, must be one of the var of the sample metadata; `taxa_rank`: character, taxonomic rank, please not that **since the abundance table is spiked in the lowest level, only `taxa_rank = "none"` is allowed.**

- `methods`
 - Character vector, differential analysis methods to be compared, available methods are "aldex", "ancom", "ancombc", "deseq2", "edger", "lefs", "limma_voom", "metagenomeseq", "simple_stat".

- `args`
 - Named list, which used to set the extra arguments of the differential analysis methods, so the names must be contained in `methods`. For more see see details below.
confounder

Description

Confounding variables may mask the actual differential features. This function utilizes constrained correspondence analysis (CCA) to measure the confounding factors.

Usage

```r
confounder(
  ps,
  target_var,
  norm = "none",
  confounders = NULL,
  permutations = 999,
  ...
)
```
Arguments

- **ps**: a `phyloseq::phyloseq` object.
- **target_var**: character, the variable of interest
- **norm**: norm the methods used to normalize the microbial abundance data. See `normalize()` for more details.
- **confounders**: the confounding variables to be measured, if NULL, all variables in the meta data will be analyzed.
- **permutations**: the number of permutations, see `vegan::anova.cca()`.
- **...**: extra arguments passed to `vegan::anova.cca()`.

Value

A data.frame contains three variables: confounder, pseudo-F and p value.

Examples

```r
data(caporaso)
confounder(caporaso, "SampleType", confounders = "ReportedAntibioticUsage")
```

data-caporaso

16S rRNA data from "Moving pictures of the human microbiome"

Description

16S read counts and phylogenetic tree file of 34 Illumina samples derived from Moving Pictures of the Human Microbiome (Caporaso et al.) Group label: gut, left palm, right palm, and tongue - indicating different sampled body sites.

Format

A `phyloseq::phyloseq` object

Author(s)

Yang Cao

Source

Data was downloaded from https://www.microbiomeanalyst.ca

References

https://doi.org/10.1186/gb-2011-12-5-r50
data-cid_ying

16S rRNA data of 94 patients from CID 2012

Description

Data from a cohort of 94 Bone Marrow Transplant patients previously published on in CID

Format

a `phyloseq::phyloseq` object

Author(s)

Yang Cao

Source

https://github.com/ying14/yingtools2/tree/master/data

References

Ying, et al. Intestinal Domination and the Risk of Bacteremia in Patients Undergoing Allogeneic Hematopoietic Stem Cell Transplantation, Clinical Infectious Diseases, Volume 55, Issue 7, 1 October 2012, Pages 905–914,

https://academic.oup.com/cid/article/55/7/905/428203

data-ecam

Data from Early Childhood Antibiotics and the Microbiome (ECAM) study

Description

The data from a subset of the Early Childhood Antibiotics and the Microbiome (ECAM) study, which tracked the microbiome composition and development of 43 infants in the United States from birth to 2 years of age, identifying microbiome associations with antibiotic exposure, delivery mode, and diet.

Format

a `phyloseq::phyloseq` object

References

https://github.com/FrederickHuangLin/ANCOM/tree/master/data
data-enterotypes_arumugam

Enterotypes data of 39 samples

Description

The data contains 22 European metagenomes from Danish, French, Italian, and Spanish individuals, and 13 Japanese and 4 American.

Format

A `phyloseq::phyloseq` object

Author(s)

Yang Cao

References

data-kostic_crc

Data from a study on colorectal cancer (kostic 2012)

Description

The data from a study on colorectal cancer. Samples that had no DIAGNOSIS attribute assigned and with less than 500 reads (counts) were removed, and 191 samples remains (91 healthy and 86 Tumors).

Format

A `phyloseq::phyloseq` object

Author(s)

Yang Cao

References

data-oxygen

Oxygen availability 16S dataset, of which taxa table has been summarized for python lefse input

Description

A small subset of the HMP 16S dataset for finding biomarkers characterizing different level of oxygen availability in different bodysites

Format

a phyloseq::phyloseq object

Author(s)

Yang Cao

Source

http://huttenhower.sph.harvard.edu/webfm_send/129

data-pediatric_ibd

IBD stool samples

Description

43 pediatric IBD stool samples obtained from the Integrative Human Microbiome Project Consortium (iHMP). Group label: CD and Controls.

Format

a phyloseq::phyloseq object

Author(s)

Yang Cao

Source

https://www.microbiomeanalyst.ca/MicrobiomeAnalyst/resources
data-spontaneous_colitis

This is a sample data from lefse python script, a 16S dataset for studying the characteristics of the fecal microbiota in a mouse model of spontaneous colitis.

Description

The dataset contains 30 abundance profiles (obtained processing the 16S reads with RDP) belonging to 10 rag2 (control) and 20 truc (case) mice.

Format

A phyloseq::phyloseq object

Author(s)

Yang Cao

Source

http://www.huttenhower.org/webfm_send/73

extract_posthoc_res

Extract results from a posthoc test

Description

This function extracts the results of posthoc test.

Usage

extract_posthoc_res(object, features = NULL)

Arguments

object

A postHocTest object.

features

either NULL extracts results of all features, or a character vector to specify the test results of which features are extracted.

Value

A IRanges::SimpleDFrameList object.
get_treedata_phyloseq

Examples

```r
require(IRanges)
pht <- postHocTest(
  result = DataFrameList(
    featureA = DataFrame(
      comparisons = c("group2-group1", "group3-group1", "group3-group2"),
      diff_mean = runif(3),
      pvalue = rep(0.01, 3),
      ci_lower = rep(0.01, 3),
      ci_upper = rep(0.011, 3)
    ),
    featureB = DataFrame(
      comparisons = c("group2-group1", "group3-group1", "group3-group2"),
      diff_mean = runif(3),
      pvalue = rep(0.01, 3),
      ci_lower = rep(0.01, 3),
      ci_upper = rep(0.011, 3)
    )
  ),
  abundance = data.frame(
    featureA = runif(3),
    featureB = runif(3),
    group = c("group1", "group2", "group3")
  )
)
extract_posthoc_res(pht, "featureA")[[1]]
```

get_treedata_phyloseq
Generate tree data from phyloseq object

Description

Generate tree data from phyloseq object

Usage

```r
get_treedata_phyloseq(ps, sep = ")")
```

Arguments

- `ps`
a `phyloseq::phyloseq` object

- `sep`
character, separate between different levels of taxa, default `|`

Value

a `tidytree::treedata` object
import_dada2

Author(s)
Yang Cao

Description
Import function to read the output of dada2 as phyloseq object

Usage
import_dada2(
 seq_tab,
 tax_tab = NULL,
 sam_tab = NULL,
 phy_tree = NULL,
 keep_taxa_rows = TRUE
)

Arguments
seq_tab matrix-like, ASV table, the output of dada2::removeBimeraDenovo.
tax_tab matrix, taxonomy table, the output of dada2::assignTaxonomy or dada2::addSpecies.
sam_tab data.frame or phyloseq::sample_data, sample data
phy_tree ape::phylo class or character represents the path of the tree file
keep_taxa_rows logical, whether keep taxa in rows or not in the otu_table of the returned phyloseq object, default TRUE.

Details
The output of the dada2 pipeline is a feature table of amplicon sequence variants (an ASV table): A matrix with rows corresponding to samples and columns to ASVs, in which the value of each entry is the number of times that ASV was observed in that sample. This table is analogous to the traditional OTU table. Conveniently, taxa names are saved as ASV1, ASV2, ..., in the returned phyloseq object.

Value
phyloseq::phyloseq object hold the taxonomy info, sample metadata, number of reads per ASV.
Examples

```r
seq_tab <- readRDS(system.file("extdata", "dada2_seqtab.rds", package = "microbiomeMarker")
))
tax_tab <- readRDS(system.file("extdata", "dada2_taxtab.rds", package = "microbiomeMarker")
))
sam_tab <- read.table(system.file("extdata", "dada2_samdata.txt", package = "microbiomeMarker" ), sep = "\t", header = TRUE, row.names = 1)
ps <- import_dada2(seq_tab = seq_tab, tax_tab = tax_tab, sam_tab = sam_tab)
ps
```

import_picrust2

Import function to read the output of picrust2 as phyloseq object

Description

Import the output of picrust2 into phyloseq object

Usage

```r
import_picrust2(
    feature_tab,
    sam_tab = NULL,
    trait = c("PATHWAY", "COG", "EC", "KO", "PFAM", "TIGRFAM", "PHENO")
)
```

Arguments

- `feature_tab` character, file path of the prediction abundance table of functional feature.
- `sam_tab` character, file path of the sample meta data.
- `trait` character, options are picrust2 function traits (including "COG", "EC", "KO", "PFAM", "TIGRFAM", and "PHENO") and "PATHWAY".

Details

PICRUST2 is a software for predicting abundances of functional profiles based on marker gene sequencing data. The functional profiles can be predicted from the taxonomic profiles using PICRUST2. "Function" usually refers to gene families such as KEGG orthologs and Enzyme Classification numbers, but predictions can be made for any arbitrary trait.

In the phyloseq object, the predicted function abundance profile is stored in `otu_table` slot. And the functional trait is saved in `tax_table` slot, if the descriptions of function features is not added to the predicted table, `tax_table` will have only one rank `Picrust_trait` to represent the function feature id, or if the descriptions are added one more rank `Picrust_description` will be added to represent the description of function feature.
import_qiime2

Description

Import the qiime2 artifacts, including feature table, taxonomic table, phylogenetic tree, representative sequence and sample metadata into phyloseq object.

Usage

```r
import_qiime2(
  otu_qza,
  taxa_qza = NULL,
  sam_tab = NULL,
  refseq_qza = NULL,
  tree_qza = NULL
)
```

Arguments

- `otu_qza`: character, file path of the feature table from qiime2.
- `taxa_qza`: character, file path of the taxonomic table from qiime2, default NULL.
- `sam_tab`: character, file path of the sample metadata in tsv format, default NULL.
- `refseq_qza`: character, file path of the representative sequences from qiime2, default NULL.
- `tree_qza`: character, file path of the phylogenetic tree from qiime2, default NULL.

Value

`phyloseq::phyloseq` object.
Examples

```r
otuqza_file <- system.file(
    "extdata", "table.qza",
    package = "microbiomeMarker"
)
taxaqza_file <- system.file(
    "extdata", "taxonomy.qza",
    package = "microbiomeMarker"
)
sample_file <- system.file(
    "extdata", "sample-metadata.tsv",
    package = "microbiomeMarker"
)
treeqza_file <- system.file(
    "extdata", "tree.qza",
    package = "microbiomeMarker"
)
ps <- import_qiime2(
    otu_qza = otuqza_file, taxa_qza = taxaqza_file,
    sam_tab = sample_file, tree_qza = treeqza_file
)
ps
```

marker_table

Build or access the marker_table

Description

This is the recommended function for both building and accessing microbiome marker table (*marker_table*).

Usage

```r
marker_table(object)
```

S4 method for signature 'data.frame'

```r
marker_table(object)
```

S4 method for signature 'microbiomeMarker'

```r
marker_table(object)
```

Arguments

- `object` an object among the set of classes defined by the microbiomeMarker package that contain *marker_table*

Value

a *marker_table* object.
Examples

data(enterotypes_arumugam)
mm <- run_limma_voom(
 enterotypes_arumugam,
 "Enterotype",
 contrast = c("Enterotype 3", "Enterotype 2"),
 pvalue_cutoff = 0.05,
 p_adjust = "fdr"
)
marker_table(mm)

marker_table-class The S4 class for storing microbiome marker information

Description

This Class is inherit from data.frame. Rows represent the microbiome markers and variables represents feature of the marker.

Fields
	names, row.names a character vector, inherited from the input data.frame
	.data a list, each element corresponding the each column of the input data.frame
	.S3Class character, the S3 class marker_table inherited from: "data.frame"

Author(s)

Yang Cao

marker_table<- Assign marker_table to object

Description

This function replace the marker_table slot of object with value.

Usage

marker_table(object) <- value

Arguments

table a microbiomeMarker object to modify.
value new value to replace the marker_table slot of object. Either a marker_table-class, a data.frame that can be coerced into marker_table-class.
microbiomeMarker

Value

a microbiomeMarker object.

Examples

data(enterotypes_arumugam)
mm <- run_limma_voom(
 enterotypes_arumugam,
 "Enterotype",
 contrast = c("Enterotype 3", "Enterotype 2"),
 pvalue_cutoff = 0.1,
 p_adjust = "fdr"
)
mm_marker <- marker_table(mm)
mm_marker
marker_table(mm) <- mm_marker[1:2,]
marker_table(mm)

microbiomeMarker Build microbiomeMarker-class objects

Description

This the constructor to build the microbiomeMarker object, don’t use the new() constructor.

Usage

microbiomeMarker(
 marker_table = NULL,
 norm_method = NULL,
 diff_method = NULL,
 ...
)

Arguments

marker_table a marker_table object differential analysis.
norm_method character, method used to normalize the input phyloseq object.
diff_method character, method used for microbiome marker identification.
... arguments passed to phyloseq::phyloseq()

Value

a microbiomeMarker object.

See Also

phyloseq::phyloseq()
Examples

```r
microbiomeMarker(
  marker_table = marker_table(data.frame(  # feature classification
    feature = c("speciesA", "speciesB"),
    enrich_group = c("groupA", "groupB"),
    ef_logFC = c(-2, 2),
    pvalue = c(0.01, 0.01),
    padj = c(0.01, 0.01),
    row.names = c("marker1", "marker2")
  )),
  norm_method = "TSS",
  diff_method = "DESeq2",
  otu_table = otu_table(matrix(  # OTU table
    c(4, 1, 1, 4),
    nrow = 2, byrow = TRUE,
    dimnames = list(c("speciesA", "speciesB"), c("sample1", "sample2"))
  ),
  taxa_are_rows = TRUE
),
  tax_table = tax_table(matrix(  # tax table
    c("speciesA", "speciesB"),
    nrow = 2,
    dimnames = list(c("speciesA", "speciesB"), "Species")
  )),
  sam_data = sample_data(data.frame(  # sample data
    group = c("groupA", "groupB"),
    row.names = c("sample1", "sample2")
  ))
)
```

microbiomeMarker-class

The main class for microbiomeMarker data

Description

microbiomeMarker-class is inherited from the `phyloseq::phyloseq` by adding a custom slot `microbiome_marker` to save the differential analysis results. And it provides a seamless interface with `phyloseq`, which makes microbiomeMarker simple and easy to use. For more details on see the document of `phyloseq::phyloseq`.

Usage

```r
## S4 method for signature 'microbiomeMarker'
show(object)
```

Arguments

- `object` a microbiomeMarker-class object
Value

a `microbiomeMarker` object.

Slots

- `marker_table` a data.frame, a `marker_table` object.
- `norm_method` character, method used to normalize the input `phyloseq` object.
- `diff_method` character, method used for marker identification.

See Also

`phyloseq::phyloseq`, `marker_table`, `summarize_taxa()`

nmarker

Get the number of microbiome markers

Description

Get the number of microbiome markers

Usage

```r
nmarker(object)
```

S4 method for signature 'microbiomeMarker'

```r
nmarker(object)
```

S4 method for signature 'marker_table'

```r
nmarker(object)
```

Arguments

- **object** a `microbiomeMarker` or `marker_table` object

Value

an integer, the number of microbiome markers

Examples

```r
mt <- marker_table(data.frame(
  feature = c("speciesA", "speciesB"),
  enrich_group = c("groupA", "groupB"),
  ef_logFC = c(-2, 2),
  pvalue = c(0.01, 0.01),
  padj = c(0.01, 0.01),
  row.names = c("marker1", "marker2")
))
nmarker(mt)
```
normalize,phyloseq-method

Normalize the microbial abundance data

Description

It is critical to normalize the feature table to eliminate any bias due to differences in the sampling sequencing depth. This function implements six widely-used normalization methods for microbial compositional data.

For rarefying, reads in the different samples are randomly removed until the same predefined number has been reached, to assure all samples have the same library size. Rarefying normalization method is the standard in microbial ecology. Please note that the authors of phyloseq do not advocate using this rarefying a normalization procedure, despite its recent popularity.

TSS simply transforms the feature table into relative abundance by dividing the number of total reads of each sample.

CSS is based on the assumption that the count distributions in each sample are equivalent for low abundant genes up to a certain threshold. Only the segment of each sample’s count distribution that is relatively invariant across samples is scaled by CSS.

RLE assumes most features are not differential and uses the relative abundances to calculate the normalization factor.

TMM calculates the normalization factor using a robust statistics based on the assumption that most features are not differential and should, in average, be equal between the samples. The TMM scaling factor is calculated as the weighted mean of log-ratios between each pair of samples, after excluding the highest count OTUs and OTUs with the largest log-fold change.

In CLR, the log-ratios are computed relative to the geometric mean of all features.

norm_cpm: This normalization method is from the original LEfSe algorithm, recommended when very low values are present (as shown in the LEfSe galaxy).

Usage

```r
## S4 method for signature 'phyloseq'
normalize(object, method = "TSS", ...)

## S4 method for signature 'otu_table'
normalize(object, method = "TSS", ...)

## S4 method for signature 'data.frame'
normalize(object, method = "TSS", ...)

## S4 method for signature 'matrix'
normalize(object, method = "TSS", ...)

norm_rarefy(
  object,
```
norm_tss(object)

norm_css(object, sl = 1000)

norm_rle(object,
 locfunc = stats::median,
 type = c("poscounts", "ratio"),
 geo_means = NULL,
 control_genes = NULL
)

norm_tmm(object,
 ref_column = NULL,
 logratio_trim = 0.3,
 sum_trim = 0.05,
 do_weighting = TRUE,
 Acutoff = -1e+10
)

Arguments

object a phyloseq::phyloseq or phyloseq::otu_table

method the methods used to normalize the microbial abundance data. Options includes:

- "none": do not normalize.
- "rarefy": random subsampling counts to the smallest library size in the data set.
- "TSS": total sum scaling, also referred to as "relative abundance", the abundances were normalized by dividing the corresponding sample library size.
- "TMM": trimmed mean of m-values. First, a sample is chosen as reference. The scaling factor is then derived using a weighted trimmed mean over the differences of the log-transformed gene-count fold-change between the sample and the reference.
- "RLE", relative log expression, RLE uses a pseudo-reference calculated using the geometric mean of the gene-specific abundances over all samples.
The scaling factors are then calculated as the median of the gene counts ratios between the samples and the reference.

- "CSS": cumulative sum scaling, calculates scaling factors as the cumulative sum of gene abundances up to a data-derived threshold.
- "CLR": centered log-ratio normalization.
- "CPM": pre-sample normalization of the sum of the values to 1e+06.

... other arguments passed to the corresponding normalization methods.

size, rng_seed, replace, trim_otus, verbose
extra arguments passed to phyloseq::rarefy_even_depth().

sl
The value to scale.

locfunc
a function to compute a location for a sample. By default, the median is used.

type
method for estimation: either "ratio" or "poscounts" (recommend).

geo_means
default NULL, which means the geometric means of the counts are used. A vector of geometric means from another count matrix can be provided for a "frozen" size factor calculation.

control_genes
default NULL, which means all taxa are used for size factor estimation, numeric or logical index vector specifying the taxa used for size factor estimation (e.g. core taxa).

ref_column
column to use as reference

logratio_trim
amount of trim to use on log-ratios

sum_trim
amount of trim to use on the combined absolute levels ("A" values)

do_weighting
whether to compute the weights or not

Acutoff
cutoff on "A" values to use before trimming

Value
the same class with object.

See Also
edger::calcNormFactors(), DESeq2::estimateSizeFactorsForMatrix(), metagenomeSeq::cumNorm(),
phyloseq::rarefy_even_depth(),
metagenomeSeq::calcNormFactors(),
DESeq2::estimateSizeFactorsForMatrix(),
edgeR::calcNormFactors()

Examples
data(caporaso)
normalize(caporaso, "TSS")
phyloseq2DESeq2 Convert phyloseq-class object to DESeqDataSet-class object

Description
This function converts [phyloseq::phyloseq-class] to [DESeq2::DESeqDataSet-class], which can then be tested using [DESeq2::DESeq()].

Usage
phyloseq2DESeq2(ps, design, ...)

Arguments
- **ps**: the [phyloseq::phyloseq-class] object to convert, which must have a [phyloseq::sample_data()] component.
- **design**: a formula or matrix, the formula expresses how the counts for each gene depend on the variables in colData. Many R formulas are valid, including designs with multiple variables, e.g., ~ group + condition. This argument is passed to DESeq2::DESeqDataSetFromMatrix().
- **...**: additional arguments passed to DESeq2::DESeqDataSetFromMatrix(), Most users will not need to pass any additional arguments here.

Value
a DESeq2::DESeqDataSet object.

See Also
DESeq2::DESeqDataSetFromMatrix(), DESeq2::DESeq()

Examples
data(caporaso)
phyloseq2DESeq2(caporaso, ~SampleType)

phyloseq2edgeR Convert phyloseq data to edgeR DGEList object

Description
This function converts phyloseq::phyloseq object to edgeR::DGEList object, can then can be used to perform differential analysis using the methods in edgeR.

Usage
phyloseq2edgeR(ps, ...)
phyloseq2metagenomeSeq

Arguments

ps

a phyloseq::phyloseq object.

...

optional, additional named arguments passed to edgeR::DGEList(). Most users will not need to pass any additional arguments here.

Value

A edgeR::DGEList object.

Examples

data(caporaso)
dge <- phyloseq2edgeR(caporaso)

phyloseq2metagenomeSeq

Convert phyloseq data to MetagenomeSeq MRexperiment object

Description

The phyloseq data is converted to the relevant metagenomeSeq::MRexperiment object, which can then be tested in the zero-inflated mixture model framework in the metagenomeSeq package.

Usage

phyloseq2metagenomeSeq(ps, ...)

otu_table2metagenomeSeq(ps, ...)

Arguments

ps

phyloseq::phyloseq object for phyloseq2metagenomeSeq(), or phyloseq::otu_table object for otu_table2metagenomeSeq().

...

optional, additional named arguments passed to metagenomeSeq::newMRexperiment(). Most users will not need to pass any additional arguments here.

Value

A metagenomeSeq::MRexperiment object.

See Also

metagenomeSeq::fitTimeSeries(), metagenomeSeq::fitLogNormal(), metagenomeSeq::fitZig(), metagenomeSeq::MRtable(), metagenomeSeq::MRfulltable()

Examples

data(caporaso)
phyloseq2metagenomeSeq(caporaso)
plot.compareDA

Plotting DA comparing result

Description
Plotting DA comparing result

Usage

```r
## S3 method for class 'compareDA'
plot(x, sort = c("score", "auc", "fpr", "power"), ...)
```

Arguments

- `x`: an `compareDA` object, output from `compare_DA()`.
- `sort`: character string specifying sort method. Possibilities are "score" which is calculated as \((auc - 0.5) \ast power \ast fdr\), "auc" for area under the ROC curve, "fpr" for false positive rate, "power" for empirical power.
- `...`: extra arguments, just ignore it.

Value

- A `ggplot2::ggplot` object containing 4 subplots: "auc", "fdr", "power" and "score" plot.

plot_abundance

plot the abundances of markers

Description

plot the abundances of markers

Usage

```r
plot_abundance(mm, label_level = 1, max_label_len = 60, markers = NULL, group)
```

Arguments

- `mm`: a `microbiomeMarker` object
- `label_level`: integer, number of label levels to be displayed, default 1, 0 means display the full name of the feature
- `max_label_len`: integer, maximum number of characters of feature label, default 60
- `markers`: character vector, markers to display, default NULL, indicating plot all markers.
- `group`: character, the variable to set the group
Value

a `ggplot2::ggplot` object.

Examples

data(enterotypes_arumugam)
mm <- run_limma_voom(
 enterotypes_arumugam,
 "Enterotype",
 contrast = c("Enterotype 3", "Enterotype 2"),
 pvalue_cutoff = 0.01,
 p_adjust = "none"
)
plot_abundance(mm, group = "Enterotype")

plot_cladogram

plot cladogram of micobiomeMaker results

Description

plot cladogram of micobiomeMaker results

Usage

plot_cladogram(
 mm,
 color,
 only_marker = FALSE,
 branch_size = 0.2,
 alpha = 0.2,
 node_size_scale = 1,
 node_size_offset = 1,
 clade_label_level = 4,
 clade_label_font_size = 4,
 annotation_shape = 22,
 annotation_shape_size = 5,
 group_legend_param = list(),
 marker_legend_param = list()
)

Arguments

mm a microbiomeMarker object

color a color vector, used to highlight the clades of microbiome biomarker. The values will be matched in order (usually alphabetical) with the groups. If this is a named vector, then the colors will be matched based on the names instead.
only_marker logical, whether show all the features or only markers in the cladogram, default FALSE.

branch_size numeric, size of branch, default 0.2

alpha alpha parameter for shading, default 0.2

node_size_scale the parameter 'a' controlling node size: node_size=a*log(relative_abundance) + b

node_size_offset the parameter 'b' controlling node size: node_size=a*log(relative_abundance) + b

cladalabel_level max level of taxa used to label the clade, other level of taxa will be shown on the side.

cladalabel_font_size font size of the clade label, default 4.

annotation_shape shape used for annotation, default 22

annotation_shape_size size used for annotation shape, default 5

group_legend_param, marker_legend_param a list specifying extra parameters of group legend and marker legend, such as direction (the direction of the guide), nrow (the desired number of rows of legends). See ggplot2::guide_legend() for more details.

Value

ia ggtree object

Author(s)

Chenhao Li, Guangchuang Yu, Chenghao Zhu, Yang Cao

References

This function is modified from clada.anno from microbiomeViz.

See Also

ggtree::ggtree()

Examples

data(kostic_crc)
kostic_crc_small <- phyloseq::subset_taxa(
kostic_crc,
 Phylum %in% c("Firmicutes")
)
mm_lefse <- run_lefse(
 kostic_crc_small,
plot_ef_bar

\[
\text{wilcoxon_cutoff = 0.01,} \\
\text{group = "DIAGNOSIS",} \\
\text{kw_cutoff = 0.01,} \\
\text{multigrp_strat = TRUE,} \\
\text{lda_cutoff = 4}
\]

plot_cladogram(mm_lefse, color = c("darkgreen", "red"))

\[\text{plot_ef_bar}\]

\text{bar and dot plot of effect size of microbiomeMarker data}

Description

bar and dot plot of effect size microbiomeMarker data. This function returns a ggplot2 object that can be saved or further customized using \textbf{ggplot2} package.

Usage

\[
\text{plot_ef_bar}(\text{mm, label_level = 1, max_label_len = 60, markers = NULL}) \\
\text{plot_ef_dot}(\text{mm, label_level = 1, max_label_len = 60, markers = NULL})
\]

Arguments

- \text{mm} \text{a microbiomeMarker object}
- \text{label_level} \text{integer, number of label levels to be displayed, default 1, 0 means display the full name of the feature}
- \text{max_label_len} \text{integer, maximum number of characters of feature label, default 60}
- \text{markers} \text{character vector, markers to display, default NULL, indicating plot all markers.}

Value

a ggplot project

Examples

\[
\text{data(enterotypes_arumugam)} \\
\text{mm <- run_limma_voom(} \\
\hspace{1em} \text{enterotypes_arumugam,} \\
\hspace{1em} \text{"Enterotype",} \\
\hspace{1em} \text{contrast = c("Enterotype 3", "Enterotype 2"),} \\
\hspace{1em} \text{pvalue_cutoff = 0.01,} \\
\hspace{1em} \text{p_adjust = "none"} \\
\hspace{1em})} \\
\text{plot_ef_bar(mm)}
\]
Heatmap of microbiome marker

Description

Display the microbiome marker using heatmap, in which rows represents the marker and columns represents the samples.

Usage

```r
plot_heatmap(
  mm,          # a microbiomeMarker object
  transform = c("log10", "log10p", "identity"),
  cluster_marker = FALSE,
  cluster_sample = FALSE,
  markers = NULL,
  label_level = 1,
  max_label_len = 60,
  sample_label = FALSE,
  scale_by_row = FALSE,
  annotation_col = NULL,
  group, ...)
```

Arguments

- **mm**: a microbiomeMarker object
- **transform**: transformation to apply, for more details see `transform_abundances()`:
 - "identity", return the original data without any transformation.
 - "log10", the transformation is log10(object), and if the data contains zeros the transformation is log10(1 + object).
 - "log10p", the transformation is log10(1 + object).
- **cluster_marker, cluster_sample**: logical, controls whether to perform clustering in markers (rows) and samples (cols), default FALSE.
- **markers**: character vector, markers to display, default NULL, indicating plot all markers.
- **label_level**: integer, number of label levels to be displayed, default 1, 0 means display the full name of the feature.
- **max_label_len**: integer, maximum number of characters of feature label, default 60
- **sample_label**: logical, controls whether to show the sample labels in the heatmap, default FALSE.
- **scale_by_row**: logical, controls whether to scale the heatmap by the row (marker) values, default FALSE.
annotation_col assign colors for the top annotation using a named vector, passed to col in `ComplexHeatmap::HeatmapAnnotation()`.

group character, the variable to set the group

... extra arguments passed to `ComplexHeatmap::Heatmap()`.

Value

a `ComplexHeatmap::Heatmap` object.

See Also

`transform_abundances.ComplexHeatmap::Heatmap()`

Examples

data(kostic_crc)
kostic_crc_small <- phyloseq::subset_taxa(kostic_crc, Phylum %in% c("Firmicutes"))

mm_lefse <- run_lefse(kostic_crc_small, wilcoxon_cutoff = 0.01, group = "DIAGNOSIS", kw_cutoff = 0.01, multigrp_strat = TRUE, lda_cutoff = 4)

plot_heatmap(mm_lefse, group = "DIAGNOSIS")

```
plot_postHocTest  postHocTest  plot
```

Description

Visualize the result of post-hoc test using ggplot2

Usage

`plot_postHocTest(pht, feature, step_increase = 0.12)`

Arguments

- **pht**: a `postHocTest` object
- **feature**: character, to plot the post-toc test result of this feature
- **step_increase**: numeric vector with the increase in fraction of total height for every additional comparison to minimize overlap, default 0.12.
plot_sl_roc

Value

a `ggplot` object

Examples

```r
data(enterotypes_arumugam)
ps <- phyloseq::subset_samples(
    enterotypes_arumugam,
    Enterotype %in% c("Enterotype 3", "Enterotype 2", "Enterotype 1")
) %>%
    phyloseq::subset_taxa(Phylum == "Bacteroidetes")
pht <- run_posthoc_test(ps, group = "Enterotype")
plot_postHocTest(pht, feature = "p__Bacteroidetes|g__Alistipes")
```

Description

Show the ROC curve of the microbiome marker calculated by `run_sl`.

Usage

```r
plot_sl_roc(mm, group, nfolds = 3, nrepeats = 3, tune_length = 5, ...)
```

Arguments

- **mm**
 a `microbiomeMarker` object.
- **group, nfolds, nrepeats, tune_length, ...**
 same with the `run_sl()`.

Value

a `ggplot2::ggplot` object.

See Also

`run_sl()`

Examples

```r
data(enterotypes_arumugam)
# small example phyloseq object for test
ps_s <- phyloseq::subset_taxa(
    enterotypes_arumugam,
    Phylum %in% c("Firmicutes", "Bacteroidetes")
)
set.seed(2021)
```
```r
mm <- run_sl(
  ps_s,
  group = "Gender",
  taxa_rank = "Genus",
  nfolds = 2,
  nrepeats = 1,
  top_n = 15,
  norm = "TSS",
  method = "LR",
)
plot_sl_roc(mm, group = "Gender")
```

postHocTest

Build postHocTest object

Description

This function is used for create postHocTest object, and is only used for developers.

Usage

```r
postHocTest(
  result,
  abundance,
  conf_level = 0.95,
  method = "tukey",
  method_str = paste("Posthoc multiple comparisons of means: ", method)
)
```

Arguments

- `result` a `IRanges::SimpleDataFrameList` object.
- `abundance` data.frame.
- `conf_level` numeric, confidence level.
- `method` character, method for posthoc test.
- `method_str` character, illustrates which method is used for posthoc test.

Value

a `postHocTest` object.

Examples

```r
require(IRanges)
pht <- postHocTest(
  result = DataFrameList(
    featureA = DataFrame(
      comparisons = c("group2-group1",
```
postHocTest-class

The postHocTest Class, represents the result of post-hoc test result among multiple groups

Description

The postHocTest Class, represents the result of post-hoc test result among multiple groups

Usage

```r
## S4 method for signature 'postHocTest'
show(object)
```

Arguments

- `object` a postHocTest-class object

Value

a postHocTest object.
Slots

result a **IRanges::DataFrameList**, each DataFrame consists of five variables:

- **comparisons**: character, specify which two groups to test (the group names are separated by "_.")
- **diff_mean**: numeric, difference in mean abundances
- **pvalue**: numeric, p values
- **ci_lower** and **ci_upper**: numeric, lower and upper confidence interval of difference in mean abundances

abundance abundance of each feature in each group

conf_level confidence level

method method used for post-hoc test

method_str method illustration

Author(s)

Yang Cao

reexports

Objects exported from other packages

Description

These objects are imported from other packages. Follow the links below to see their documentation.

magrittr %>%

phyloseq
import_biom, import_mothur, import_qiime, nsamples, ntaxa, otu_table, sample_data, sample_names, tax_table, taxa_names

run_alde
Perform differential analysis using ALDEx2

Description

Perform differential analysis using ALDEx2
run aldex

Usage

run_aldex(
 ps,
 group,
 taxa_rank = "all",
 transform = c("identity", "log10", "log10p"),
 norm = "none",
 norm_para = list(),
 method = c("t.test", "wilcox.test", "kruskal", "glm_anova"),
 p_adjust = c("none", "fdr", "bonferroni", "holm", "hochberg", "hommel", "BH", "BY"),
 pvalue_cutoff = 0.05,
 mc_samples = 128,
 denom = c("all", "iqlr", "zero", "lvha"),
 paired = FALSE
)

Arguments

ps a phyloseq::phyloseq object
group character, the variable to set the group
taxa_rank character to specify taxonomic rank to perform differential analysis on. Should be one of phyloseq::rank_names(phyloseq), or "all" means to summarize the taxa by the top taxa ranks (summarize_taxa(ps, level = rank_names(ps)[1])), or "none" means perform differential analysis on the original taxa (taxa_names(phyloseq), e.g., OTU or ASV).
transform character, the methods used to transform the microbial abundance. See transform_abundances() for more details. The options include:
 - "identity", return the original data without any transformation (default).
 - "log10", the transformation is log10(object), and if the data contains zeros the transformation is log10(1 + object).
 - "log10p", the transformation is log10(1 + object).
norm the methods used to normalize the microbial abundance data. See normalize() for more details. Options include:
 - "none": do not normalize.
 - "rarefy": random subsampling counts to the smallest library size in the data set.
 - "TSS": total sum scaling, also referred to as "relative abundance", the abundances were normalized by dividing the corresponding sample library size.
 - "TMM": trimmed mean of m-values. First, a sample is chosen as reference. The scaling factor is then derived using a weighted trimmed mean over the differences of the log-transformed gene-count fold-change between the sample and the reference.
 - "RLE", relative log expression, RLE uses a pseudo-reference calculated using the geometric mean of the gene-specific abundances over all samples. The scaling factors are then calculated as the median of the gene counts ratios between the samples and the reference.
run_aldex

• "CSS": cumulative sum scaling, calculates scaling factors as the cumulative sum of gene abundances up to a data-derived threshold.
• "CLR": centered log-ratio normalization.
• "CPM": pre-sample normalization of the sum of the values to 1e+06.

norm_para arguments passed to specific normalization methods
method test method, options include: "t.test" and "wilcox.test" for two groups comparison, "kruskal" and "glm_anova" for multiple groups comparison.
p_adjust method for multiple test correction, default none, for more details see stats::p.adjust.
pvalue_cutoff cutoff of p value, default 0.05.
mc_samples integer, the number of Monte Carlo samples to use for underlying distributions estimation, 128 is usually sufficient.
denom character string, specifiy which features used to as the denominator for the geometric mean calculation. Options are:
 • "all", with all features.
 • "iqlr", accounts for data with systematic variation and centers the features on the set features that have variance that is between the lower and upper quartile of variance.
 • "zero", a more extreme case where there are many non-zero features in one condition but many zeros in another. In this case the geometric mean of each group is calculated using the set of per-group non-zero features.
 • "lvha", with house keeping features.
paired logical, whether to perform paired tests, only worked for method "t.test" and "wilcox.test".

Value

a microbeMarker object.

References

See Also

ALDE2::aldex()

Examples

data(enterotypes_arumugam)
ps <- phyloseq::subset_samples(
 enterotypes_arumugam,
 Enterotype %in% c("Enterotype 3", "Enterotype 2")
)
run_aldex(ps, group = "Enterotype")
run_ancom

Perform differential analysis using ANCOM

Description

Perform significant test by comparing the pairwise log ratios between all features.

Usage

```r
run_ancom(
  ps,  # a phyloseq-class object.
  group,
  confounders = character(0),
  taxa_rank = "all",
  transform = c("identity", "log10", "log10p"),
  norm = "TSS",
  norm_para = list(),
  p_adjust = c("none", "fdr", "bonferroni", "holm", "hochberg", "hommel", "BH", "BY"),
  pvalue_cutoff = 0.05,
  W_cutoff = 0.75
)
```

Arguments

- **ps**: a phyloseq-class object.
- **group**: character, the variable to set the group.
- **confounders**: character vector, the confounding variables to be adjusted. default character(0), indicating no confounding variable.
- **taxa_rank**: character to specify taxonomic rank to perform differential analysis on. Should be one of phyloseq::rank_names(phyloseq), or "all" means to summarize the taxa by the top taxa ranks (summarize_taxa(ps, level = rank_names(ps)[1])), or "none" means perform differential analysis on the original taxa (taxa_names(phyloseq), e.g., OTU or ASV).
- **transform**: character, the methods used to transform the microbial abundance. See transform_abundances() for more details. The options include:
 - "identity": return the original data without any transformation.
 - "log10", the transformation is log10(object), and if the data contains zeros the transformation is log10(1 + object).
 - "log10p", the transformation is log10(1 + object).
- **norm**: the methods used to normalize the microbial abundance data. See normalize() for more details. Options include:
 - "none": do not normalize.
 - "rarefy": random subsampling counts to the smallest library size in the data set.
run_ancom

- "TSS": total sum scaling, also referred to as "relative abundance", the abundances were normalized by dividing the corresponding sample library size.
- "TMM": trimmed mean of m-values. First, a sample is chosen as reference. The scaling factor is then derived using a weighted trimmed mean over the differences of the log-transformed gene-count fold-change between the sample and the reference.
- "RLE", relative log expression, RLE uses a pseudo-reference calculated using the geometric mean of the gene-specific abundances over all samples. The scaling factors are then calculated as the median of the gene counts ratios between the samples and the reference.
- "CSS": cumulative sum scaling, calculates scaling factors as the cumulative sum of gene abundances up to a data-derived threshold.
- "CLR": centered log-ratio normalization.
- "CPM": pre-sample normalization of the sum of the values to 1e+06.

norm_para named list. other arguments passed to specific normalization methods. Most users will not need to pass any additional arguments here.

p_adjust method for multiple test correction, default none, for more details see `stats::p.adjust`.

pvalue_cutoff significance level for each of the statistical tests, default 0.05.

W_cutoff lower bound for the proportion for the W-statistic, default 0.7.

Details

In an experiment with only two treatments, this tests the following hypothesis for feature \(i \):

\[
H_{0i} : E(\log(\mu_1^i)) = E(\log(\mu_2^i))
\]

where \(\mu_1^i \) and \(\mu_2^i \) are the mean abundances for feature \(i \) in the two groups.

The developers of this method recommend the following significance tests if there are 2 groups, use non-parametric Wilcoxon rank sum test `stats::wilcox.test()`. If there are more than 2 groups, use nonparametric `stats::kruskal.test()` or one-way ANOVA `stats::aov()`.

Value

a microbiomeMarker object, in which the slot of marker_table contains four variables:

- **feature**, significantly different features.
- **enrich_group**, the class of the differential features enriched.
- **effect_size**, differential means for two groups, or F statistic for more than two groups.
- **W**, the W-statistic, number of features that a single feature is tested to be significantly different against.

Author(s)

Huang Lin, Yang Cao
run_ancombc

References

Examples

data(enterotypes_arumugam)
ps <- phyloseq::subset_samples(
 enterotypes_arumugam,
 Enterotype %in% c("Enterotype 3", "Enterotype 2")
)
run_ancom(ps, group = "Enterotype")

run_ancombc

Differential analysis of compositions of microbiomes with bias correction (ANCOM-BC).

Description

Differential abundance analysis for microbial absolute abundance data. This function is a wrapper of ANCOMBC::ancombc().

Usage

run_ancombc(
 ps,
 group,
 confounders = character(0),
 contrast = NULL,
 taxa_rank = "all",
 transform = c("identity", "log10", "log10p"),
 norm = "none",
 norm_para = list(),
 p_adjust = c("none", "fdr", "bonferroni", "holm", "hochberg", "hommel", "BH", "BY"),
 prv_cut = 0.1,
 lib_cut = 0,
 struc_zero = FALSE,
 neg_lb = FALSE,
 tol = 1e-05,
 max_iter = 100,
 conserve = FALSE,
 pvalue_cutoff = 0.05
)

Arguments

ps

a phyloseq::phyloseq object, which consists of a feature table, a sample metadata and a taxonomy table.

group

the name of the group variable in metadata. Specifying group is required for detecting structural zeros and performing global test.

confounders

character vector, the confounding variables to be adjusted. default character(0), indicating no confounding variable.

contrast

this parameter only used for two groups comparison while there are multiple groups. For more please see the following details.

taxa_rank

character to specify taxonomic rank to perform differential analysis on. Should be one of phyloseq::rank_names(phyloseq), or "all" means to summarize the taxa by the top taxa ranks (summarize_taxa(ps, level = rank_names(ps)[1])), or "none" means perform differential analysis on the original taxa (taxa_names(phyloseq), e.g., OTU or ASV).

transform

character, the methods used to transform the microbial abundance. See transform_abundances() for more details. The options include:

- "identity", return the original data without any transformation (default).
- "log10", the transformation is log10(object), and if the data contains zeros the transformation is log10(1 + object).
- "log10p", the transformation is log10(1 + object).

norm

the methods used to normalize the microbial abundance data. See normalize() for more details. Options include:

- "none": do not normalize.
- "rarefy": random subsampling counts to the smallest library size in the data set.
- "TSS": total sum scaling, also referred to as "relative abundance", the abundances were normalized by dividing the corresponding sample library size.
- "TMM": trimmed mean of m-values. First, a sample is chosen as reference. The scaling factor is then derived using a weighted trimmed mean over the differences of the log-transformed gene-count fold-change between the sample and the reference.
- "RLE", relative log expression, RLE uses a pseudo-reference calculated using the geometric mean of the gene-specific abundances over all samples. The scaling factors are then calculated as the median of the gene counts ratios between the samples and the reference.
- "CSS": cumulative sum scaling, calculates scaling factors as the cumulative sum of gene abundances up to a data-derived threshold.
- "CLR": centered log-ratio normalization.
- "CPM": pre-sample normalization of the sum of the values to 1e+06.

norm_para

named list. other arguments passed to specific normalization methods. Most users will not need to pass any additional arguments here.

p_adjust

method to adjust p-values by. Default is "holm". Options include "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none". See stats::p.adjust() for more details.
run_ancombc

- **prv_cut**: a numerical fraction between 0 and 1. Taxa with prevalences less than prv_cut will be excluded in the analysis. Default is 0.10.
- **lib_cut**: a numerical threshold for filtering samples based on library sizes. Samples with library sizes less than lib_cut will be excluded in the analysis. Default is 0, i.e. do not filter any sample.
- **struc_zero**: whether to detect structural zeros. Default is FALSE.
- **neg_lb**: whether to classify a taxon as a structural zero in the corresponding study group using its asymptotic lower bound. Default is FALSE.
- **tol**: the iteration convergence tolerance for the E-M algorithm. Default is 1e-05.
- **max_iter**: the maximum number of iterations for the E-M algorithm. Default is 100.
- **conserve**: whether to use a conservative variance estimate of the test statistic. It is recommended if the sample size is small and/or the number of differentially abundant taxa is believed to be large. Default is FALSE.
- **pvalue_cutoff**: level of significance. Default is 0.05.

Details

Contrast must be a two length character or `NULL` (default). It is only required to set manually for two groups comparison when there are multiple groups. The order determines the direction of comparison, the first element is used to specify the reference group (control). This means that, the first element is the denominator for the fold change, and the second element is used as baseline (numerator for fold change). Otherwise, users do not need to concern this parameter (set as default `NULL`), and if there are two groups, the first level of groups will set as the reference group; if there are multiple groups, it will perform an ANOVA-like testing to find markers which difference in any of the groups.

Value

A `microbiomeMarker` object.

References

See Also

`ANCOMBC::ancombc`

Examples

```r
data(enterotypes_arumugam)
ps <- phyloseq::subset_samples(
  enterotypes_arumugam,
  Enterotype %in% c("Enterotype 3", "Enterotype 2")
)
run_ancombc(ps, group = "Enterotype")
```
Description

Differential expression analysis based on the Negative Binomial distribution using DESeq2.

Usage

```r
run_deseq2(
  ps,  
  group,  
  confounders = character(0),  
  contrast = NULL,  
  taxa_rank = "all",  
  norm = "RLE",  
  norm_para = list(),  
  transform = c("identity", "log10", "log10p"),  
  fitType = c("parametric", "local", "mean", "glmGamPoi"),  
  sfType = "poscounts",  
  betaPrior = FALSE,  
  modelMatrixType,  
  useT = FALSE,  
  minmu = ifelse(fitType == "glmGamPoi", 1e-06, 0.5),  
  p_adjust = c("none", "fdr", "bonferroni", "holm", "hochberg", "hommel", "BH", "BY"),  
  pvalue_cutoff = 0.05,  
  ...)
```

Arguments

- **ps**: a phyloseq::phyloseq object.
- **group**: character, the variable to set the group, must be one of the var of the sample metadata.
- **confounders**: character vector, the confounding variables to be adjusted. default character(0), indicating no confounding variable.
- **contrast**: this parameter only used for two groups comparison while there are multiple groups. For more please see the following details.
- **taxa_rank**: character to specify taxonomic rank to perform differential analysis on. Should be one of phyloseq::rank_names(phyloseq), or "all" means to summarize the taxa by the top taxa ranks (summarize_taxa(ps, level = rank_names(ps)[1])), or "none" means perform differential analysis on the original taxa (taxa_names(phyloseq), e.g., OTU or ASV).
- **norm**: the methods used to normalize the microbial abundance data. See normalize() for more details. Options include:
run_deseq2

- "none": do not normalize.
- "rarefy": random subsampling counts to the smallest library size in the data set.
- "TMM": trimmed mean of m-values. First, a sample is chosen as reference. The scaling factor is then derived using a weighted trimmed mean over the differences of the log-transformed gene-count fold-change between the sample and the reference.
- "RLE", relative log expression, RLE uses a pseudo-reference calculated using the geometric mean of the gene-specific abundances over all samples. The scaling factors are then calculated as the median of the gene counts ratios between the samples and the reference.
- "CSS": cumulative sum scaling, calculates scaling factors as the cumulative sum of gene abundances up to a data-derived threshold.

norm_para arguments passed to specific normalization methods. Most users will not need to pass any additional arguments here.

transform character, the methods used to transform the microbial abundance. See `transform_abundances()` for more details. The options include:
- "identity", return the original data without any transformation (default).
- "log10", the transformation is \(\log_{10}(\text{object}) \), and if the data contains zeros the transformation is \(\log_{10}(1 + \text{object}) \).
- "log10p", the transformation is \(\log_{10}(1 + \text{object}) \).

fitType, sfType, betaPrior, modelMatrixType, useT, minmu these seven parameters are inherited form `DESeq2::DESeq()`.
- fitType, either "parametric", "local", "mean", or "glmGamPoi" for the type of fitting of dispersions to the mean intensity.
- sfType, either "ratio", "poscounts", or "iterate" for the type of size factor estimation. We recommend to use "poscounts".
- betaPrior, whether or not to put a zero-mean normal prior on the non-intercept coefficients.
- modelMatrixType, either "standard" or "expanded", which describe how the model matrix,
- useT, logical, where Wald statistics are assumed to follow a standard Normal.
- minmu, lower bound on the estimated count for fitting gene-wise dispersion.

For more details, see `DESeq2::DESeq()`. Most users will not need to set this arguments (just use the defaults).

p_adjust method for multiple test correction, default none, for more details see `stats::p.adjust`.

pvalue_cutoff numeric, p value cutoff, default 0.05.

... extra parameters passed to `DESeq2::DESeq()`.

Details

Note: DESeq2 requires the input is raw counts (un-normalized counts), as only the counts values allow assessing the measurement precision correctly. For more details see the vignette of DESeq2 (`vignette("DESeq2")`).
Thus, this function only supports "none", "rarefy", "RLE", "CSS", and "TMM" normalization methods. We strongly recommend using the "RLE" method (default normalization method in the DESeq2 package). The other normalization methods are used for expert users and comparisons among different normalization methods.

For two groups comparison, this function utilizes the Wald test (defined by \texttt{DESeq2::nbinomWaldTest()}) for hypothesis testing. A Wald test statistic is computed along with a probability (p-value) that a test statistic at least as extreme as the observed value were selected at random. \texttt{contrasts} are used to specify which two groups to compare. The order of the names determines the direction of fold change that is reported.

Likelihood ratio test (LRT) is used to identify the genes that significantly changed across all the different levels for multiple groups comparisons. The LRT identified the significant features by comparing the full model to the reduced model. It is testing whether a feature removed in the reduced model explains a significant variation in the data.

\texttt{contrast} must be a two length character or \texttt{NULL} (default). It is only required to set manually for two groups comparison when there are multiple groups. The order determines the direction of comparison, the first element is used to specify the reference group (control). This means that, the first element is the denominator for the fold change, and the second element is used as baseline (numerator for fold change). Otherwise, users do required to concern this parameter (set as default \texttt{NULL}), and if there are two groups, the first level of groups will set as the reference group; if there are multiple groups, it will perform an ANOVA-like testing to find markers which difference in any of the groups.

Value

a \texttt{microbiomeMarker} object.

References

See Also

\texttt{DESeq2::results()}, \texttt{DESeq2::DESeq()}

Examples

data(enterotypes_arumugam)
ps <- phyloseq::subset_samples(
 enterotypes_arumugam,
 Enterotype %in% c("Enterotype 3", "Enterotype 2") %>%
 phyloseq::subset_taxa(Phylum %in% c("Firmicutes")))
run_deseq2(ps, group = "Enterotype")
run_edger
Perform differential analysis using edgeR

Description
Differential expression analysis based on the Negative Binomial distribution using edgeR.

Usage
```r
run_edger(
  ps,
  group,
  confounders = character(0),
  contrast = NULL,
  taxa_rank = "all",
  method = c("LRT", "QLFT"),
  transform = c("identity", "log10", "log10p"),
  norm = "TMM",
  norm_para = list(),
  disp_para = list(),
  p_adjust = c("none", "fdr", "bonferroni", "holm", "hochberg", "hommel", "BH", "BY"),
  pvalue_cutoff = 0.05,
  ...
)
```

Arguments
- **ps** a phyloseq::phyloseq object.
- **group** character, the variable to set the group, must be one of the var of the sample metadata.
- **confounders** character vector, the confounding variables to be adjusted. default character(0), indicating no confounding variable.
- **contrast** this parameter only used for two groups comparison while there are multiple groups. For more please see the following details.
- **taxa_rank** character to specify taxonomic rank to perform differential analysis on. Should be one of phyloseq::rank_names(phyloseq), or "all" means to summarize the taxa by the top taxa ranks (summarize_taxa(ps, level = rank_names(ps)[1])), or "none" means perform differential analysis on the original taxa (taxa_names(phyloseq), e.g., OTU or ASV).
- **method** character, used for differential analysis, please see details below for more info.
- **transform** character, the methods used to transform the microbial abundance. See transform_abundances() for more details. The options include:
 - "identity", return the original data without any transformation (default).
 - "log10", the transformation is log10(object), and if the data contains zeros the transformation is log10(1 + object).
• "log10p", the transformation is \(\log_{10}(1 + \text{object}) \).

The methods used to normalize the microbial abundance data. See \texttt{normalize()} for more details. Options include:

• "none": do not normalize.
• "rarefy": random subsampling counts to the smallest library size in the data set.
• "TSS": total sum scaling, also referred to as "relative abundance", the abundances were normalized by dividing the corresponding sample library size.
• "TMM": trimmed mean of m-values. First, a sample is chosen as reference. The scaling factor is then derived using a weighted trimmed mean over the differences of the log-transformed gene-count fold-change between the sample and the reference.
• "RLE", relative log expression, RLE uses a pseudo-reference calculated using the geometric mean of the gene-specific abundances over all samples. The scaling factors are then calculated as the median of the gene counts ratios between the samples and the reference.
• "CSS": cumulative sum scaling, calculates scaling factors as the cumulative sum of gene abundances up to a data-derived threshold.
• "CLR": centered log-ratio normalization.
• "CPM": pre-sample normalization of the sum of the values to 1e+06.

Arguments passed to specific normalization methods. Most users will not need to pass any additional arguments here.

Additional arguments passed to \texttt{edgeR::estimateDisp()} used for dispersions estimation. Most users will not need to pass any additional arguments here.

Method for multiple test correction, default none, for more details see \texttt{stats::p.adjust}.

Numeric, p value cutoff, default 0.05

Extra arguments passed to the model. See \texttt{edgeR::glmQLFit()} and \texttt{edgeR::glmFit()} for more details.

Details

Note that \texttt{edgeR} is designed to work with actual counts. This means that transformation is not required in any way before inputting them to \texttt{edgeR}.

There are two test methods for differential analysis in \texttt{edgeR}, likelihood ratio test (LRT) and quasi-likelihood F-test (QLFT). The QLFT method is recommended as it allows stricter error rate control by accounting for the uncertainty in dispersion estimation.

\texttt{contrast} must be a two length character or \texttt{NULL} (default). It is only required to set manually for two groups comparison when there are multiple groups. The order determines the direction of comparison, the first element is used to specify the reference group (control). This means that, the first element is the denominator for the fold change, and the second element is used as baseline (numerator for fold change). Otherwise, users do not need to concern this parameter (set as default \texttt{NULL}), and if there are two groups, the first level of groups will set as the reference group; if there are multiple groups, it will perform an ANOVA-like testing to find markers which difference in any of the groups.
Value

A `microbiomeMarker` object.

Author(s)

Yang Cao

References

See Also

`edgeR::glmFit()`, `edgeR::glmQLFit()`, `edgeR::estimateDisp()`, `normalize()`

Examples

```r
data(enterotypes_arumugam)
ps <- phyloseq::subset_samples(
  enterotypes_arumugam,
  Enterotype %in% c("Enterotype 3", "Enterotype 2")
)
run_edger(ps, group = "Enterotype")
```

run_lefse

Liner discriminant analysis (LDA) effect size (LEFSe) analysis

Description

Perform Metagenomic LEFSe analysis based on phyloseq object.

Usage

```r
run_lefse(
  ps,
  group,
  subgroup = NULL,
  taxa_rank = "all",
  transform = c("identity", "log10", "log10p"),
  norm = "CPM",
  norm_para = list(),
  kw_cutoff = 0.05,
  lda_cutoff = 2,
)```
run_lefse

```r
bootstrap_n = 30,
bootstrap_fraction = 2/3,
wilcoxon_cutoff = 0.05,
multigrp_strat = FALSE,
strict = c("0", "1", "2"),
sample_min = 10,
only_same_subgrp = FALSE,
curv = FALSE
)
```

**Arguments**

- **ps**: a `phyloseq-class` object
- **group**: character, the column name to set the group
- **subgroup**: character, the column name to set the subgroup
- **taxa_rank**: character to specify taxonomic rank to perform differential analysis on. Should be one of `phyloseq::rank_names(phyloseq)`, or "all" means to summarize the taxa by the top taxa ranks (`summarize_taxa(ps, level = rank_names(ps)[1])`), or "none" means perform differential analysis on the original taxa (`taxa_names(phyloseq)`, e.g., OTU or ASV).
- **transform**: character, the methods used to transform the microbial abundance. See `transform_abundances()` for more details. The options include:
  - "identity", return the original data without any transformation (default).
  - "log10", the transformation is \( \log(10) \cdot \text{object} \), and if the data contains zeros the transformation is \( \log(10) \cdot (1 + \text{object}) \).
  - "log10p", the transformation is \( \log(10) \cdot (1 + \text{object}) \).
- **norm**: the methods used to normalize the microbial abundance data. See `normalize()` for more details. Options include:
  - "none": do not normalize.
  - "rarefy": random subsampling counts to the smallest library size in the data set.
  - "TSS": total sum scaling, also referred to as "relative abundance", the abundances were normalized by dividing the corresponding sample library size.
  - "TMM": trimmed mean of m-values. First, a sample is chosen as reference. The scaling factor is then derived using a weighted trimmed mean over the differences of the log-transformed gene-count fold-change between the sample and the reference.
  - "RLE", relative log expression, RLE uses a pseudo-reference calculated using the geometric mean of the gene-specific abundances over all samples. The scaling factors are then calculated as the median of the gene counts ratios between the samples and the reference.
  - "CSS": cumulative sum scaling, calculates scaling factors as the cumulative sum of gene abundances up to a data-derived threshold.
  - "CLR": centered log-ratio normalization.
  - "CPM": pre-sample normalization of the sum of the values to \( 1 \times 10^6 \).
run_lefse

norm_para

named list. other arguments passed to specific normalization methods. Most
users will not need to pass any additional arguments here.

kw_cutoff

numeric, p value cutoff of kw test, default 0.05

lda_cutoff

numeric, lda score cutoff, default 2

bootstrap_n

integer, the number of bootstrap iteration for LDA, default 30

bootstrap_fraction

numeric, the subsampling fraction value for each bootstrap iteration, default 2/3

wilcoxon_cutoff

numeric, p value cutoff of wilcoxon test, default 0.05

multigrp_strat

logical, for multiple group tasks, whether the test is performed in a one-against
one (more strict) or in a one-against all setting, default FALSE.

strict

multiple testing options, 0 for no correction (default), 1 for independent com-
parisons, 2 for independent comparison.

sample_min

integer, minimum number of samples per subclass for performing wilcoxon test,
default 10

only_same_subgrp

logical, whether perform the wilcoxon test only among the subgroups with the
same name, default FALSE

curv

logical, whether perform the wilcoxon test using the Curtis’s approach, defalt
FALSE

Value

a microbiomeMarker object, in which the slot of marker_table contains four variables:

- feature, significantly different features.
- enrich_group, the class of the differential features enriched.
- lda, logarithmic LDA score (effect size)
- pvalue, p value of kw test.

Author(s)

Yang Cao

References

Segata, Nicola, et al. Metagenomic biomarker discovery and explanation. Genome biology 12.6

See Also

normalize
**Examples**

```r
data(kostic_crc)
kostic_crc_small <- phyloseq::subset_taxa(
 kostic_crc,
 Phylum == "Firmicutes"
)
mm_lefse <- run_lefse(
 kostic_crc_small,
 wilcoxon_cutoff = 0.01,
 group = "DIAGNOSIS",
 kw_cutoff = 0.01,
 multigrp_strat = TRUE,
 lda_cutoff = 4
)
```

---

**run_limma_voom**

*Differential analysis using limma-voom*

**Description**

Differential analysis using limma-voom

**Usage**

```r
run_limma_voom(
 ps,
 group,
 confounders = character(0),
 contrast = NULL,
 taxa_rank = "all",
 transform = c("identity", "log10", "log10p"),
 norm = "none",
 norm_para = list(),
 voom_span = 0.5,
 p_adjust = c("none", "fdr", "bonferroni", "holm", "hochberg", "hommel", "BH", "BY"),
 pvalue_cutoff = 0.05,
 ...
)
```

**Arguments**

- **ps**
  - `ps` a `phyloseq::phyloseq` object.
- **group**
  - `group` character, the variable to set the group, must be one of the var of the sample metadata.
- **confounders**
  - `confounders` character vector, the confounding variables to be adjusted. default `character(0)`, indicating no confounding variable.
This parameter only used for two groups comparison while there are multiple groups. For more please see the following details.

**taxa_rank** character to specify taxonomic rank to perform differential analysis on. Should be one of `phyloseq::rank_names(phyloseq)`, or "all" means to summarize the taxa by the top taxa ranks (`summarize_taxa(ps, level = rank_names(ps)[1])`), or "none" means perform differential analysis on the original taxa (`taxa_names(phyloseq)`), e.g., OTU or ASV).

**transform** character, the methods used to transform the microbial abundance. See `transform_abundances()` for more details. The options include:
- "identity": return the original data without any transformation (default).
- "log10", the transformation is `log10(object)`, and if the data contains zeros the transformation is `log10(1 + object)`.
- "log10p", the transformation is `log10(1 + object)`.

**norm** the methods used to normalize the microbial abundance data. See `normalize()` for more details. Options include:
- "none": do not normalize.
- "rarefy": random subsampling counts to the smallest library size in the data set.
- "TMM": trimmed mean of m-values. First, a sample is chosen as reference. The scaling factor is then derived using a weighted trimmed mean over the differences of the log-transformed gene-count fold-change between the sample and the reference.
- "RLE", relative log expression, RLE uses a pseudo-reference calculated using the geometric mean of the gene-specific abundances over all samples. The scaling factors are then calculated as the median of the gene counts ratios between the samples and the reference.
- "CSS": cumulative sum scaling, calculates scaling factors as the cumulative sum of gene abundances up to a data-derived threshold.

**norm_para** arguments passed to specific normalization methods. Most users will not need to pass any additional arguments here.

**voom_span** width of the smoothing window used for the lowess mean-variance trend for `limma::voom()`.

**p_adjust** method for multiple test correction, default `none`, for more details see `stats::p.adjust`.

**pvalue_cutoff** cutoff of p value, default 0.05.

**...** extra arguments passed to `limma::eBayes()`.

### Details

**contrast** must be a two length character or `NULL` (default). It is only required to set manually for two groups comparison when there are multiple groups. The order determines the direction of comparison, the first element is used to specify the reference group (control). This means that, the first element is the denominator for the fold change, and the second element is used as baseline (numerator for fold change). Otherwise, users do required to concern this parameter (set as default `NULL`), and if there are two groups, the first level of groups will set as the reference group; if there are multiple groups, it will perform an ANOVA-like testing to find markers which difference in any of the groups.
Value

A microbiomeMarker object.

References


Examples

data(enterotypes_arumugam)
mm <- run_limma_voom(
  enterotypes_arumugam,
  "Enterotype",
  contrast = c("Enterotype 3", "Enterotype 2"),
  pvalue_cutoff = 0.01,
  p_adjust = "none"
)
mm

run_marker

Find makers (differentially expressed metagenomic features)

Description

run_marker is a wrapper of all differential analysis functions.

Usage

run_marker(
  ps,
  group,
  da_method = c("lefe", "simple_t", "simple_welch", "simple_white", "simple_kruskal",
                "simple_anova", "edger", "deseq2", "metagenomeseq", "ancom", "ancombc", "aldex",
                "limma_voom", "sl_lr", "sl_rf", "sl_svm"),
  taxa_rank = "all",
  transform = c("identity", "log10", "log10p"),
  norm = "none",
  norm_para = list(),
  p_adjust = c("none", "fdr", "bonferroni", "holm", "hochberg", "hommel", "BH", "BY"),
  pvalue_cutoff = 0.05,
  ...
)
Arguments

- **ps**: a `phyloseq::phyloseq` object
- **group**: character, the variable to set the group
- **da_method**: character to specify the differential analysis method. The options include:
  - "lefse", linear discriminant analysis (LDA) effect size (LEfSe) method, for more details see `run_lefse()`.
  - "simple_t", "simple_welch", "simple_white", "simple_kruskal", and "simple_anova", simple statistic methods; "simple_t", "simple_welch" and "simple_white" for two groups comparison; "simple_kruskal" and "simple_anova" for multiple groups comparison. For more details see `run_simple_stat()`.
  - "edger", see `run_edger()`.
  - "deseq2", see `run_deseq2()`.
  - "metagenomeseq", differential expression analysis based on the Zero-inflated Log-Normal mixture model or Zero-inflated Gaussian mixture model using metagenomeSeq, see `run_metagenomeseq()`.
  - "ancom", see `run_ancom()`.
  - "ancombc", differential analysis of compositions of microbiomes with bias correction, see `run_ancombc()`.
  - "aldex", see `run_aldex()`.
  - "limma_voom", see `run_limma_voom()`.
- **taxa_rank**: character to specify taxonomic rank to perform differential analysis on. Should be one of `phyloseq::rank_names(phyloseq)`, or "all" means to summarize the taxa by the top taxa ranks (`summarize_taxa(ps, level = rank_names(ps)[1])`), or "none" means perform differential analysis on the original taxa (`taxa_names(phyloseq)`), e.g., OTU or ASV.
- **transform**: character, the methods used to transform the microbial abundance. See `transform_abundances()` for more details. The options include:
  - "identity", return the original data without any transformation (default).
  - "log10", the transformation is `log10(object)`, and if the data contains zeros the transformation is `log10(1 + object)`.
  - "log10p", the transformation is `log10(1 + object)`.
- **norm**: the methods used to normalize the microbial abundance data. See `normalize()` for more details. Options include:
  - "none": do not normalize.
  - "rarefy": random subsampling counts to the smallest library size in the data set.
  - "TSS": total sum scaling, also referred to as "relative abundance", the abundances were normalized by dividing the corresponding sample library size.
  - "TMM": trimmed mean of m-values. First, a sample is chosen as reference. The scaling factor is then derived using a weighted trimmed mean over the differences of the log-transformed gene-count fold-change between the sample and the reference.
• "RLE", relative log expression, RLE uses a pseudo-reference calculated using the geometric mean of the gene-specific abundances over all samples. The scaling factors are then calculated as the median of the gene counts ratios between the samples and the reference.
• "CSS": cumulative sum scaling, calculates scaling factors as the cumulative sum of gene abundances up to a data-derived threshold.
• "CLR": centered log-ratio normalization.
• "CPM": pre-sample normalization of the sum of the values to 1e+06.

Details
This function is only a wrapper of all differential analysis functions, We recommend to use the corresponding function, since it has a better default arguments setting.

Value
a microbiomeMarker object.

See Also
run_lefse(), run_simple_stat(), run_test_two_groups(), run_test_multiple_groups(), run_edger(), run_deseq2(), run_metagenomeseq(), run_ancom(), run_ancombc(), run_aldex(), run_limma_voom(), run_sl()

Description
Differential expression analysis based on the Zero-inflated Log-Normal mixture model or Zero-inflated Gaussian mixture model using metagenomeSeq.

Usage
run_metagenomeseq(
  ps,
  group,
  confounders = character(0),
  contrast = NULL,
  taxa_rank = "all",
  transform = c("identity", "log10", "log10p"),
  norm = "CSS",...
run_metagenomeseq

norm_para = list(),
method = c("ZILN", "ZIG"),
p_adjust = c("none", "fdr", "bonferroni", "holm", "hochberg", "hommel", "BH", "BY"),
pvalue_cutoff = 0.05,
...)

Arguments

ps ps a phyloseq::phyloseq object.

group character, the variable to set the group, must be one of the var of the sample metadata.

confounders character vector, the confounding variables to be adjusted. default character(0), indicating no confounding variable.

contrast this parameter only used for two groups comparison while there are multiple groups. For more please see the following details.

taxa_rank character to specify taxonomic rank to perform differential analysis on. Should be one of phyloseq::rank_names(ps), or "all" means to summarize the taxa by the top taxa ranks (summarize_taxa(ps, level = rank_names(ps)[1])), or "none" means perform differential analysis on the original taxa (taxa_names(ps), e.g., OTU or ASV).

transform character, the methods used to transform the microbial abundance. See transform_abundances() for more details. The options include:

• "identity", return the original data without any transformation (default).
• "log10", the transformation is log10(object), and if the data contains zeros the transformation is log10(1 + object).
• "log10p", the transformation is log10(1 + object).

norm the methods used to normalize the microbial abundance data. See normalize() for more details. Options include:

• "none": do not normalize.
• "rarefy": random subsampling counts to the smallest library size in the data set.
• "TSS": total sum scaling, also referred to as "relative abundance", the abundances were normalized by dividing the corresponding sample library size.
• "TMM": trimmed mean of m-values. First, a sample is chosen as reference. The scaling factor is then derived using a weighted trimmed mean over the differences of the log-transformed gene-count fold-change between the sample and the reference.
• "RLE", relative log expression, RLE uses a pseudo-reference calculated using the geometric mean of the gene-specific abundances over all samples. The scaling factors are then calculated as the median of the gene counts ratios between the samples and the reference.
• "CSS": cumulative sum scaling, calculates scaling factors as the cumulative sum of gene abundances up to a data-derived threshold.
• "CLR": centered log-ratio normalization.
- "CPM": pre-sample normalization of the sum of the values to 1e+06.

**norm_para**
arguments passed to specific normalization methods.

**method**
character, which model used for differential analysis, "ZILN" (Zero-inflated Log-Normal mixture model) or "ZIG" (Zero-inflated Gaussian mixture model). And the zero-inflated log-normal model is preferred due to the high sensitivity and low FDR.

**p_adjust**
method for multiple test correction, default none, for more details see stats::p.adjust.

**pvalue_cutoff**
numeric, p value cutoff, default 0.05

... extra arguments passed to the model. more details see metagenomeSeq::fitFeatureModel() and metagenomeSeq::fitZig(), e.g. control (can be setted using metagenomeSeq::zigControl()) for metagenomeSeq::fitZig().

**Details**

metagenomeSeq provides two differential analysis methods, zero-inflated log-normal mixture model (implemented in metagenomeSeq::fitFeatureModel()) and zero-inflated Gaussian mixture model (implemented in metagenomeSeq::fitZig()). We recommend fitFeatureModel over fitZig due to high sensitivity and low FDR. Both metagenomeSeq::fitFeatureModel() and metagenomeSeq::fitZig() require the abundance profiles before normalization.

For metagenomeSeq::fitZig(), the output column is the coefficient of interest, and logFC column in the output of metagenomeSeq::fitFeatureModel() is analogous to coefficient. Thus, logFC is really just the estimate the coefficient of interest in metagenomeSeq::fitFeatureModel(). For more details see these question Difference between fitFeatureModel and fitZIG in metagenomeSeq.

**contrast** must be a two length character or NULL (default). It is only required to set manually for two groups comparison when there are multiple groups. The order determines the direction of comparison, the first element is used to specify the reference group (control). This means that, the first element is the denominator for the fold change, and the second element is used as baseline (numerator for fold change). Otherwise, users do required to concern this parameter (set as default NULL), and if there are two groups, the first level of groups will set as the reference group; if there are multiple groups, it will perform an ANOVA-like testing to find markers which difference in any of the groups.

Of note, metagenomeSeq::fitFeatureModel() is not allows for multiple groups comparison.

**Value**

a microbiomeMarker object.

**Author(s)**

Yang Cao

**References**

**Examples**

```r
data(enterotypes_arumugam)
ps <- phyloseq::subset_samples(
 enterotypes_arumugam,
 Enterotype %in% c("Enterotype 3", "Enterotype 2")
)
run_metagenomeseq(ps, group = "Enterotype")
```

---

**run_posthoc_test**

*Post hoc pairwise comparisons for multiple groups test.*

**Description**

Multiple group test, such as anova and Kruskal-Wallis rank sum test, can be used to uncover the significant feature among all groups. Post hoc tests are used to uncover specific mean differences between pair of groups.

**Usage**

```r
run_posthoc_test(
 ps,
 group,
 transform = c("identity", "log10", "log10p"),
 norm = "TSS",
 norm_para = list(),
 conf_level = 0.95,
 method = c("tukey", "games_howell", "scheffe", "welch_uncorrected")
)
```

**Arguments**

- **ps**
  - A `phyloseq::phyloseq` object
- **group**
  - Character, the variable to set the group
- **transform**
  - Character, the methods used to transform the microbial abundance. See `transform_abundances()` for more details. The options include:
    - "identity", return the original data without any transformation (default).
    - "log10", the transformation is \( \log_{10}(\text{object}) \), and if the data contains zeros the transformation is \( \log_{10}(1 + \text{object}) \).
    - "log10p", the transformation is \( \log_{10}(1 + \text{object}) \).
- **norm**
  - The methods used to normalize the microbial abundance data. See `normalize()` for more details. Options include:
    - A integer, e.g. 1e6 (default), indicating pre-sample normalization of the sum of the values to 1e6.
    - "none": do not normalize.
• "rarefy": random subsampling counts to the smallest library size in the data set.
• "TSS": total sum scaling, also referred to as "relative abundance", the abundances were normalized by dividing the corresponding sample library size.
• "TMM": trimmed mean of m-values. First, a sample is chosen as reference. The scaling factor is then derived using a weighted trimmed mean over the differences of the log-transformed gene-count fold-change between the sample and the reference.
• "RLE", relative log expression, RLE uses a pseudo-reference calculated using the geometric mean of the gene-specific abundances over all samples. The scaling factors are then calculated as the median of the gene counts ratios between the samples and the reference.
• "CSS": cumulative sum scaling, calculates scaling factors as the cumulative sum of gene abundances up to a data-derived threshold.
• "CLR": centered log-ratio normalization.

Value
a postHocTest object

See Also
postHocTest, run_test_multiple_groups()

Examples

data(enterotypes_arumugam)
ps <- phyloseq::subset_samples(
  enterotypes_arumugam,
  Enterotype %in% c("Enterotype 3", "Enterotype 2", "Enterotype 1")
)%>%
phyloseq::subset_taxa(Phylum == "Bacteroidetes")
pht <- run_posthoc_test(ps, group = "Enterotype")
pht

run_simple_stat Simple statistical analysis of metagenomic profiles

Description
Perform simple statistical analysis of metagenomic profiles. This function is a wrapper of run_test_two_groups and run_test_multiple_groups.
run_simple_stat

Usage

run_simple_stat(
  ps,
  group,
  taxa_rank = "all",
  transform = c("identity", "log10", "log10p"),
  norm = "TSS",
  norm_para = list(),
  method = c("welch.test", "t.test", "white.test", "anova", "kruskal"),
  p_adjust = c("none", "fdr", "bonferroni", "holm", "hochberg", "hommel", "BH", "BY"),
  pvalue_cutoff = 0.05,
  diff_mean_cutoff = NULL,
  ratio_cutoff = NULL,
  eta_squared_cutoff = NULL,
  conf_level = 0.95,
  nperm = 1000,
  ...
)

Arguments

ps a phyloseq::phyloseq object

group character, the variable to set the group

taxa_rank character to specify taxonomic rank to perform differential analysis on. Should be one of phyloseq::rank_names(phyloseq), or "all" means to summarize the taxa by the top taxa ranks (summarize_taxa(ps, level = rank_names(ps)[1])), or "none" means perform differential analysis on the original taxa (taxa_names(phyloseq), e.g., OTU or ASV).

transform character, the methods used to transform the microbial abundance. See transform_abundances() for more details. The options include:

  • "identity": return the original data without any transformation (default).
  • "log10", the transformation is log10(object), and if the data contains zeros the transformation is log10(1 + object).
  • "log10p", the transformation is log10(1 + object).

norm the methods used to normalize the microbial abundance data. See normalize() for more details. Options include:

  • "none": do not normalize.
  • "rarefy": random subsampling counts to the smallest library size in the data set.
  • "TSS": total sum scaling, also referred to as "relative abundance", the abundances were normalized by dividing the corresponding sample library size.
  • "TMM": trimmed mean of m-values. First, a sample is chosen as reference. The scaling factor is then derived using a weighted trimmed mean over the differences of the log-transformed gene-count fold-change between the sample and the reference.
run_simple_stat

- "RLE", relative log expression. RLE uses a pseudo-reference calculated using the geometric mean of the gene-specific abundances over all samples. The scaling factors are then calculated as the median of the gene counts ratios between the samples and the reference.
- "CSS": cumulative sum scaling, calculates scaling factors as the cumulative sum of gene abundances up to a data-derived threshold.
- "CLR": centered log-ratio normalization.
- "CPM": pre-sample normalization of the sum of the values to 1e+06.

**norm_para** arguments passed to specific normalization methods

**method** test method, options include: "welch.test", "t.test" and "white.test" for two groups comparison, "anova" and "kruskal" for multiple groups comparison.

**p_adjust** method for multiple test correction, default none, for more details see stats::p.adjust.

**pvalue_cutoff** numeric, p value cutoff, default 0.05

**diff_mean_cutoff**, **ratio_cutoff** only used for two groups comparison, cutoff of different means and ratios, default NULL which means no effect size filter.

**eta_squared_cutoff** only used for multiple groups comparison, numeric, cutoff of effect size (eta squared) default NULL which means no effect size filter.

**conf_level** only used for two groups comparison, numeric, confidence level of interval.

**nperm** integer, only used for two groups comparison, number of permutations for white non parametric t test estimation

... only used for two groups comparison, extra arguments passed to t.test() or fisher.test().

**Value**
a microbiomeMarker object.

**See Also**

run_test_two_groups(), run_test_multiple_groups()

**Examples**

data(enterotypes_arumugam)
ps <- phyloseq::subset_samples(
    enterotypes_arumugam,
    Enterotype %in% c("Enterotype 3", "Enterotype 2")
)
run_simple_stat(ps, group = "Enterotype")
Identify biomarkers using supervised leaning (SL) methods

Description
Identify biomarkers using logistic regression, random forest, or support vector machine.

Usage
run_sl(
  ps,
  group,
  taxa_rank = "all",
  transform = c("identity", "log10", "log10p"),
  norm = "none",
  norm_para = list(),
  nfolds = 3,
  nrepeats = 3,
  sampling = NULL,
  tune_length = 5,
  top_n = 10,
  method = c("LR", "RF", "SVM"),
  ...
)

Arguments
ps a phyloseq-class object.
group character, the variable to set the group.
taxa_rank character to specify taxonomic rank to perform differential analysis on. Should be one of phyloseq::rank_names(phyloseq), or "all" means to summarize the taxa by the top taxa ranks (summarize_taxa(ps, level = rank_names(ps)[1])), or "none" means perform differential analysis on the original taxa (taxa_names(phyloseq), e.g., OTU or ASV).
transform character, the methods used to transform the microbial abundance. See transform_abundances() for more details. The options include:
  • "identity", return the original data without any transformation (default).
  • "log10", the transformation is log10(object), and if the data contains zeros the transformation is log10(1 + object).
  • "log10p", the transformation is log10(1 + object).

norm the methods used to normalize the microbial abundance data. See normalize() for more details. Options include:
  • "none": do not normalize.
  • "rarefy": random subsampling counts to the smallest library size in the data set.
• "TSS": total sum scaling, also referred to as "relative abundance", the abundances were normalized by dividing the corresponding sample library size.

• "TMM": trimmed mean of m-values. First, a sample is chosen as reference. The scaling factor is then derived using a weighted trimmed mean over the differences of the log-transformed gene-count fold-change between the sample and the reference.

• "RLE", relative log expression, RLE uses a pseudo-reference calculated using the geometric mean of the gene-specific abundances over all samples. The scaling factors are then calculated as the median of the gene counts ratios between the samples and the reference.

• "CSS": cumulative sum scaling, calculates scaling factors as the cumulative sum of gene abundances up to a data-derived threshold.

• "CLR": centered log-ratio normalization.

• "CPM": pre-sample normalization of the sum of the values to 1e+06.

norm_para named list. other arguments passed to specific normalization methods. Most users will not need to pass any additional arguments here.

nfolds the number of splits in CV.

nrepeats the number of complete sets of folds to compute.

sampling a single character value describing the type of additional sampling that is conducted after resampling (usually to resolve class imbalances). Values are "none", "down", "up", "smote", or "rose". For more details see caret::trainControl().

tune_length an integer denoting the amount of granularity in the tuning parameter grid. For more details see caret::train().

top_n an integer denoting the top n features as the biomarker according the importance score.

method supervised learning method, options are "LR" (logistic regression), "RF" (random forest), or "SVM" (support vector machine).

... extra arguments passed to the classification. e.g., importance for randomForest::randomForest.

Details

Only support two groups comparison in the current version. And the marker was selected based on its importance score. Moreover, The hyper-parameters are selected automatically by a grid-search based method in the N-time K-fold cross-validation. Thus, the identified biomarker based can be biased due to model overfitting for small datasets (e.g., with less than 100 samples).

The argument top_n is used to denote the number of markers based on the importance score. There is no rule or principle on how to select top_n, however, usually it is very useful to try a different top_n and compare the performance of the marker predictions for the testing data.

Value

a microbiomeMarker object.

Author(s)

Yang Cao
See Also

caret::train(), caret::trainControl()

Examples

data(enterotypes_arumugam)
# small example phyloseq object for test
ps_small <- phyloseq::subset_taxa(
  enterotypes_arumugam,
  Phylum %in% c("Firmicutes", "Bacteroidetes")
)

set.seed(2021)
mm <- run_sl(
  ps_small,
  group = "Gender",
  taxa_rank = "Genus",
  nfolds = 2,
  nrepeats = 1,
  top_n = 15,
  norm = "TSS",
  method = "LR",
)
mm

run_test_multiple_groups

Statistical test for multiple groups

Description

Statistical test for multiple groups

Usage

run_test_multiple_groups(
  ps,
  group,
  taxa_rank = "all",
  transform = c("identity", "log10", "log10p"),
  norm = "TSS",
  norm_para = list(),
  method = c("anova", "kruskal"),
  p_adjust = c("none", "fdr", "bonferroni", "holm", "hochberg", "hommel", "BH", "BY"),
  pvalue_cutoff = 0.05,
  effect_size_cutoff = NULL
)
Arguments

- **ps**: a `phyloseq::phyloseq` object
- **group**: character, the variable to set the group
- **taxa_rank**: character to specify taxonomic rank to perform differential analysis on. Should be one of `phyloseq::rank_names(phyloseq)`, or "all" means to summarize the taxa by the top taxa ranks (`summarize_taxa(ps, level = rank_names(ps)[1])`), or "none" means perform differential analysis on the original taxa (`taxa_names(phyloseq)`, e.g., OTU or ASV).
- **transform**: character, the methods used to transform the microbial abundance. See `transform_abundances()` for more details. The options include:
  - "identity", return the original data without any transformation (default).
  - "log10", the transformation is \( \log_{10}(\text{object}) \), and if the data contains zeros the transformation is \( \log_{10}(1 + \text{object}) \).
  - "log10p", the transformation is \( \log_{10}(1 + \text{object}) \).
- **norm**: the methods used to normalize the microbial abundance data. See `normalize()` for more details. Options include:
  - "none": do not normalize.
  - "rarefy": random subsampling counts to the smallest library size in the data set.
  - "TSS": total sum scaling, also referred to as "relative abundance", the abundances were normalized by dividing the corresponding sample library size.
  - "TMM": trimmed mean of m-values. First, a sample is chosen as reference. The scaling factor is then derived using a weighted trimmed mean over the differences of the log-transformed gene-count fold-change between the sample and the reference.
  - "RLE", relative log expression, RLE uses a pseudo-reference calculated using the geometric mean of the gene-specific abundances over all samples. The scaling factors are then calculated as the median of the gene counts ratios between the samples and the reference.
  - "CSS": cumulative sum scaling, calculates scaling factors as the cumulative sum of gene abundances up to a data-derived threshold.
  - "CLR": centered log-ratio normalization.
  - "CPM": pre-sample normalization of the sum of the values to 1e+06.
- **norm_para**: arguments passed to specific normalization methods
- **method**: test method, must be one of "anova" or "kruskal"
- **p_adjust**: method for multiple test correction, default none, for more details see `stats::p.adjust`.
- **pvalue_cutoff**: numeric, p value cutoff, default 0.05.
- **effect_size_cutoff**: numeric, cutoff of effect size default NULL which means no effect size filter. The eta squared is used to measure the effect size for anova/kruskal test.

Value

- a `microbiomeMarker` object.
run_test_two_groups

See Also

run_posthoc_test(), run_test_two_groups(), run_simple_stat()

Examples

data(enterotypes_arumugam)
ps <- phyloseq::subset_samples(
    enterotypes_arumugam,
    Enterotype %in% c("Enterotype 3", "Enterotype 2", "Enterotype 1")
)
mm_anova <- run_test_multiple_groups(
    ps,
    group = "Enterotype",
    method = "anova"
)

Description

Statistical test between two groups

Usage

run_test_two_groups(
    ps,
    group,
    taxa_rank = "all",
    transform = c("identity", "log10", "log10p"),
    norm = "TSS",
    norm_para = list(),
    method = c("welch.test", "t.test", "white.test"),
    p_adjust = c("none", "fdr", "bonferroni", "holm", "hochberg", "hommel", "BH", "BY"),
    pvalue_cutoff = 0.05,
    diff_mean_cutoff = NULL,
    ratio_cutoff = NULL,
    conf_level = 0.95,
    nperm = 1000,
    ...
)

Arguments

ps a phyloseq::phyloseq object
group character, the variable to set the group
taxa_rank character to specify taxonomic rank to perform differential analysis on. Should be one of `phyloseq::rank_names(phyloseq)`, or "all" means to summarize the taxa by the top taxa ranks (`summarize_taxa(ps, level = rank_names(ps)[1])`), or "none" means perform differential analysis on the original taxa (`taxa_names(phyloseq)`, e.g., OTU or ASV).

transform character, the methods used to transform the microbial abundance. See `transform_abundances()` for more details. The options include:

- "identity", return the original data without any transformation (default).
- "log10", the transformation is `log10(object)`, and if the data contains zeros the transformation is `log10(1 + object)`.  
- "log10p", the transformation is `log10(1 + object)`.

norm the methods used to normalize the microbial abundance data. See `normalize()` for more details. Options include:

- "none": do not normalize.
- "rarefy": random subsampling counts to the smallest library size in the data set.
- "TSS": total sum scaling, also referred to as "relative abundance", the abundances were normalized by dividing the corresponding sample library size.
- "TMM": trimmed mean of m-values. First, a sample is chosen as reference. The scaling factor is then derived using a weighted trimmed mean over the differences of the log-transformed gene-count fold-change between the sample and the reference.
- "RLE", relative log expression, RLE uses a pseudo-reference calculated using the geometric mean of the gene-specific abundances over all samples. The scaling factors are then calculated as the median of the gene counts ratios between the samples and the reference.
- "CSS": cumulative sum scaling, calculates scaling factors as the cumulative sum of gene abundances up to a data-derived threshold.
- "CLR": centered log-ratio normalization.
- "CPM": pre-sample normalization of the sum of the values to `1e+06`.

norm_para arguments passed to specific normalization methods

method test method, must be one of "welch.test", "t.test" or "white.test"

p_adjust method for multiple test correction, default none, for more details see `stats::p.adjust`

pvalue_cutoff numeric, p value cutoff, default 0.05

diff_mean_cutoff, ratio_cutoff cutoff of different means and ratios, default NULL which means no effect size filter.

conf_level numeric, confidence level of interval.

nperm integer, number of permutations for white non parametric t test estimation

... extra arguments passed to `t.test()` or `fisher.test()`

Value

a `microbiomeMarker` object.
subset_marker

Author(s)
Yang Cao

See Also
run_test_multiple_groups(), run_simple_stat

Examples

data(enterotypes_arumugam)
mm_welch <- run_test_two_groups(
    enterotypes_arumugam,
    group = "Gender",
    method = "welch.test"
)
mm_welch

subset_marker(mm, ...)  # Subset microbiome markers

Description
Subset markers based on an expression related to the columns and values within the marker_table slot of mm.

Usage
subset_marker(mm, ...)

Arguments

mm  # a microbiomeMarker or marker_table object.
...

Value
a subset object in the same class with mm.

Examples

data(enterotypes_arumugam)
mm <- run_limma_voom(
    enterotypes_arumugam,
    "Enterotype",
    contrast = c("Enterotype 3", "Enterotype 2"),
    pvalue_cutoff = 0.01,
    p_adjust = "none"
)
subset_marker(mm, pvalue < 0.005)
**summarize_taxa**  
*Summarize taxa into a taxonomic level within each sample*

**Description**  
Provides summary information of the representation of a taxonomic levels within each sample.

**Usage**  
```r  
summarize_taxa(ps, level = rank_names(ps)[1], absolute = TRUE, sep = "|")
```

**Arguments**

- `ps`: a `phyloseq-class` object.
- `level`: taxonomic level to summarize, default the top level rank of the `ps`.
- `absolute`: logical, whether return the absolute abundance or relative abundance, default `FALSE`.
- `sep`: a character string to separate the taxonomic levels.

**Value**

A `phyloseq-class` object, where each row represents a taxa, and each col represents the taxa abundance of each sample.

**Examples**
```r  
data(enterotypes_arumugam)
summarize_taxa(enterotypes_arumugam)
```

---

**summary.compareDA**  
*Summary differential analysis methods comparison results*

**Description**  
Summary differential analysis methods comparison results

**Usage**

```r  
S3 method for class 'compareDA'
summary(
 object,
 sort = c("score", "auc", "fpr", "power"),
 boot = TRUE,
 boot_n = 1000L,
 prob = c(0.05, 0.95),
 ...
)
```
transform_abundances

Arguments

object
    an compareDA object, output from compare_DA().

sort
    character string specifying sort method. Possibilities are "score" which is calculated as \((auc - 0.5) \times power - fdr\), "auc" for area under the ROC curve, "fpr" for false positive rate, "power" for empirical power.

boot
    logical, whether use bootstrap for confidence limits of the score, default TRUE. Recommended to be TRUE unless n_rep is larger then 100 in compare_DA().

boot_n
    integer, number of bootstraps, default 1000L.

prob
    two length numeric vector, confidence limits for score, default c(0.05, 0.95).

... extra arguments affecting the summary produced.

Value

a data.frame containing measurements for differential analysis methods:

- call: differential analysis commands.
- auc: area under curve of ROC.
- fpr: false positive rate
- power: empirical power.
- fdr: false discovery rate.
- score: score which is calculated as \((auc - 0.5) \times power - fdr\).
- score_*: confidence limits of score.

transform_abundances

Transform the taxa abundances in otu_table sample by sample

Description

Transform the taxa abundances in otu_table sample by sample, which means the counts of each sample will be transformed individually.

Usage

transform_abundances(object, transform = c("identity", "log10", "log10p"))

Arguments

object
    otu_table, phyloseq, or microbiomeMarker.

transform
    transformation to apply, the options include:
    - "identity", return the original data without any transformation.
    - "log10", the transformation is \(\log_{10}(object)\), and if the data contains zeros the transformation is \(\log_{10}(1 + object)\).
    - "log10p", the transformation is \(\log_{10}(1 + object)\).
Value
A object matches the class of argument object with the transformed otu_table.

See Also
abundances()

Examples
data(oxygen)
x1 <- transform_abundances(oxygen)
head(otu_table(x1), 10)
x2 <- transform_abundances(oxygen, "log10")
head(otu_table(x2), 10)
x3 <- transform_abundances(oxygen, "log10p")
head(otu_table(x3), 10)

Description
Operators acting on marker_table to extract parts.

Usage
## S4 method for signature 'marker_table,ANY,ANY,ANY'
x[i, j, ..., drop = TRUE]

Arguments
x a marker_table object.
i, j elements to extract.
... see base::Extract().
drop ignored now.

Value
a marker_table object.

See Also
base::Extract()
Index

* internal
  - get_treedata_phyloseq, 13
  - microbiomeMarker-package, 3
  - reexports, 36
* utilities
  - aggregate_taxa, 4
  - [.72
  - [.marker_table,ANY,ANY,ANY-method (.), 72
  - >% (reexports), 36
  - >%, 36
  - abundances, 3
  - abundances(), 72
  - abundances, (abundances), 3
  - abundances, microbiomeMarker-method (abundances), 3
  - abundances, otu_table-method (abundances), 3
  - abundances, phyloseq-method (abundances), 3
  - aggregate_taxa, 4
  - ALDEx2::aldex(), 38
  - ANCOMBC::ancombc, 43
  - ANCOMBC::ancombc(), 41
  - ape::phylo, 14
  - assign-marker_table(marker_table<->), 18
  - assign-otu_table, 5
  - base::Extract(), 72
  - base::subset(), 69
  - BiocParallel::BiocParallelParam, 7
  - caporaso (data-caporaso), 8
  - caret::train(), 64, 65
  - caret::trainControl(), 64, 65
  - cid_ying (data-cid_ying), 9
  - compare_DA, 6
  - compare_DA(), 27, 71
  - ComplexHeatmap::Heatmap, 32
  - ComplexHeatmap::HeatmapAnnotation(), 32
  - confounder, 7
  - data-caporaso, 8
  - data-cid_ying, 9
  - data-ecam, 9
  - data-enterotypes_arumugam, 10
  - data-kostic_crc, 10
  - data-oxygen, 11
  - data-pediatric_ibd, 11
  - data-spontaneous_colitis, 12
  - DESeq2::DESeq(), 25, 45, 46
  - DESeq2::DESeqDataSet, 25
  - DESeq2::DESeqDataSetFromMatrix(), 25
  - DESeq2::estimateSizeFactorsForMatrix(), 24
  - DESeq2::nbinomWaldTest(), 46
  - DESeq2::results(), 46
  - ecam (data-ecam), 9
  - edgeR::calcNormFactors(), 24
  - edgeR::DGEList, 25, 26
  - edgeR::DGEList(), 26
  - edgeR::estimateDisp(), 48, 49
  - edgeR::glmFit(), 48, 49
  - edgeR::glmQLFit(), 48, 49
  - ef-barplot, ef-dotplot (plot_ef_bar), 30
  - enterotypes_arumugam (data-enterotypes_arumugam), 10
  - extract_posthoc_res, 12
  - fisher.test(), 62, 68
  - get_treedata_phyloseq, 13
  - ggplot2::ggplot, 27, 28, 33
  - ggplot2::guide_legend(), 29
  - ggtree::ggtree(), 29
  - import_biom, 36
import_biom (reexports), 36
import_dada2, 14
import_mothur, 36
import_mothur (reexports), 36
import_picrust2, 15
import_qiime, 36
import_qiime (reexports), 36
import_qiime2, 16
IRanges::DataFrameList, 36
IRanges::SimpleDataFrameList, 12, 34
kostic_crc (data=kostic_crc), 10
limma::eBayes(), 53
limma::voom(), 53
marker_table, 17, 17, 19, 21, 69, 72
marker_table.data.frame-method
(marker_table), 17
marker_table.microbiomeMarker-method
(marker_table), 17
marker_table-class, 18
marker_tables=, 18
metagenomeSeq::calcNormFactors(), 24
metagenomeSeq::cumNorm(), 24
metagenomeSeq::fitFeatureModel(), 58
metagenomeSeq::fitLogNormal(), 26
metagenomeSeq::fitTimeSeries(), 26
metagenomeSeq::fitZig(), 26, 58
metagenomeSeq::MReexperiment, 26
metagenomeSeq::MRfulltable(), 26
metagenomeSeq::MRtable(), 26
metagenomeSeq::newMReexperiment(), 26
metagenomeSeq::zigControl(), 58
microbiomeMarker, 4, 6, 18, 19, 19, 21, 27,
28, 30, 31, 33, 38, 40, 43, 46, 49, 51,
54, 56, 58, 62, 64, 66, 68, 69, 71
microbiomeMarker-class, 20
microbiomeMarker-package, 3
nmarker, 21
nmarker, marker_table-method (nmarker), 21
nmarker, microbiomeMarker-method
(nmarker), 21
norm_clr (normalize, phyloseq-method), 22
norm_cpm (normalize, phyloseq-method), 22
norm_css (normalize, phyloseq-method), 22
norm_rarefy
(normalize, phyloseq-method), 22
norm_tmm (normalize, phyloseq-method), 22
norm_tss (normalize, phyloseq-method), 22
normalize, 51
normalize (normalize, phyloseq-method), 22
normalize(), 8, 37, 39, 42, 44, 48–50, 53, 55,
57, 59, 61, 63, 66, 68
normalize.data.frame-method
(normalize, phyloseq-method), 22
normalize.matrix-method
(normalize, phyloseq-method), 22
normalize.otu_table-method
(normalize, phyloseq-method), 22
normalize.phyloseq-method, 22
nsamples, 36
nsamples (reexports), 36
ntaxa, 36
ntaxa (reexports), 36
otu_table, 4, 6, 36, 71
otu_table (reexports), 36
otu_table-method (abundances), 3
otu_table2metagenomeSeq
(phyloseq2metagenomeSeq), 26
otu_table<-, microbiomeMarker, microbiomeMarker-method
(assign.otu_table), 5
otu_table<-, microbiomeMarker, otu_table-method
(assign.otu_table), 5
otu_table<-, microbiomeMarker, phyloseq-method
(assign.otu_table), 5
oxygen (data=oxygen), 11
pediatric_ibd (data=pediatric_ibd), 11
phyloseq, 4, 6, 71
phyloseq2DESeq2, 25
phyloseq2edgeR, 25
phyloseq2metagenomeSeq, 26
phyloseq::otu_table, 23, 26
phyloseq::phyloseq, 6, 8–14, 16, 20, 21, 23,
25, 26, 37, 42, 44, 47, 52, 55, 57, 59,
61, 66, 67, 70
phyloseq::phyloseq(), 19
phyloseq::rarefy_even_depth(), 24
phyloseq::sample_data, 14
plot.compareDA, 27
plot_abundance, 27
plot_cladogram, 28
plot_ef_bar, 30
plot_ef_dot (plot_ef_bar), 30
plot_heatmap, 31
plot_postHocTest, 32
plot_sl_roc, 33
postHocTest, 12, 32, 34, 35, 60
postHocTest-class, 35
postHocTest-method (postHocTest-class), 35

reexports, 36
run_aldeq, 36
run_aldeq(), 55, 56
run_ancom, 39
run_ancom(), 55, 56
run_ancombc, 41
run_ancombc(), 55, 56
run_deseq2, 44
run_deseq2(), 55, 56
run_edger, 47
run_edger(), 55, 56
run_lefse, 49
run_lefse(), 55, 56
run_limma_voom, 52
run_limma_voom(), 55, 56
run_marker, 54
run_metagenomeseq, 56, 56
run_metagenomeseq(), 55
run_posthoc_test, 59
run_posthoc_test(), 67
run_simple_stat, 60, 69
run_simple_stat(), 55, 56, 67
run_sl, 63
run_sl(), 33, 55, 56
run_test_multiple_groups, 65
run_test_multiple_groups(), 56, 60, 62, 69
run_test_two_groups, 67
run_test_two_groups(), 56, 62, 67

sample_data, 36
sample_data (reexports), 36
sample_names, 36
sample_names (reexports), 36
show, (postHocTest-class), 35
show, microbiomeMarker-method (microbiomeMarker-class), 20
show, postHocTest-method (postHocTest-class), 35

spontaneous_colitis (data = spontaneous_colitis), 12
stats::aov(), 40
stats::kruskal.test(), 40
stats::p.adjust, 38, 40, 45, 48, 53, 56, 58, 62, 66, 68
stats::p.adjust(), 42
stats::wilcox.test(), 40
subset_marker, 69
summarize_taxa, 70
summarize_taxa(), 21
summary.compareDA, 70
t.test(), 62, 68
tax_table, 36
tax_table (reexports), 36
taxa_names, 36
taxa_names (reexports), 36
tidytree::treedata, 13
transform_abundances, 4, 32, 71
transform_abundances(), 31, 37, 39, 42, 45, 47, 50, 53, 55, 57, 59, 61, 63, 66, 68

vegan::anova.cca(), 8