Package ‘mixOmics’

April 4, 2024

Type Package
Title Omics Data Integration Project
Version 6.26.0
Depends R (>= 3.5.0), MASS, lattice, ggplot2
Imports igraph, ellipse, corpcor, RColorBrewer, parallel, dplyr, tidyr, reshape2, methods, matrixStats, rARPACK, gridExtra, grDevices, graphics, stats, ggrepel, BiocParallel, utils
Suggests BiocStyle, knitr, rmarkdown, testthat, rgl
Maintainer Max Bladen <mbladen19@gmail.com>
Description Multivariate methods are well suited to large omics data sets where the number of variables (e.g. genes, proteins, metabolites) is much larger than the number of samples (patients, cells, mice). They have the appealing properties of reducing the dimension of the data by using instrumental variables (components), which are defined as combinations of all variables. Those components are then used to produce useful graphical outputs that enable better understanding of the relationships and correlation structures between the different data sets that are integrated. mixOmics offers a wide range of multivariate methods for the exploration and integration of biological datasets with a particular focus on variable selection. The package proposes several sparse multivariate models we have developed to identify the key variables that are highly correlated, and/or explain the biological outcome of interest. The data that can be analysed with mixOmics may come from high throughput sequencing technologies, such as omics data (transcriptomics, metabolomics, proteomics, metagenomics etc) but also beyond the realm of omics (e.g. spectral imaging). The methods implemented in mixOmics can also handle missing values without having to delete entire rows with missing data. A non exhaustive list of methods include variants of generalised Canonical Correlation Analysis, sparse Partial Least Squares and sparse Discriminant Analysis. Recently we implemented integrative methods to combine multiple data sets: N-integration with variants of Generalised Canonical Correlation Analysis and P-integration with variants of multi-group Partial Least Squares.
License GPL (>= 2)
URL http://www.mixOmics.org
BugReports https://github.com/mixOmicsTeam/mixOmics/issues/
VignetteBuilder knitr
Date 2021-07-15
NeedsCompilation no
biocViews ImmunoOncology, Microarray, Sequencing, Metabolomics,
 Metagenomics, Proteomics, GenePrediction, MultipleComparison,
 Classification, Regression
RoxygenNote 7.2.3
Encoding UTF-8
git_url https://git.bioconductor.org/packages/mixOmics
git_branch RELEASE_3_18
git_last_commit 6800c8c
git_last_commit_date 2023-10-24
Repository Bioconductor 3.18
Date/Publication 2024-04-03
Author Kim-Anh Le Cao [aut],
 Florian Rohart [aut],
 Ignacio Gonzalez [aut],
 Sebastien Dejean [aut],
 Al J Abadi [ctb, cre],
 Max Bladen [ctb],
 Benoit Gautier [ctb],
 Francois Bartolo [ctb],
 Pierre Monget [ctb],
 Jeff Coquery [ctb],
 FangZou Yao [ctb],
 Benoit Liquet [ctb]

R topics documented:
mixOmics-package .. 4
 auroc .. 5
 background.predict .. 10
 biplot .. 12
 block.pls ... 16
 block.plslda .. 19
 block.spls ... 23
 block.splsda .. 26
 breast.TCGA ... 31
 breast.tumors ... 32
 cim ... 33
 cimDiablo ... 41
 circosPlot ... 43
 colors .. 48
 diverse.16S ... 50
 estim.regul .. 51
explained_variance . 51
get.confusion_matrix . 53
image.tune.rcc . 54
imgCor . 55
impute.nipals . 57
ipca . 58
Koren.16S . 61
linnerud . 62
liver.toxicity . 63
logratio-transformations . 64
map . 65
mat.rank . 66
mint.block.pls . 67
mint.block.plsda . 70
mint.block.spls . 73
mint.block.splsda . 77
mint.pca . 80
mint.pls . 82
mint.plsda . 85
mint.spls . 87
mint.splsda . 91
mixOmics . 94
multidrug . 98
nearZeroVar . 100
network . 101
nipals . 106
nutrimouse . 107
pca . 108
perf . 112
plot.pca . 122
plot.perf . 122
plot.perf.pls . 125
plot.rcc . 127
plot.tune . 128
plotArrow . 132
plotDiablo . 136
plotIndiv . 138
plotLoadings . 152
plotMarkers . 164
plotVar . 165
pls . 170
plsda . 174
predict . 177
print . 182
rcc . 186
selectVar . 189
sipca . 191
spca . 193
Description

Multivariate methods are well suited to large omics data sets where the number of variables (e.g. genes, proteins, metabolites) is much larger than the number of samples (patients, cells, mice). They have the appealing properties of reducing the dimension of the data by using instrumental variables (components), which are defined as combinations of all variables. Those components are then used to produce useful graphical outputs that enable better understanding of the relationships and correlation structures between the different data sets that are integrated.

Details

mixOmics offers a wide range of multivariate methods for the exploration and integration of biological datasets with a particular focus on variable selection. The package proposes several sparse multivariate models we have developed to identify the key variables that are highly correlated, and/or explain the biological outcome of interest. The data that can be analysed with mixOmics may come from high throughput sequencing technologies, such as omics data (transcriptomics, metabolomics, proteomics, metagenomics etc) but also beyond the realm of omics (e.g. spectral imaging).

The methods implemented in mixOmics can also handle missing values without having to delete entire rows with missing data. A non exhaustive list of methods include variants of generalised
Canonical Correlation Analysis, sparse Partial Least Squares and sparse Discriminant Analysis. Recently we implemented integrative methods to combine multiple data sets: N-integration with variants of Generalised Canonical Correlation Analysis and P-integration with variants of multi-group Partial Least Squares.

auroc

Area Under the Curve (AUC) and Receiver Operating Characteristic (ROC) curves for supervised classification

Description

Calculates the AUC and plots ROC for supervised models from s/plsda, mint.s/plsda and block.plsda, block.splsda or wrapper.sgccda functions.

Usage

```r
auroc(object, ...)  
## S3 method for class 'mixo_plsda'
auroc(  
object,  
newdata = object$input.X,  
outcome.test = as.factor(object$Y),  
multilevel = NULL,  
plot = TRUE,  
roc.comp = NULL,  
title = NULL,  
print = TRUE,  
...  
)

## S3 method for class 'mixo_splsda'
auroc(  
object,  
newdata = object$input.X,  
outcome.test = as.factor(object$Y),  
multilevel = NULL,  
plot = TRUE,  
roc.comp = NULL,  
title = NULL,  
print = TRUE,  
...  
)

## S3 method for class 'list'
auroc(object, plot = TRUE, roc.comp = NULL, title = NULL, print = TRUE, ...)
```
S3 method for class 'mint.plsda'
auroc(object,
 newdata = object$X,
 outcome.test = as.factor(object$Y),
 study.test = object$study,
 multilevel = NULL,
 plot = TRUE,
 roc.comp = NULL,
 roc.study = "global",
 title = NULL,
 print = TRUE,
 ...
)
S3 method for class 'mint.splsda'
auroc(object,
 newdata = object$X,
 outcome.test = as.factor(object$Y),
 study.test = object$study,
 multilevel = NULL,
 plot = TRUE,
 roc.comp = NULL,
 roc.study = "global",
 title = NULL,
 print = TRUE,
 ...
)
S3 method for class 'sgccda'
auroc(object,
 newdata = object$X,
 outcome.test = as.factor(object$Y),
 multilevel = NULL,
 plot = TRUE,
 roc.block = 1L,
 roc.comp = NULL,
 title = NULL,
 print = TRUE,
 ...
)
S3 method for class 'mint.block.plsda'
auroc(object,
 newdata = object$X,
Arguments

object Object of class inherited from one of the following supervised analysis function: "plsda", "splsda", "mint.plsda", "mint.splsda", "block.splsda" or "wrapper.sgccda". Alternatively, this can be a named list of plsda and splsda objects if multiple models are to be compared. Note that these multiple models need to have used the same levels in the response variable.

... external optional arguments for plotting - line.col for custom colors and legend.title for custom legend title

newdata numeric matrix of predictors, by default set to the training data set (see details).

outcome.test Either a factor or a class vector for the discrete outcome, by default set to the outcome vector from the training set (see details).

multilevel Sample information when a newdata matrix is input and when multilevel decomposition for repeated measurements is required. A numeric matrix or data frame indicating the repeated measures on each individual, i.e. the individuals ID. See examples in splsda.

plot Whether the ROC curves should be plotted, by default set to TRUE (see details).

roc.comp Specify the component (integer) up to which the ROC will be calculated and plotted from the multivariate model, default to 1.

title Character, specifies the title of the plot.
print Logical, specifies whether the output should be printed.

study.test For MINT objects, grouping factor indicating which samples of newdata are from the same study. Overlap with object$study are allowed.

roc.study Specify the study for which the ROC will be plotted for a mint.plsda or mint.splsda object, default to "global".

roc.block Specify the block number (integer) or the name of the block (set of characters) for which the ROC will be plotted for a block.plsda or block.splsda object, default to 1.

Details

For more than two classes in the categorical outcome Y, the AUC is calculated as one class vs. the other and the ROC curves one class vs. the others are output.

The ROC and AUC are calculated based on the predicted scores obtained from the predict function applied to the multivariate methods (predict(object)$predict). Our multivariate supervised methods already use a prediction threshold based on distances (see predict) that optimally determine class membership of the samples tested. As such AUC and ROC are not needed to estimate the performance of the model (see perf, tune that report classification error rates). We provide those outputs as complementary performance measures.

The p-value is from a Wilcoxon test between the predicted scores between one class vs the others.

External independent data set (newdata) and outcome (outcome.test) can be input to calculate AUROC. The external data set must have the same variables as the training data set (object$X).

If object is a named list of multiple plsda and splsda objects, ensure that these models each have a response variable with the same levels. Additionally, newdata and outcome.test cannot be passed to this form of auroc.

If newdata is not provided, AUROC is calculated from the training data set, and may result in overfitting (too optimistic results).

Note that for mint.plsda and mint.splsda objects, if roc.study is different from "global", then newdata), outcome.test and sstudy.test are not used.

Value

Depending on the type of object used, a list that contains: The AUC and Wilcoxon test p-value for each 'one vs other' classes comparison performed, either per component (splsda, plsda, mint.plsda, mint.splsda), or per block and per component (wrapper.sgccda, block.plsda, blocksplsda).

Author(s)

Benoit Gautier, Francois Bartolo, Florian Rohart, Al J Abadi

See Also

tune, perf, and http://www.mixOmics.org for more details.
Example with PLSDA, 2 classes

```r
# example with PLSDA, 2 classes
# ----------------
data(breast.tumors)
X <- breast.tumors$gene.exp
Y <- breast.tumors$sample$treatment
plsda.breast <- plsda(X, Y, ncomp = 2)
auc.plsda.breast = auroc(plsda.breast, roc.comp = 1)
auc.plsda.breast = auroc(plsda.breast, roc.comp = 2)
```

Example with sPLSDA

```r
# example with sPLSDA
# -----------------
splsda.breast <- splsda(X, Y, ncomp = 2, keepX = c(25, 25))
auroc(plsda.breast, plot = FALSE)
```

Example with sPLSDA with 4 classes

```r
# example with sPLSDA with 4 classes
# -----------------
data(liver.toxicity)
X <- as.matrix(liver.toxicity$gene)
Y <- as.factor(liver.toxicity$treatment[, 4])
splsda.liver <- splsda(X, Y, ncomp = 2, keepX = c(20, 20))
auc.splsda.liver = auroc(splsda.liver, roc.comp = 2)
```

Example with mint.plsda

```r
# example with mint.plsda
# -----------------
data(stemcells)
res = mint.plsda(X = stemcells$gene, Y = stemcells$celltype, ncomp = 3, study = stemcells$study)
auc.mint.plsda = auroc(res, plot = FALSE)
```

Example with mint.splsda

```r
# example with mint.splsda
# -----------------
res = mint.splsda(X = stemcells$gene, Y = stemcells$celltype, ncomp = 3, keepX = c(10, 5, 15), study = stemcells$study)
auc.mint.splsda = auroc(res, plot = TRUE, roc.comp = 3)
```

Example with block.plsda

```r
# example with block.plsda
# -----------------
data(nutrimouse)
data = list(gene = nutrimouse$gene, lipid = nutrimouse$lipid)
# with this design, all blocks are connected
design = matrix(c(0, 1, 1, 0), ncol = 2, nrow = 2, byrow = TRUE, dimnames = list(names(data), names(data)))
```
```r
block.plsda.nutri = block.plsda(X = data, Y = nutrimouse$diet)
aucc.block.plsda.nutri = auroc(block.plsda.nutri, roc.block = 'lipid')

## example with block.splsda
# ---------------
list.keepX = list(gene = rep(10, 2), lipid = rep(5,2))
block.splsda.nutri = block.splsda(X = data, Y = nutrimouse$diet, keepX = list.keepX)
aucc.block.splsda.nutri = auroc(block.splsda.nutri, roc.block = 1)

## End(Not run)
```

background.predict

Calculate prediction areas

Description

Calculate prediction areas that can be used in plotIndiv to shade the background.

Usage

```r
background.predict(
  object,
  comp.predicted = 1,
  dist = "max.dist",
  xlim = NULL,
  ylim = NULL,
  resolution = 100
)
```

Arguments

- **object**: A list of data sets (called 'blocks') measured on the same samples. Data in the list should be arranged in matrices, samples x variables, with samples order matching in all data sets.
- **comp.predicted**: Matrix response for a multivariate regression framework. Data should be continuous variables (see block.plsda for supervised classification and factor response).
- **dist**: distance to use to predict the class of new data, should be a subset of "centroids.dist", "mahalanobis.dist" or "max.dist" (see predict).
- **xlim, ylim**: numeric list of vectors of length 2, giving the x and y coordinates ranges for the simulated data. By default will be 1.2∗ the range of object$variates$X[,i]
- **resolution**: A total of resolution∗resolution data are simulated between xlim[1], xlim[2], ylim[1] and ylim[2].
background.predict

Details

background.predict simulates \(\text{resolution} \times \text{resolution} \) points within the rectangle defined by xlim on the x-axis and ylim on the y-axis, and then predicts the class of each point (defined by two coordinates). The algorithm estimates the predicted area for each class, defined as the 2D surface where all points are predicted to be of the same class. A polygon is returned and should be passed to plotIndiv for plotting the actual background.

Note that by default xlim and ylim will create a rectangle of simulated data that will cover the plotted area of plotIndiv. However, if you use plotIndiv with ellipse=TRUE or if you set xlim and ylim, then you will need to adapt xlim and ylim in background.predict.

Also note that the white frontier that defines the predicted areas when plotting with plotIndiv can be reduced by increasing resolution.

More details about the prediction distances in ?predict and the supplemental material of the mixOmics article (Rohart et al. 2017).

Value

background.predict returns a list of coordinates to be used with polygon to draw the predicted area for each class.

Author(s)

Florian Rohart, Al J Abadi

References

See Also

plotIndiv, predict, polygon.

Examples

```r
# Example 1
# -----------------------------------
data(breast.tumors)
X <- breast.tumors$gene.exp
Y <- breast.tumors$sample$treatment

splsda.breast <- splsda(X, Y, keepX=c(10,10), ncomp=2)

# calculating background for the two first components, and the centroids distance
background = background.predict(splsda.breast, comp.predicted = 2, dist = "centroids.dist")

## Not run:
# default option: note that the outcome color is included by default!
plotIndiv(splsda.breast, background = background, legend=TRUE)
```
Example 2

data(liver.toxicity)
X = liver.toxicity$gene
Y = as.factor(liver.toxicity$treatment[, 4])

plsda.liver <- plsda(X, Y, ncomp = 2)

calculating background for the two first components, and the mahalanobis distance
background = background.predict(plsda.liver, comp.predicted = 2, dist = "mahalanobis.dist")

plotIndiv(plsda.liver, background = background, legend = TRUE)

End(Not run)

biplot

biplot methods for pca family

Description

biplot methods for pca family

Usage

```r
## S3 method for class 'pca'
biplot(
  x,
  comp = c(1, 2),
  block = NULL,
  ind.names = TRUE,
  group = NULL,
  cutoff = 0,
  col.per.group = NULL,
  col = NULL,
  ind.names.size = 3,
  ind.names.col = color.mixo(4),
  ind.names.repel = TRUE,
  pch = 19,
  pch.levels = NULL,
  pch.size = 2,
  var.names = TRUE,
  var.names.col = "grey40",
  var.names.size = 4,
  var.names.angle = FALSE,
)```
Arguments

\textbf{x} \hspace{1cm} \text{An object of class 'pca' or mixOmics '(s)pls'.}
comp
integer vector of length two (or three to 3d). The components that will be used on the horizontal and the vertical axis respectively to project the individuals.

block
Character, name of the block to show for pls object. Default to 'X'.

ind.names
either a character vector of names for the individuals to be plotted, or FALSE for no names. If TRUE, the row names of the first (or second) data matrix is used as names (see Details).

group
Factor indicating the group membership for each sample.

cutoff
numeric between 0 and 1. Variables with correlations below this cutoff in absolute value are not plotted (see Details).

col.per.group
character (or symbol) color to be used when 'group' is defined. Vector of the same length as the number of groups.

col
character (or symbol) color to be used, possibly vector.

ind.names.size
Numeric, sample name size.

ind.names.col
Character, sample name colour.

ind.names.repel
Logical, whether to repel away label names.

pch
plot character. A character string or a vector of single characters or integers. See points for all alternatives.

pch.levels
If pch is a factor, a named vector providing the point characters to use. See examples.

pch.size
Numeric, sample point character size.

var.names
Logical indicating whether to show variable names. Alternatively, a character.

var.names.col
Character, variable name colour.

var.names.size
Numeric, variable name size.

var.names.angle
Logical, whether to align variable names to arrow directions.

var.arrow.col
Character, variable arrow colour. If 'NULL', no arrows are shown.

var.arrow.size
Numeric, variable arrow head size.

var.arrow.length
Numeric, length of the arrow head in 'cm'.

ind.legend.title
Character, title of the legend.

vline
Logical, whether to draw the vertical neutral line.

hline
Logical, whether to draw the horizontal neutral line.

legend
Logical, whether to show the legend if group != NULL.

legend.title
Character, the legend title if group != NULL.

pch.legend.title
Character, the legend title if pch is a factor.

cex
Numeric scalar indicating the desired magnification of plot texts. theme function may be used with the output object if further customisation is required.

... Not currently used.

pch.legend
Character, the legend title if pch is a factor.
Details

`biplot` unifies the reduced representation of both the observations/samples and variables of a matrix of multivariate data on the same plot. Essentially, in the reduced space the samples are shown as points/names and the contributions of features to each dimension are shown as directed arrows or vectors. For `pls` objects it is possible to use either 'X' or 'Y' latent space using `block` argument.

Value

A `ggplot` object.

Author(s)

Al J Abadi

Examples

data("nutrimouse")
## --------- pca ---------- ##
pca.lipid <- pca(nutrimouse$lipid, ncomp = 3, scale = TRUE)
# seed for reproducible geom_text_repel
set.seed(42)
biplot(pca.lipid)
## correlation cutoff to filter features
biplot(pca.lipid, cutoff = c(0.8))
## tailor threshold for each component
biplot(pca.lipid, cutoff = c(0.8, 0.7))
## customise components
biplot(pca.lipid, cutoff = c(0.8), comp = c(1,3))

## customise ggplot in an arbitrary way
biplot(pca.lipid) + theme_linedraw() +
  # add vline
  geom_vline(xintercept = 0, col = 'green') +
  # add hline
  geom_hline(yintercept = 0, col = 'green') +
  # customise labs
  labs(x = 'Principal Component 1', y = 'Principal Component 2')

## group samples
biplot(pca.lipid, group = nutrimouse$diet, legend.title = 'Diet')

## customise variable labels
biplot(pca.lipid,
  var.names.col = color.mixo(2),
  var.names.size = 4,
  var.names.angle = TRUE
)

## no arrows
biplot(pca.lipid, group = nutrimouse$diet, legend.title = 'Diet',
  var.arrow.col = NULL, var.names.col = 'black')
## add x=0 and y=0 lines in function
biplot(pca.lipid, group = nutrimouse$diet, legend.title = 'Diet',
       var.arrow.col = NULL, var.names.col = 'black',
       vline = TRUE, hline = TRUE)

## --------- spca
## example with spca
spca.lipid <- spca(nutrimouse$lipid, ncomp = 2, scale = TRUE, keepX = c(8, 6))
biplot(spca.lipid, var.names.col = 'black', group = nutrimouse$diet,
       legend.title = 'Diet')

## --------- pls ---------- ##
data("nutrimouse")
pls.nutrimouse <- pls(X = nutrimouse$gene, Y = nutrimouse$lipid, ncomp = 2)
biplot(pls.nutrimouse, group = nutrimouse$genotype, block = 'X',
       legend.title = 'Genotype', cutoff = 0.878)
biplot(pls.nutrimouse, group = nutrimouse$genotype, block = 'Y',
       legend.title = 'Genotype', cutoff = 0.8)

## --------- plsda ---------- ##
data(breast.tumors)
X <- breast.tumors$gene.exp
colnames(X) <- paste0('GENE_', colnames(X))
rownames(X) <- paste0('SAMPLE_', rownames(X))
Y <- breast.tumors$sample$treatment
plsda.breast <- plsda(X, Y, ncomp = 2)
biproj(plsda.breast, cutoff = 0.72)
## remove arrows
biproj(plsda.breast, cutoff = 0.72, var.arrow.col = NULL, var.names.size = 4)

block.pls

N-integration with Projection to Latent Structures models (PLS)

### Description
Integration of multiple data sets measured on the same samples or observations, i.e. N-integration. The method is partly based on Generalised Canonical Correlation Analysis.

### Usage
block.pls(
X,
Y,
indY,
ncomp = 2,
design,
scheme,
mode,
scale = TRUE,
init,
tol = 1e-06,
max.iter = 100,
near.zero.var = FALSE,
all.outputs = TRUE,
verbose.call = FALSE
)

Arguments

X A named list of data sets (called 'blocks') measured on the same samples. Data in the list should be arranged in matrices, samples x variables, with samples order matching in all data sets.

Y Matrix response for a multivariate regression framework. Data should be continuous variables (see ?block.plsda for supervised classification and factor response).

indY To supply if Y is missing, indicates the position of the matrix response in the list X.

comp the number of components to include in the model. Default to 2. Applies to all blocks.

design numeric matrix of size (number of blocks in X) x (number of blocks in X) with values between 0 and 1. Each value indicates the strenght of the relationship to be modelled between two blocks; a value of 0 indicates no relationship, 1 is the maximum value. Alternatively, one of c('null', 'full') indicating a disconnected or fully connected design, respectively, or a numeric between 0 and 1 which will designate all off-diagonal elements of a fully connected design (see examples in block.splsda). If Y is provided instead of indY, the design matrix is changed to include relationships to Y.

scheme Character, one of 'horst', 'factorial' or 'centroid'. Default = 'horst', see reference.

mode Character string indicating the type of PLS algorithm to use. One of "regression", "canonical", "invariant" or "classic". See Details.

scale Logical. If scale = TRUE, each block is standardized to zero means and unit variances (default: TRUE)

init Mode of initialization use in the algorithm, either by Singular Value Decomposition of the product of each block of X with Y ('svd') or each block independently ('svd.single'). Default = svd.single

tol Positive numeric used as convergence criteria/tolerance during the iterative process. Default to 1e-06.

max.iter Integer, the maximum number of iterations. Default to 100.

near.zero.var Logical, see the internal nearZeroVar function (should be set to TRUE in particular for data with many zero values). Setting this argument to FALSE (when appropriate) will speed up the computations. Default value is FALSE.
all.outputs Logical. Computation can be faster when some specific (and non-essential) outputs are not calculated. Default = TRUE.

verbose.call Logical (Default=FALSE), if set to TRUE then the $call component of the returned object will contain the variable values for all parameters. Note that this may cause large memory usage.

Details

block.pls function fits a horizontal integration PLS model with a specified number of components per block. An outcome needs to be provided, either by Y or by its position indY in the list of blocks X. Multi (continuous)response are supported. X and Y can contain missing values. Missing values are handled by being disregarded during the cross product computations in the algorithm block.pls without having to delete rows with missing data. Alternatively, missing data can be imputed prior using the impute.nipals function.

The type of algorithm to use is specified with the mode argument. Four PLS algorithms are available: PLS regression ("regression"), PLS canonical analysis ("canonical"), redundancy analysis ("invariant") and the classical PLS algorithm ("classic") (see References and ?pls for more details).

Note that our method is partly based on Generalised Canonical Correlation Analysis and differs from the MB-PLS approaches proposed by Kowalski et al., 1989, J Chemom 3(1) and Westerhuis et al., 1998, J Chemom, 12(5).

Value

block.pls returns an object of class 'block.pls', a list that contains the following components:

X the centered and standardized original predictor matrix.
indY the position of the outcome Y in the output list X.
ncomp the number of components included in the model for each block.
mode the algorithm used to fit the model.
variates list containing the variates of each block of X.
loadings list containing the estimated loadings for the variates.
names list containing the names to be used for individuals and variables.
nzv list containing the zero- or near-zero predictors information.
iter Number of iterations of the algorithm for each component
prop_expl_var Percentage of explained variance for each component and each block
call if verbose.call = FALSE, then just the function call is returned. If verbose.call = TRUE then all the inputted values are accessable via this component

Author(s)

Florian Rohart, Benoit Gautier, Kim-Anh Lê Cao, Al J Abadi
References


See Also

`plotIndiv`, `plotArrow`, `plotLoadings`, `plotVar`, `predict`, `perf`, `selectVar`, `block.spls`, `block.plsda` and [http://www.mixOmics.org](http://www.mixOmics.org) for more details.

Examples

```r
Example with TCGA multi omics study

data("breast.TCGA")
this is the X data as a list of mRNA and miRNA; the Y data set is a single data set of proteins
data = list(mrna = breast.TCGA$data.train$mrna, mirna = breast.TCGA$data.train$mirna)
set up a full design where every block is connected
design = matrix(1, ncol = length(data), nrow = length(data),
dimnames = list(names(data), names(data)))
diag(design) = 0
design
set number of component per data set
ncomp = c(2)

TCGA.block.pls = block.pls(X = data, Y = breast.TCGA$data.train$protein,
ncomp = ncomp, design = design)

TCGA.block.pls
use design = 'full'
TCGA.block.pls = block.pls(X = data, Y = breast.TCGA$data.train$protein,
ncomp = ncomp, design = 'full')
in plotindiv we color the samples per breast subtype group but the method is unsupervised!
here Y is the protein data set
plotIndiv(TCGA.block.pls, group = breast.TCGA$data.train$subtype, ind.names = FALSE)
```

---

**block.plsda**

*N-integration with Projection to Latent Structures models (PLS) with Discriminant Analysis*

**Description**

Integration of multiple data sets measured on the same samples or observations to classify a discrete outcome, i.e. N-integration with Discriminant Analysis. The method is partly based on Generalised Canonical Correlation Analysis.
Usage

```
block.plsda(
 X,
 Y,
 indY,
 ncomp = 2,
 design,
 scheme,
 scale = TRUE,
 init = "svd",
 tol = 1e-06,
 max.iter = 100,
 near.zero.var = FALSE,
 all.outputs = TRUE,
 verbose.call = FALSE
)
```

Arguments

- **X**: A named list of data sets (called 'blocks') measured on the same samples. Data in the list should be arranged in matrices, samples x variables, with samples order matching in all data sets.
- **Y**: a factor or a class vector for the discrete outcome.
- **indY**: To supply if Y is missing, indicates the position of the matrix response in the list X.
- **ncomp**: the number of components to include in the model. Default to 2. Applies to all blocks.
- **design**: numeric matrix of size (number of blocks in X) x (number of blocks in X) with values between 0 and 1. Each value indicates the strength of the relationship to be modelled between two blocks; a value of 0 indicates no relationship, 1 is the maximum value. Alternatively, one of c('null', 'full') indicating a disconnected or fully connected design, respectively, or a numeric between 0 and 1 which will designate all off-diagonal elements of a fully connected design (see examples in block.splsda). If Y is provided instead of indY, the design matrix is changed to include relationships to Y.
- **scheme**: Character, one of 'horst', 'factorial' or 'centroid'. Default = 'horst', see reference.
- **scale**: Logical. If scale = TRUE, each block is standardized to zero means and unit variances (default: TRUE)
- **init**: Mode of initialization use in the algorithm, either by Singular Value Decomposition of the product of each block of X with Y ('svd') or each block independently ('svd.single'). Default = svd.single
- **tol**: Positive numeric used as convergence criteria/tolerance during the iterative process. Default to 1e-06.
- **max.iter**: Integer, the maximum number of iterations. Default to 100.
**near.zero.var** Logical, see the internal `nearZeroVar` function (should be set to TRUE in particular for data with many zero values). Setting this argument to FALSE (when appropriate) will speed up the computations. Default value is FALSE.

**all.outputs** Logical. Computation can be faster when some specific (and non-essential) outputs are not calculated. Default = TRUE.

**verbose.call** Logical (Default=FALSE), if set to TRUE then the `$call` component of the returned object will contain the variable values for all parameters. Note that this may cause large memory usage.

### Details

The `block.plsda` function fits a horizontal integration PLS-DA model with a specified number of components per block. A factor indicating the discrete outcome needs to be provided, either by `Y` or by its position `indY` in the list of blocks `X`.

`X` can contain missing values. Missing values are handled by being disregarded during the cross product computations in the algorithm `block.pls` without having to delete rows with missing data. Alternatively, missing data can be imputed prior using the `impute.nipals` function.

The type of algorithm to use is specified with the `mode` argument. Four PLS algorithms are available: PLS regression ("regression"), PLS canonical analysis ("canonical"), redundancy analysis ("invariant") and the classical PLS algorithm ("classic") (see References and `?pls` for more details).

Note that our method is partly based on Generalised Canonical Correlation Analysis and differs from the MB-PLS approaches proposed by Kowalski et al., 1989, J Chemom 3(1) and Westerhuis et al., 1998, J Chemom, 12(5).

### Value

`block.plsda` returns an object of class "block.plsda", "block.pls", a list that contains the following components:

- `X` the centered and standardized original predictor matrix.
- `indY` the position of the outcome `Y` in the output list `X`.
- `ncomp` the number of components included in the model for each block.
- `mode` the algorithm used to fit the model.
- `variates` list containing the variates of each block of `X`.
- `loadings` list containing the estimated loadings for the variates.
- `names` list containing the names to be used for individuals and variables.
- `nzv` list containing the zero- or near-zero predictors information.
- `iter` Number of iterations of the algorithm for each component
- `prop_expl_var` Percentage of explained variance for each component and each block
- `call` if `verbose.call = FALSE`, then just the function call is returned. If `verbose.call = TRUE` then all the inputted values are accessable via this component

### Author(s)

Florian Rohart, Benoit Gautier, Kim-Anh Lê Cao, Al J Abadi
References

On PLSDA:


On multiple integration with sPLS-DA and 4 data blocks:

mixOmics article:

See Also

plotIndiv, plotArrow, plotLoadings, plotVar, predict, perf, selectVar, block.pls, block.splsda

Examples

data(nutrimouse)
data = list(gene = nutrimouse$gene, lipid = nutrimouse$lipid, Y = nutrimouse$diet)
# with this design, all blocks are connected
design = matrix(c(0,1,1,0,1,1,1,0), ncol = 3, nrow = 3, byrow = TRUE, dimnames = list(names(data), names(data)))

res = block.plsda(X = data, indY = 3) # indY indicates where the outcome Y is in the list X
plotIndiv(res, ind.names = FALSE, legend = TRUE)
plotVar(res)

## Not run:
# when Y is provided
res2 = block.plsda(list(gene = nutrimouse$gene, lipid = nutrimouse$lipid), Y = nutrimouse$diet, ncomp = 2)
plotIndiv(res2)
plotVar(res2)

## End(Not run)
Description

Integration of multiple data sets measured on the same samples or observations, with variable selection in each data set, i.e. N-integration. The method is partly based on Generalised Canonical Correlation Analysis.

Usage

```r
block.spls(
 X,
 Y,
 indY,
 ncomp = 2,
 keepX,
 keepY,
 design,
 scheme,
 mode,
 scale = TRUE,
 init,
 tol = 1e-06,
 max.iter = 100,
 near.zero.var = FALSE,
 all.outputs = TRUE,
 verbose.call = FALSE
)
```

Arguments

- `X`: A named list of data sets (called 'blocks') measured on the same samples. Data in the list should be arranged in matrices, samples x variables, with samples order matching in all data sets.
- `Y`: Matrix response for a multivariate regression framework. Data should be continuous variables (see `?block.splsda` for supervised classification and factor response).
- `indY`: To supply if `Y` is missing, indicates the position of the matrix response in the list `X`.
- `ncomp`: the number of components to include in the model. Default to 2. Applies to all blocks.
- `keepX`: A named list of same length as `X`. Each entry is the number of variables to select in each of the blocks of `X` for each component. By default all variables are kept in the model.
keepY

Only if Y is provided (and not indY). Each entry is the number of variables to select in each of the blocks of Y for each component.

design

numeric matrix of size (number of blocks in X) x (number of blocks in X) with values between 0 and 1. Each value indicates the strength of the relationship to be modelled between two blocks; a value of 0 indicates no relationship, 1 is the maximum value. Alternatively, one of c('null', 'full') indicating a disconnected or fully connected design, respectively, or a numeric between 0 and 1 which will designate all off-diagonal elements of a fully connected design (see examples in block.splsda). If Y is provided instead of indY, the design matrix is changed to include relationships to Y.

scheme

Character, one of 'horst', 'factorial' or 'centroid'. Default = 'horst', see reference.

mode

Character string indicating the type of PLS algorithm to use. One of "regression", "canonical", "invariant" or "classic". See Details.

scale

Logical. If scale = TRUE, each block is standardized to zero means and unit variances (default: TRUE)

init

Mode of initialization use in the algorithm, either by Singular Value Decomposition of the product of each block of X with Y ('svd') or each block independently ('svd.single'). Default = svd.single

tol

Positive numeric used as convergence criteria/tolerance during the iterative process. Default to 1e-06.

max.iter

Integer, the maximum number of iterations. Default to 100.

near.zero.var

Logical, see the internal nearZeroVar function (should be set to TRUE in particular for data with many zero values). Setting this argument to FALSE (when appropriate) will speed up the computations. Default value is FALSE.

all.outputs

Logical. Computation can be faster when some specific (and non-essential) outputs are not calculated. Default = TRUE.

verbose.call

Logical (Default=FALSE), if set to TRUE then the $call component of the returned object will contain the variable values for all parameters. Note that this may cause large memory usage.

Details

block.spls function fits a horizontal sPLS model with a specified number of components per block). An outcome needs to be provided, either by Y or by its position indY in the list of blocks X. Multi (continuous)response are supported. X and Y can contain missing values. Missing values are handled by being disregarded during the cross product computations in the algorithm block.pls without having to delete rows with missing data. Alternatively, missing data can be imputed prior using the nipals function.

The type of algorithm to use is specified with the mode argument. Four PLS algorithms are available: PLS regression ("regression"), PLS canonical analysis ("canonical"), redundancy analysis ("invariant") and the classical PLS algorithm ("classic") (see References and ?pls for more details).

Note that our method is partly based on sparse Generalised Canonical Correlation Analysis and differs from the MB-PLS approaches proposed by Kowalski et al., 1989, J Chemom 3(1), Westerhuis
Variable selection is performed on each component for each block of $X$, and for $Y$ if specified, via input parameter `keepX` and `keepY`.

Note that if $Y$ is missing and `indY` is provided, then variable selection on $Y$ is performed by specifying the input parameter directly in `keepX` (no `keepY` is needed).

**Value**

`block.spls` returns an object of class "block.spls", a list that contains the following components:

- **X**: the centered and standardized original predictor matrix.
- **indY**: the position of the outcome $Y$ in the output list $X$.
- **ncomp**: the number of components included in the model for each block.
- **mode**: the algorithm used to fit the model.
- **keepX**: Number of variables used to build each component of each block
- **keepY**: Number of variables used to build each component of $Y$
- **variates**: list containing the variates of each block of $X$.
- **loadings**: list containing the estimated loadings for the variates.
- **names**: list containing the names to be used for individuals and variables.
- **nzv**: list containing the zero- or near-zero predictors information.
- **iter**: Number of iterations of the algorithm for each component
- **prop_expl_var**: Percentage of explained variance for each component and each block after setting possible missing values in the centered data to zero
- **call**: if `verbose.call = FALSE`, then just the function call is returned. If `verbose.call = TRUE` then all the inputted values are accessable via this component

**Author(s)**

Florian Rohart, Benoit Gautier, Kim-Anh Lê Cao, Al J Abadi

**References**


**See Also**

`plotIndiv, plotArrow, plotLoadings, plotVar, predict, perf, selectVar, block.pls, block.splsd` and [http://www.mixOmics.org](http://www.mixOmics.org) for more details.
Examples

```r
Example with multi omics TCGA study

data("breast.TCGA")
this is the X data as a list of mRNA and miRNA; the Y data set is a single data set of proteins
data = list(mrna = breast.TCGA$data.train$mrna, mirna = breast.TCGA$data.train$mirna)
set up a full design where every block is connected
design = matrix(1, ncol = length(data), nrow = length(data),
dimnames = list(names(data), names(data)))
diag(design) = 0
design
set number of component per data set
ncomp = c(2)
set number of variables to select, per component and per data set (this is set arbitrarily)
list.keepX = list(mrna = rep(10, 2), mirna = rep(10,2))
list.keepY = c(rep(10, 2))
TCGA.block.spls = block.spls(X = data, Y = breast.TCGA$data.train$protein,
ncomp = ncomp, keepX = list.keepX, keepY = list.keepY, design = design)
TCGA.block.spls
in plotIndiv we color the samples per breast subtype group but the method is unsupervised!
plotIndiv(TCGA.block.spls, group = breast.TCGA$data.train$subtype, ind.names = FALSE, legend=TRUE)
illustrates coefficient weights in each block
plotLoadings(TCGA.block.spls, ncomp = 1)
plotVar(TCGA.block.spls, style = 'graphics', legend = TRUE)

plot markers (selected markers) for mrna and mirna
group <- breast.TCGA$data.train$subtype
group <- breast.TCGA$data.train$subtype
mrna: show each selected feature separately and group by subtype
plotMarkers(object = TCGA.block.spls, comp = 1, block = 'mrna', group = group)
mrna: aggregate all selected features, separate by loadings signs and group by subtype
plotMarkers(object = TCGA.block.spls, comp = 1, block = 'mrna', group = group, global = TRUE)
proteins
plotMarkers(object = TCGA.block.spls, comp = 1, block = 'Y', group = group)
only show boxplots
plotMarkers(object = TCGA.block.spls, comp = 1, block = 'Y', group = group, violin = FALSE)

Not run:
network(TCGA.block.spls)
End(Not run)
```

---

`block.splsda`  

*N-integration and feature selection with Projection to Latent Structures models (PLS) with sparse Discriminant Analysis*

---

**Description**  
Integration of multiple data sets measured on the same samples or observations to classify a discrete outcome to classify a discrete outcome and select features from each data set, i.e. N-integration with
sparse Discriminant Analysis. The method is partly based on Generalised Canonical Correlation Analysis.

Usage

block.splsda(
  X,
  Y,
  indY,
  ncomp = 2,
  keepX,
  design,
  scheme,
  scale = TRUE,
  init = "svd",
  tol = 1e-06,
  max.iter = 100,
  near.zero.var = FALSE,
  all.outputs = TRUE,
  verbose.call = FALSE
)

wrapper.sgccda(
  X,
  Y,
  indY,
  ncomp = 2,
  keepX,
  design,
  scheme,
  scale = TRUE,
  init = "svd",
  tol = 1e-06,
  max.iter = 100,
  near.zero.var = FALSE,
  all.outputs = TRUE,
  verbose.call = FALSE
)

Arguments

X A named list of data sets (called 'blocks') measured on the same samples. Data in the list should be arranged in matrices, samples x variables, with samples order matching in all data sets.

Y a factor or a class vector for the discrete outcome.

indY To supply if Y is missing, indicates the position of the matrix response in the list X.
block.splsda

ncomp the number of components to include in the model. Default to 2. Applies to all blocks.

keepX A named list of same length as X. Each entry is the number of variables to select in each of the blocks of X for each component. By default all variables are kept in the model.

design numeric matrix of size (number of blocks in X) x (number of blocks in X) with values between 0 and 1. Each value indicates the strength of the relationship to be modelled between two blocks; a value of 0 indicates no relationship, 1 is the maximum value. Alternatively, one of c(‘null’, ‘full’) indicating a disconnected or fully connected design, respectively, or a numeric between 0 and 1 which will designate all off-diagonal elements of a fully connected design (see examples in block.splsda). If Y is provided instead of indY, the design matrix is changed to include relationships to Y.

scheme Character, one of ‘horst’, ‘factorial’ or ‘centroid’. Default = ‘horst’, see reference.

scale Logical. If scale = TRUE, each block is standardized to zero means and unit variances (default: TRUE)

init Mode of initialization use in the algorithm, either by Singular Value Decomposition of the product of each block of X with Y (‘svd’) or each block independently (‘svd.single’). Default = svd.single

tol Positive numeric used as convergence criteria/tolerance during the iterative process. Default to 1e-06.

max.iter Integer, the maximum number of iterations. Default to 100.

near.zero.var Logical, see the internal nearZeroVar function (should be set to TRUE in particular for data with many zero values). Setting this argument to FALSE (when appropriate) will speed up the computations. Default value is FALSE.

all.outputs Logical. Computation can be faster when some specific (and non-essential) outputs are not calculated. Default = TRUE.

verbose.call Logical (Default=FALSE), if set to TRUE then the $call component of the returned object will contain the variable values for all parameters. Note that this may cause large memory usage.

Details

block.splsda function fits a horizontal integration PLS-DA model with a specified number of components per block). A factor indicating the discrete outcome needs to be provided, either by Y or by its position indY in the list of blocks X.

X can contain missing values. Missing values are handled by being disregarded during the cross product computations in the algorithm block.pls without having to delete rows with missing data. Alternatively, missing data can be imputed prior using the impute.nipals function.

The type of algorithm to use is specified with the mode argument. Four PLS algorithms are available: PLS regression ("regression"), PLS canonical analysis ("canonical"), redundancy analysis ("invariant") and the classical PLS algorithm ("classic") (see References and ?pls for more details).
Note that our method is partly based on sparse Generalised Canonical Correlation Analysis and differs from the MB-PLS approaches proposed by Kowalski et al., 1989, J Chemom 3(1), Westerhuis et al., 1998, J Chemom, 12(5) and sparse variants Li et al., 2012, Bioinformatics 28(19); Karaman et al. (2014), Metabolomics, 11(2); Kawaguchi et al., 2017, Biostatistics.

Variable selection is performed on each component for each block of X if specified, via input parameter keepX.

Value

block.splsda returns an object of class "block.splsda", "block.spls", a list that contains the following components:

- **X**: the centered and standardized original predictor matrix.
- **indY**: the position of the outcome Y in the output list X.
- **ncomp**: the number of components included in the model for each block.
- **mode**: the algorithm used to fit the model.
- **keepX**: number of variables used to build each component of each block
- **variates**: list containing the variates of each block of X
- **loadings**: list containing the estimated loadings for the variates.
- **names**: list containing the names to be used for individuals and variables.
- **nzv**: list containing the zero- or near-zero predictors information.
- **iter**: number of iterations of the algorithm for each component
- **weights**: correlation between the variate of each block and the variate of the outcome. Used to weight predictions.
- **prop_expl_var**: percentage of explained variance for each component and each block
- **call**: if verbose.call = FALSE, then just the function call is returned. If verbose.call = TRUE then all the inputted values are accessible via this component

Author(s)

Florian Rohart, Benoit Gautier, Kim-Anh Lê Cao, Al J Abadi

References

On multiple integration with sPLS-DA and 4 data blocks:

On data integration:

data: Applications in a kidney transplant rejection study, OMICS: A journal of integrative biology, 18(11), 682-95.
mixOmics article:

See Also
plotIndiv, plotArrow, plotLoadings, plotVar, predict, perf, selectVar, block.plsda, block.spls
and http://www.mixOmics.org/mixDIABLO for more details and examples.

Examples

```r
block.splsda

data("breast.TCGA")
this is the X data as a list of mRNA, miRNA and proteins
data = list(mrna = breast.TCGA$data.train$mrna, mirna = breast.TCGA$data.train$mirna, protein = breast.TCGA$data.train$protein)
set up a full design where every block is connected
design = matrix(1, ncol = length(data), nrow = length(data), dimnames = list(names(data), names(data)))
diag(design) = 0
design
set number of component per data set
ncomp = c(2)
set number of variables to select, per component and per data set (this is set arbitrarily)
list.keepX = list(mrna = rep(8,2), mirna = rep(8,2), protein = rep(8,2))
TCGA.block.splsda = block.splsda(X = data, Y = breast.TCGA$data.train$subtype, ncomp = ncomp, keepX = list.keepX, design = design)

use design = 'full'
TCGA.block.splsda = block.splsda(X = data, Y = breast.TCGA$data.train$subtype, ncomp = ncomp, keepX = list.keepX, design = 'full')

TCGA.block.splsda$design
plotIndiv(TCGA.block.splsda, ind.names = FALSE)

use design = 'null'
TCGA.block.splsda = block.splsda(X = data, Y = breast.TCGA$data.train$subtype, ncomp = ncomp, keepX = list.keepX, design = 'null')

TCGA.block.splsda$design

set all off-diagonal elements to 0.5
TCGA.block.splsda = block.splsda(X = data, Y = breast.TCGA$data.train$subtype, ncomp = ncomp, keepX = list.keepX, design = 0.5)

TCGA.block.splsda$design

illustrates coefficient weights in each block
plotLoadings(TCGA.block.splsda, ncomp = 1, contrib = 'max')
plotVar(TCGA.block.splsda, style = 'graphics', legend = TRUE)

plot markers (selected variables) for mrna and mirna
mrna: show each selected feature separately
```
plotMarkers(object = TCGA.block.splsda, comp = 1, block = 'mRNA')
# mRNA: aggregate all selected features and separate by loadings signs
plotMarkers(object = TCGA.block.splsda, comp = 1, block = 'mRNA', global = TRUE)
# proteins
plotMarkers(object = TCGA.block.splsda, comp = 1, block = 'protein')
## do not show violin plots
plotMarkers(object = TCGA.block.splsda, comp = 1, block = 'protein', violin = FALSE)
# show top 5 markers
plotMarkers(object = TCGA.block.splsda, comp = 1, block = 'protein', markers = 1:5)
# show specific markers
my.markers <- selectVar(TCGA.block.splsda, comp = 1)[['protein']]$name[c(1,3,5)]
my.markers
plotMarkers(object = TCGA.block.splsda, comp = 1, block = 'protein', markers = my.markers)

---

breast.TCGA

**Breast Cancer multi omics data from TCGA**

**Description**

This data set is a small subset of the full data set from The Cancer Genome Atlas that can be analysed with the DIABLO framework. It contains the expression or abundance of three matching omics data sets: mRNA, miRNA and proteomics for 150 breast cancer samples (Basal, Her2, Luminal A) in the training set, and 70 samples in the test set. The test set is missing the proteomics data set.

**Usage**

data(breast.TCGA)

**Format**

A list containing two data sets, data.train and data.test which both include:

- **list("miRNA")** data frame with 150 (70) rows and 184 columns in the training (test) data set. The expression levels of 184 miRNA.
- **list("mRNA")** data frame with 150 (70) rows and 520 columns in the training (test) data set. The expression levels of 200 mRNA.
- **list("protein")** data frame with 150 (70) rows and 142 columns in the training data set only. The abundance of 142 proteins.
- **list("subtype")** a factor indicating the breast cancer subtypes in the training (length of 150) and test (length of 70) sets.

**Details**

The data come from The Cancer Genome Atlas (TCGA, http://cancergenome.nih.gov/). We divided the data into a training (discovery) and test (validation) set. The protein dataset which had a limited number of subjects available was used to allocate subjects into the training set only, while the test set included all remaining subject. Each data set was normalised and pre-processed. For illustrative purposes we drastically filtered the data here.
breast.tumors

Value

none

Source

The raw data were downloaded from http://cancergenome.nih.gov/. The normalised and filtered data we analysed with DIABLO are available on www.mixOmics.org/mixDIABLO

References


breast.tumors Human Breast Tumors Data

Description

This data set contains the expression of 1,000 genes in 47 surgical specimens of human breast tumours from 17 different individuals before and after chemotherapy treatment.

Usage
data(breast.tumors)

Format

A list containing the following components:

- list("gene.exp") data matrix with 47 rows and 1000 columns. Each row represents an experimental sample, and each column a single gene.
- list("sample") a list containing two character vector components: name the name of the samples, and treatment the treatment status.
- list("genes") a list containing two character vector components: name the name of the genes, and description the description of each gene.

Details

This data consists of 47 breast cancer samples and 1753 cDNA clones pre-selected by Perez-Enciso et al. (2003) to draw their Fig. 1. The authors selected 47 samples for which there was information at least before or before and after chemotherapy treatment. There were 20 tumours that were microarrayed both before and after treatment. For illustrative purposes we then randomly selected 1000 cDNA clones for this data set.

Value

none
Source

The Human Breast Tumors dataset is a companion resource for the paper of Perou et al. (2000), and was downloaded from the Stanford Genomics Breast Cancer Consortium Portal http://genome-www.stanford.edu/breast_cancer/molecularportraits/download.shtml

References


cim

Clustered Image Maps (CIMs) ("heat maps")

Description

This function generates color-coded Clustered Image Maps (CIMs) ("heat maps") to represent "high-dimensional" data sets.

Usage

cim(
  mat = NULL,
  color = NULL,
  row.names = TRUE,
  col.names = TRUE,
  row.sideColors = NULL,
  col.sideColors = NULL,
  row.cex = NULL,
  col.cex = NULL,
  cutoff = 0,
  cluster = "both",
  dist.method = c("euclidean", "euclidean"),
  clust.method = c("complete", "complete"),
  cut.tree = c(0, 0),
  transpose = FALSE,
  symkey = TRUE,
  keysize = c(1, 1),
  keysize.label = 1,
  zoom = FALSE,
  title = NULL,
  xlab = NULL,
  ylab = NULL,
Arguments

mat numeric matrix of values to be plotted. Alternatively, an object of class inheriting from "pca", "spca", "ipca", "sipca", "rcc", "pls", "spls", "plsda", "splsda", "mlspls", "mlsplsda", "block.pls" or "block.spls" (where "ml" stands for multilevel).

color a character vector of colors such as that generated by terrain.colors, topo.colors, rainbow, color.jet or similar functions.

row.names, col.names logical, should the name of rows and/or columns of mat be shown? If TRUE (defaults) rownames(mat) and/or colnames(mat) are used. Possible character vectors with row and/or column labels can be used.

row.sideColors (optional) character vector of length nrow(mat) containing the color names for a vertical side bar that may be used to annotate the rows of mat.

col.sideColors (optional) character vector of length ncol(mat) containing the color names for a horizontal side bar that may be used to annotate the columns of mat.

row.cex, col.cex positive numbers, used as cex.axis in for the row or column axis labeling. The defaults currently only use number of rows or columns, respectively.

cutoff numeric between 0 and 1. Variables with correlations below this threshold in absolute value are not plotted. To use only when mapping is "XY".

cluster character string indicating whether to cluster "none", "row", "column" or "both". Defaults to "both".

dist.method character vector of length two. The distance measure used in clustering rows and columns. Possible values are "correlation" for Pearson correlation and all the distances supported by dist, such as "euclidean", etc.

clust.method character vector of length two. The agglomeration method to be used for rows and columns. Accepts the same values as in hclust such as "ward", "complete", etc.

cut.tree numeric vector of length two with components in [0,1]. The height proportions where the trees should be cut for rows and columns, if these are clustered.

transpose logical indicating if the matrix should be transposed for plotting. Defaults to FALSE.
symkey Logical indicating whether the color key should be made symmetric about 0. Defaults to TRUE.

keysize vector of length two, indicating the size of the color key.

keysize.label vector of length 1, indicating the size of the labels and title of the color key.

zoom logical. Whether to use zoom for interactive zoom. See Details.

title, xlab, ylab title, x- and y-axis titles; default to none.

margins numeric vector of length two containing the margins (see \texttt{par(mar)}) for column and row names respectively.

lhei, lwid arguments passed to \texttt{layout} to divide the device up into two (or three if a side color is drawn) rows and two columns, with the row-heights \texttt{lhei} and the column-widths \texttt{lwid}.

comp atomic or vector of positive integers. The components to adequately account for the data association. For a non sparse method, the similarity matrix is computed based on the variates and loading vectors of those specified components. For a sparse approach, the similarity matrix is computed based on the variables selected on those specified components. See example. Defaults to \texttt{comp = 1:object$ncomp}.

center either a logical value or a numeric vector of length equal to the number of columns of \texttt{mat}. See \texttt{scale} function.

scale either a logical value or a numeric vector of length equal to the number of columns of \texttt{mat}. See \texttt{scale} function.

mapping character string indicating whether to map "X", "Y" or "XY"-association matrix. Can also be "multiblock" when class(mat) == "block.pls" OR "block.spls". See Details.

legend A list indicating the legend for each group, the color vector, title of the legend and cex.

save should the plot be saved? If so, argument to be set to either 'jpeg', 'tiff', 'png' or 'pdf'.

name.save character string for the name of the file to be saved.

blocks integer or character vector. Used when class(mat) == "block.pls" OR "block.spls". Dictates which blocks will be visualised. See Details.

**Details**

One matrix Clustered Image Map (default method) is a 2-dimensional visualization of a real-valued matrix (basically image(t(mat))) with rows and/or columns reordered according to some hierarchical clustering method to identify interesting patterns. Generated dendrograms from clustering are added to the left side and to the top of the image. By default the used clustering method for rows and columns is the \texttt{complete linkage} method and the used distance measure is the distance \texttt{euclidean}.

In \"pca\", \"spca\", \"ipca\", \"sipca\", \"plsda\", \"splsda\" and multilevel variants methods the mat matrix is \texttt{object$X}.

For the remaining methods, if mapping = "X" or mapping = "Y" the mat matrix is \texttt{object$X} or \texttt{object$Y} respectively. If mapping = "XY":

• in rcc method, the matrix mat is created where element \((j, k)\) is the scalar product value between every pairs of vectors in dimension \(\text{length}(\text{comp})\) representing the variables \(X_j\) and \(Y_k\) on the axis defined by \(Z_i\) with \(i\) in \(\text{comp}\), where \(Z_i\) is the equiangular vector between the \(i\)-th \(X\) and \(Y\) canonical variate.

• in pls, spls and multilevel spls methods, if \(\text{object$mode} = \text{"regression"}\), the element \((j, k)\) of the matrix mat is given by the scalar product value between every pairs of vectors in dimension \(\text{length}(\text{comp})\) representing the variables \(X_j\) and \(Y_k\) on the axis defined by \(U_i\) with \(i\) in \(\text{comp}\), where \(U_i\) is the \(i\)-th \(X\) variate. If \(\text{object$mode} = \text{"canonical"}\) then \(X_j\) and \(Y_k\) are represented on the axis defined by \(U_i\) and \(V_i\) respectively.

The \text{blocks} parameter controls which blocks are to be included when \(\text{class(mat)} = \text{"block.pls" OR "block.spls"}\). This can be a character or a integer vector.

If using a multiblock object then mapping can be set to "multiblock". When done so, this will emulate the function of \text{cimDiablo()}\), such that rows will denote each sample and all features included in \text{blocks} will be shown as columns, coloured by which block they inherit from. In this case, \text{blocks} can include any number of input blocks. If \text{mapping} = \text{"X", "Y" OR "XY"}, then it functions similarly to if a \text{mixo.pls} object was being used. \text{blocks} has to be of length 2 in this scenario.

By default four components will be displayed in the plot. At the top left is the color key, top right is the column dendogram, bottom left is the row dendogram, bottom right is the image plot. When \text{sideColors} are provided, an additional row or column is inserted in the appropriate location. This layout can be overriden by specifying appropriate values for \text{lwd} and \text{lhei}. \text{lwd} controls the column width, and \text{lhei} controls the row height. See the help page for \text{layout} for details on how to use these arguments.

For visualization of "high-dimensional" data sets, a nice zooming tool was created. \text{zoom = TRUE} open a new device, one for CIM, one for zoom-out region and define an interactive 'zoom' process: click two points at imagen map region by pressing the first mouse button. It then draws a rectangle around the selected region and zoom-out this at new device. The process can be repeated to zoom-out other regions of interest.

The zoom process is terminated by clicking the second button and selecting 'Stop' from the menu, or from the 'Stop' menu on the graphics window.

\textbf{Value}

A list containing the following components:

- \text{M} the mapped matrix used by \text{cim}.
- \text{rowInd, colInd} row and column index permutation vectors as returned by \text{order.dendrogram}.
- \text{ddr, ddc} object of class "dendrogram" which describes the row and column trees produced by \text{cim}.
- \text{mat.cor} the correlation matrix used for the heatmap. Available only when \text{mapping} = "XY".
- \text{row.names, col.names} character vectors with row and column labels used.
- \text{row.sideColors, col.sideColors} character vector containing the color names for vertical and horizontal side bars used to annotate the rows and columns.
Author(s)
Ignacio González, Francois Bartolo, Kim-Anh Lê Cao, Al J Abadi

References
mixOmics article:

See Also
heatmap, hclust, plotVar, network and
http://mixomics.org/graphics/ for more details on all options available.

Examples
```r
default method: shows cross correlation between 2 data sets
#--
data(nutrimouse)
X <- nutrimouse$lipid
Y <- nutrimouse$gene
cim(cor(X, Y), cluster = "none")

Not run:
CIM representation for objects of class 'rcc'
#--
nutri.rcc <- rcc(X, Y, ncomp = 3, lambda1 = 0.064, lambda2 = 0.008)
cim(nutri.rcc, xlab = "genes", ylab = "lipids", margins = c(5, 6))
#-- interactive 'zoom' available as below
cim(nutri.rcc, xlab = "genes", ylab = "lipids", margins = c(5, 6),
 zoom = TRUE)
#-- select the region and "see" the zoom-out region
```
#-- cim from X matrix with a side bar to indicate the diet
diet.col <- palette()[as.numeric(nutrimouse$diet)]
cim(nutri.rcc, mapping = "X", row.names = nutrimouse$diet,
row.sideColors = diet.col, xlab = "lipids",
clust.method = c("ward", "ward"), margins = c(6, 4))

#-- cim from Y matrix with a side bar to indicate the genotype
genoma.col = color.mixo(as.numeric(nutrimouse$genotype))
cim(nutri.rcc, mapping = "Y", row.names = nutrimouse$genotype,
row.sideColors = genoma.col, xlab = "genes",
clust.method = c("ward", "ward"))

#-- save the result as a jpeg file
jpeg(filename = "test.jpeg", res = 600, width = 4000, height = 4000)
cim(nutri.rcc, xlab = "genes", ylab = "lipids", margins = c(5, 6))
dev.off()

## CIM representation for objects of class 'spca' (also works for sipca)
#------------------------------------------------------------------
data(liver.toxicity)
X <- liver.toxicity$gene
liver.spca <- spca(X, ncomp = 2, keepX = c(30, 30), scale = FALSE)
dose.col <- color.mixo(as.numeric(as.factor(liver.toxicity$treatment[, 3])))

# side bar, no variable names shown
# cim(liver.spca, row.sideColors = dose.col, col.names = FALSE,
# row.names = liver.toxicity$treatment[, 3],
# clust.method = c("ward", "ward"))

## CIM representation for objects of class '(s)pls'
#------------------------------------------------------------------
data(liver.toxicity)
X <- liver.toxicity$gene
Y <- liver.toxicity$clinic
liver.spls <- pls(X, Y, ncomp = 3,
keepX = c(20, 50, 50), keepY = c(10, 10, 10))

# default
cim(liver.spls)

# transpose matrix, choose clustering method
# cim(liver.spls, transpose = TRUE,
# clust.method = c("ward", "ward"), margins = c(5, 7))
# Here we visualise only the X variables selected
cim(liver.spls, mapping="X")

# Here we should visualise only the Y variables selected

cim(liver.spls, mapping="Y")

# Here we only visualise the similarity matrix between the variables by spls

cim(liver.spls, cluster="none")

# plotting two data sets with the similarity matrix as input in the function
# (see our BioData Mining paper for more details)
# Only the variables selected by the sPLS model in X and Y are represented

cim(liver.spls, mapping="XY")

# on the X matrix only, side col var to indicate dose

dose.col <- color.mixo(as.numeric(as.factor(liver.toxicity$treatment[, 3])))
cim(liver.spls, mapping = "X", row.sideColors = dose.col, row.names = liver.toxicity$treatment[, 3])

# CIM default representation includes the total of 120 genes selected, with the dose color
# with a sparse method, show only the variables selected on specific components

cim(liver.spls, comp = 1)
cim(liver.spls, comp = 2)
cim(liver.spls, comp = c(1,2))
cim(liver.spls, comp = c(1,3))

## CIM representation for objects of class 'splsda'
#-----------------------------------------------------------------------------------
data(liver.toxicity)

X <- liver.toxicity$gene
# Setting up the Y outcome first
Y <- liver.toxicity$treatment[, 3]
# set up colors for cim

dose.col <- color.mixo(as.numeric(as.factor(liver.toxicity$treatment[, 3])))

liver.splsda <- splsda(X, Y, ncomp = 2, keepX = c(40, 30))
cim(liver.splsda, row.sideColors = dose.col, row.names = Y)

## CIM representation for objects of class splsda 'multilevel'
# with a two level factor (repeated sample and time)
#-----------------------------------------------------------------------------------
data(vac18.simulated)

X <- vac18.simulated$genes
design <- data.frame(samp = vac18.simulated$sample)
Y = data.frame(time = vac18.simulated$time, stim = vac18.simulated$stimulation)

res.2level <- splsda(X, Y = Y, ncomp = 2, multilevel = design,
keepX = c(120, 10))

# define colors for the levels: stimulation and time
stim.col <- c("darkblue", "purple", "green4", "red3")
stim.col <- stim.col[as.numeric(Y$stim)]
time.col <- c("orange", "cyan")[as.numeric(Y$time)]

# The row side bar indicates the two levels of the factor, stimulation and time.
# The sample names have been modified on the plot.
cim(res.2level, row.sideColors = cbind(stim.col, time.col),
row.names = paste(Y$time, Y$stim, sep = "_")
col.names = FALSE,
# setting up legend:
legend=list(legend = c(levels(Y$time), levels(Y$stim)),
col = c("orange", "cyan", "darkblue", "purple", "green4", "red3"),
title = "Condition", cex = 0.7)
)

## CIM representation for objects of class spls 'multilevel'
#---------------------------------------------------------------
data(liver.toxicity)
repeat.indiv <- c(1, 2, 1, 2, 1, 2, 1, 2, 3, 4, 3, 4, 3, 4, 4, 5, 6, 5, 5,
6, 5, 6, 7, 8, 6, 7, 8, 7, 8, 9, 10, 9, 10, 11, 9, 9,
10, 11, 12, 10, 11, 12, 11, 12, 13, 14, 13, 14, 13, 14, 13, 14,
13, 14, 15, 16, 15, 16, 15, 16, 15, 16)

# sPLS is a non supervised technique, and so we only indicate the sample repetitions
# in the design (1 factor only here, sample)
# sPLS takes as an input 2 data sets, and the variables selected
design <- data.frame(sample = repeat.indiv)
res.spls.1level <- spls(X = liver.toxicity$gene,
Y=liver.toxicity$clinic,
multilevel = design,
ncomp = 2,
keepX = c(50, 50), keepY = c(5, 5),
mode = 'canonical')
stim.col <- c("darkblue", "purple", "green4", "red3")

# showing only the Y variables, and only those selected in comp 1
cim(res.spls.1level, mapping="Y",
row.sideColors = stim.col[as.factor(liver.toxicity$treatment[, 3])],
comp = 1,
# setting up legend:
legend=list(legend = unique(liver.toxicity$treatment[, 3]), col=stim.col,
title = "Dose", cex=0.9))

# showing only the X variables, for all selected on comp 1 and 2
cim(res.spls.1level, mapping="X",
row.sideColors = stim.col[as.factor(liver.toxicity$treatment[, 3])],
# setting up legend:
cimDiablo

Clustered Image Maps (CIMs) ("heat maps") for DIABLO

Description

This function generates color-coded Clustered Image Maps (CIMs) ("heat maps") to represent "high-dimensional" data sets analysed with DIABLO.

Usage

cimDiablo(
  object,
  color = NULL,
  color.Y,
  color.blocks,
  comp = NULL,
  margins = c(2, 15),
  legend.position = "topright",
  transpose = FALSE,
  row.names = TRUE,
  col.names = TRUE,
  size.legend = 1.5,
  trim = TRUE,
  ...  
)

Arguments

object An object of class inheriting from "block.splsda".

color A character vector of colors such as that generated by terrain.colors, topo.colors, rainbow, color.jet or similar functions.

color.Y A character vector of colors to be used for the levels of the outcome

color.blocks A character vector of colors to be used for the blocks

comp A positive integer. The similarity matrix is computed based on the variables selected on those specified components. See example. Defaults to comp = 1.
margins numeric vector of length two containing the margins (see \texttt{par(mar)}) for column and row names respectively.

legend.position

position of the legend, one of "bottomright", "bottom", "bottomleft", "left", "topleft", "top", "topright", "right" and "center".

transpose logical indicating if the matrix should be transposed for plotting. Defaults to FALSE.

row.names, col.names logical, should the name of rows and/or columns of \( \text{mat} \) be shown? If TRUE (defaults) \texttt{rownames(mat)} and/or \texttt{colnames(mat)} are used. Possible character vectors with row and/or column labels can be used.

size.legend size of the legend

trim (Logical or numeric) If FALSE, values are not changed. If TRUE, the values are trimmed to 3 standard deviation range. If a numeric, values with absolute values greater than the provided values are trimmed.

... Other valid arguments passed to \texttt{cim}.

Details

This function is a small wrapper of \texttt{cim} specific to the DIABLO framework.

Value

A list containing the following components:

- \( \text{M} \) the mapped matrix used by \texttt{cim}.
- \( \text{rowInd, colInd} \) row and column index permutation vectors as returned by \texttt{order.dendrogram}.
- \( \text{ddr, ddc} \) object of class "dendrogram" which describes the row and column trees produced by \texttt{cim}.
- \( \text{mat.cor} \) the correlation matrix used for the heatmap. Available only when mapping = "XY".
- \( \text{row.names, col.names} \) character vectors with row and column labels used.
- \( \text{row.sideColors, col.sideColors} \) character vector containing the color names for vertical and horizontal side bars used to annotate the rows and columns.

Author(s)

Amrit Singh, Florian Rohart, Kim-Anh Lê Cao, Al J Abadi

References

**circosPlot**


mixOmics article:


**See Also**

- `cim`, `heatmap`, `hclust`, `plotVar`, `network`
- [http://mixomics.org/mixDIABLO/](http://mixomics.org/mixDIABLO/) for more details on all options available.

**Examples**

```r
default method: shows cross correlation between 2 data sets
#---
data(nutrimouse)
Y = nutrimouse$diet
data = list(gene = nutrimouse$gene, lipid = nutrimouse$lipid)

nutrimouse.sgccda <- block.splsda(X = data,
Y = Y,
design = "full",
keepX = list(gene = c(10,10), lipid = c(15,15)),
ncmp = 2,
scheme = "centroid")

cimDiablo(nutrimouse.sgccda, comp = c(1,2))
change trim range

cimDiablo(nutrimouse.sgccda, comp = c(1,2), trim = 4)
do not trim values

cimDiablo(nutrimouse.sgccda, comp = c(1,2), trim = FALSE)
```

---

**circosPlot**

**circosPlot for DIABLO**

**Description**

Displays variable correlation among different blocks
Usage

```r
S3 method for class 'block.splsda'
circosPlot(
 object,
 comp = 1:min(object$ncomp),
 cutoff,
 color.Y,
 blocks = NULL,
 color.blocks,
 color.cor,
 var.names = NULL,
 showIntraLinks = FALSE,
 line = FALSE,
 size.legend = 0.8,
 ncol.legend = 1,
 size.variables = 0.25,
 size.labels = 1,
 legend = TRUE,
 legend.title = "Expression",
 linkWidth = 1,
 ...
)

S3 method for class 'block.plsda'
circosPlot(
 object,
 comp = 1:min(object$ncomp),
 cutoff,
 color.Y,
 blocks = NULL,
 color.blocks,
 color.cor,
 var.names = NULL,
 showIntraLinks = FALSE,
 line = FALSE,
 size.legend = 0.8,
 ncol.legend = 1,
 size.variables = 0.25,
 size.labels = 1,
 legend = TRUE,
 legend.title = "Expression",
 linkWidth = 1,
 ...
)

S3 method for class 'block.spls'
circosPlot(object, ..., group = NULL, Y.name = "Y")
```
## S3 method for class 'block.pls'
circosPlot(object, ..., group = NULL, Y.name = "Y")

### Arguments

- **object**: An object of class inheriting from "block.plsda", "block.splsda", "block.pls" or "blocks.spls".
- **comp**: Numeric vector indicating which component to plot. Default to all.
- **cutoff**: Only shows links with a correlation higher than cutoff.
- **color.Y**: a character vector of colors to be used for the levels of the outcome.
- **blocks**: Character or integer vector indicating which blocks to show. Default to all.
- **color.blocks**: a character vector of colors to be used for the blocks.
- **color.cor**: a character vector of two colors. First one is for the negative correlation, second one is for the positive correlation.
- **var.names**: Optional parameter. A list of length the number of blocks in object$X, containing the names of the variables of each block. If NULL, the colnames of the data matrix are used.
- **showIntraLinks**: if TRUE, shows the correlation higher than the threshold inside each block.
- **line**: if TRUE, shows the overall expression of the selected variables. see examples.
- **size.legend**: size of the legend.
- **ncol.legend**: number of columns for the legend.
- **size.variables**: size of the variable labels.
- **size.labels**: size of the block labels.
- **legend**: Logical. Whether the legend should be added. Default is TRUE.
- **legend.title**: String. Name of the legend. Defaults to "Expression".
- **linkWidth**: Numeric. Specifies the range of sizes used for lines linking the correlated variables (see details). Must be of length 2 or 1. Default to c(1). See details.

... For object of class block.splsda, advanced plot parameters:

- **var.adj**: Numeric. Adjusts the radial location of variable names in units of the arc band width. Positive values push feature names radially outward. Default to -0.33. See examples.
- **block.labels.adj**: Numeric between -1 and 1. Adjusts the radial location of block names radially inward or outward. Default to 0. See examples.
- **blocks.link**: Character vector of blocks. If provided, only correlations from features of these blocks are shown using links. See examples.

For object of class block.spls, all listed and advanced arguments passed to the block.splsda method.

- **group**: The grouping factor used when line = TRUE.
- **Y.name**: Character, the name of the Y block.
Details

circosPlot function depicts correlations of variables selected with block.splsda or block.spls among different blocks, using a generalisation of the method presented in González et al 2012. If ncomp is specified, then only the variables selected on that component are displayed.

The linkWidth argument specifies the width of the links drawn. If a vector of length 2 is provided, the smaller value will correspond to a similarity values designated by cutoff argument, while the larger value will be used for a link with perfect similarity (1), if any.

Value

If saved in an object, the circos plot will output the similarity matrix and the names of the variables displayed on the plot (see attributes(object)).

Author(s)

Michael Vacher, Amrit Singh, Florian Rohart, Kim-Anh Lê Cao, Al J Abadi

References


mixOmics article:


See Also

block.splsda, references and http://www.mixOmics.org/mixDIABLO for more details.

Examples

data(nutrimouse)
Y = nutrimouse$diet
data = list(gene = nutrimouse$gene, lipid = nutrimouse$lipid)
design = matrix(c(0,1,1,0,1,1,0,1,1,0), ncol = 3, nrow = 3, byrow = TRUE)
nutrimouse.sgcca <- wrapper.sgcca(X=data, Y = Y, design = design, keepX = list(gene=c(10,10), lipid=c(15,15)), ncomp = 2, scheme = "horst")
circosPlot(nutrimouse.sgcca, cutoff = 0.7)
## links widths based on strength of their similarity
circosPlot(nutrimouse.sgccda, cutoff = 0.7, linkWidth = c(1, 10))
## custom legend
circosPlot(nutrimouse.sgccda, cutoff = 0.7, size.legend = 1.1)

## more customisation
circosPlot(nutrimouse.sgccda, cutoff = 0.7, size.legend = 1.1, color.Y = 1:5,
          color.blocks = c("green", "brown"), color.cor = c("magenta", "purple"))

par(mfrow=c(2,2))
circosPlot(nutrimouse.sgccda, cutoff = 0.7, size.legend = 1.1)
## also show intra-block correlations
circosPlot(nutrimouse.sgccda, cutoff = 0.7,
          size.legend = 1.1, showIntraLinks = TRUE)
## show lines
circosPlot(nutrimouse.sgccda, cutoff = 0.7, line = TRUE, ncol.legend = 1,
          size.legend = 1.1, showIntraLinks = TRUE)
## custom line legends
circosPlot(nutrimouse.sgccda, cutoff = 0.7, line = TRUE, ncol.legend = 2,
          size.legend = 1.1, showIntraLinks = TRUE)
par(mfrow=c(1,1))

## adjust feature and block names radially
circosPlot(nutrimouse.sgccda, cutoff = 0.7, size.legend = 1.1)
circosPlot(nutrimouse.sgccda, cutoff = 0.7, size.legend = 1.1,
          var.adj = 0.8, block.labels.adj = -0.5)
## --- example using breast.TCGA data
data("breast.TCGA")
data = list(mrna = breast.TCGA$data.train$mrna,
           mirna = breast.TCGA$data.train$mirna,
           protein = breast.TCGA$data.train$protein)
list.keepX = list(mrna = rep(20, 2), mirna = rep(10,2), protein = c(10, 2))

TCGA.block.splsda = block.splsda(X = data,
       Y =breast.TCGA$data.train$subtype,
       ncomp = 2, keepX = list.keepX,
       design = 'full')
circosPlot(TCGA.block.splsda, cutoff = 0.7, line=TRUE)
## show only first 2 blocks
circosPlot(TCGA.block.splsda, cutoff = 0.7, line=TRUE, blocks = c(1,2))
## show only correlations including the mrna block features
circosPlot(TCGA.block.splsda, cutoff = 0.7, blocks.link = 'mrna')
data("breast.TCGA")
data = list(mrna = breast.TCGA$data.train$mrna, mirna = breast.TCGA$data.train$mirna)
list.keepX = list(mrna = rep(20, 2), mirna = rep(10,2))
list.keepY = c(rep(10, 2))

TCGA.block.spls = block.spls(X = data,
       Y = breast.TCGA$data.train$protein,
       ncomp = 2, keepX = list.keepX,
       keepY = list.keepY, design = 'full')
circosPlot(TCGA.block.spls, group = breast.TCGA$data.train$subtype, cutoff = 0.7,
```r
colors

Y.name = 'protein')
only show links including mrna
circosPlot(TCGA.block.spls, group = breast.TCGA$data.train$subtype, cutoff = 0.7,
 Y.name = 'protein', blocks.link = 'mrna')
```

---

**colors**

*Color Palette for mixOmics*

---

**Description**

The functions create a vector of \( n \) "contiguous" colors (except the \( \text{color.mixo} \) which are colors used internally to fit our logo colors).

**Usage**

- `color.mixo(num.vector)`
- `color.GreenRed(n, alpha = 1)`
- `color.jet(n, alpha = 1)`
- `color.spectral(n, alpha = 1)`

**Arguments**

- `num.vector` for `color.mixo` an integer vector specifying which colors to use in the mixOmics palette (there are only 10 colors available).
- `n` an integer, the number of colors (\( \geq 1 \)) to be in the palette.
- `alpha` a numeric value between 0 and 1 for alpha channel (opacity).

**Details**

The function `color.jet(n)` create color scheme, beginning with dark blue, ranging through shades of blue, cyan, green, yellow and red, and ending with dark red. This colors palette is suitable for displaying ordered (symmetric) data, with \( n \) giving the number of colors desired.

**Value**

For `color.jet(n)`, `color.spectral(n)`, `color.GreenRed(n)` a character vector, \( cv \), of color names. This can be used either to create a user-defined color palette for subsequent graphics by `palette(cv)`, a `col=` specification in graphics functions or in `par`.

For `color.mixo`, a vector of colors matching the mixOmics logo (10 colors max.)

**Author(s)**

Ignacio Gonzalez, Kim-Anh Lê Cao, Benoit Gautier, Al J Abadi
See Also
colorRamp, palette, colors for the vector of built-in "named" colors; hsv, gray, rainbow, terrain.colors, ... to construct colors; and heat.colors, topo.colors for images.

Examples

# jet colors
# --------------------------------
par(mfrow = c(3, 1))
z <- seq(-1, 1, length = 125)
for (n in c(11, 33, 125)) {
  image(matrix(z, ncol = 1), col = color.jet(n),
     xaxt = 'n', yaxt = 'n', main = paste('n = ', n))
  box()
  par(usr = c(-1, 1, -1, 1))
  axis(1, at = c(-1, 0, 1))
}

## Not run:
# spectral colors
# --------------------------------
par(mfrow = c(3, 1))
z <- seq(-1, 1, length = 125)
for (n in c(11, 33, 125)) {
  image(matrix(z, ncol = 1), col = color.spectral(n),
     xaxt = 'n', yaxt = 'n', main = paste('n = ', n))
  box()
  par(usr = c(-1, 1, -1, 1))
  axis(1, at = c(-1, 0, 1))
}

# GreenRed colors
# --------------------------------
par(mfrow = c(3, 1))
z <- seq(-1, 1, length = 125)
for (n in c(11, 33, 125)) {
  image(matrix(z, ncol = 1), col = color.GreenRed(n),
     xaxt = 'n', yaxt = 'n', main = paste('n = ', n))
  box()
  par(usr = c(-1, 1, -1, 1))
  axis(1, at = c(-1, 0, 1))
}

## # mixOmics colors
## --------------------------------
data(nutrimouse)
X <- nutrimouse$lipid
Y <- nutrimouse$gene
diverse.16S

16S microbiome data: most diverse bodysites from HMP

Description

The 16S data from the Human Microbiome Project includes only the most diverse bodysites: Antecubital fossa (skin), Stool and Subgingival plaque (oral) and can be analysed using a multilevel approach to account for repeated measurements using our module mixMC. The data include 162 samples (54 unique healthy individuals) measured on 1,674 OTUs.

Usage

data(diverse.16S)

Format

A list containing two data sets, data.TSS and data.raw and some meta data information:

- **list("data.TSS")** data frame with 162 rows (samples) and 1674 columns (OTUs). The prefiltered normalised data using Total Sum Scaling normalisation.
- **list("data.raw")** data frame with 162 rows (samples) and 1674 columns (OTUs). The prefiltered raw count OTU data which include a 1 offset (i.e. no 0 values).
- **list("taxonomy")** data frame with 1674 rows (OTUs) and 6 columns indicating the taxonomy of each OTU.
- **list("indiv")** data frame with 162 rows indicating sample meta data.
- **list("bodysite")** factor of length 162 indicating the bodysite with levels "Antecubital_fossa", "Stool" and "Subgingival_plaque".
- **list("sample")** vector of length 162 indicating the unique individual ID, useful for a multilevel approach to taken into account the repeated measured on each individual.

Details

The data were downloaded from the Human Microbiome Project (HMP, http://hmpdacc.org/HMQCP/all/ for the V1-3 variable region). The original data contained 43,146 OTU counts for 2,911 samples measured from 18 different body sites. We focused on the first visit of each healthy individual and focused on the three most diverse habitats. The prefiltered dataset included 1,674 OTU counts. We strongly recommend to use log ratio transformations on the data.TSS normalised data, as implemented in the PLS and PCA methods, see details on www.mixOmics.org/mixMC.

The data.raw include a 1 offset in order to be log ratios transformed after TSS normalisation. Consequently, the data.TSS are TSS normalisation of data.raw. The CSS normalisation was performed on the original data (including zero values)
estim.regul

Value
none

Source
The raw data were downloaded from http://hmpdacc.org/HMQCP/all/. Filtering and normalisation described in our website www.mixOmics.org/mixMC

References

estim.regul

*Estimate the parameters of regularization for Regularized CCA*

Description
This function has been renamed `tune.rcc`, see `tune.rcc`.
This function has been renamed 'image.tune.rcc', see `image.tune.rcc`.
This function has been renamed `tune.pca`.

Value
none
none
none

explained_variance

*Calculates the proportion of explained variance of multivariate components*

Description
explained_variance calculates the proportion of variance explained by a set of *orthogonal* variates / components and divides by the total variance in data using the definition of 'redundancy'. This applies to any component-based approaches where components are orthogonal. It is worth noting that any missing values are set to zero (which is the column mean for the centered input data) prior to calculation of total variance in the data. Therefore, this function would underestimate the total variance in presence of abundant missing values. One can use `impute.nipals` function to impute the missing values to avoid such behaviour.

Usage
explained_variance(data, variates, ncomp)
explained_variance

Arguments

- **data**: numeric matrix of predictors
- **variates**: variates as obtained from a pls object for instance
- **ncomp**: number of components. Should be lower than the number of columns of variates

Details

Variance explained by component \( t_h \) in \( X \) for dimension \( h \):

\[
Rd(X, t_h) = \frac{1}{p} \sum_{j=1}^{p} \text{cor}^2(X_j, t_h)
\]

where \( X_j \) is the variable centered and scaled, \( p \) is the total number of variables.

Value

explained_variance returns a named numeric vector containing the proportion of explained variance for each variate after setting all missing values in the data to zero (see details).

Author(s)

Florian Rohart, Kim-Anh Lê Cao, Al J Abadi

References


See Also

- `spls`, `splsda`, `plotIndiv`, `plotVar`, `cim`, `network`.

Examples

```r
data(liver.toxicity)
X <- liver.toxicity$gene
Y <- liver.toxicity$clinic

toxicity.spls <- spls(X, Y, ncomp = 2, keepX = c(50, 50), keepY = c(10, 10))

ex = explained_variance(toxicity.spls$X, toxicity.spls$variates$X, ncomp = 2)

ex should be the same as
toxicity.spls$prop_expl_var$X
```
get.confusion_matrix  

**Create confusion table and calculate the Balanced Error Rate**

**Description**

Create confusion table between a vector of true classes and a vector of predicted classes, calculate the Balanced Error rate

**Usage**

```
get.confusion_matrix(truth, all.levels, predicted)
get.BER(confusion)
```

**Arguments**

- `truth`  
  A factor vector indicating the true classes of the samples (typically Y from the training set).

- `all.levels`  
  Levels of the 'truth' factor. Optional parameter if there are some missing levels in truth compared to the fitted predicted model.

- `predicted`  
  Vector of predicted classes (typically the prediction from the test set). Can contain NA.

- `confusion`  
  result from a `get.confusion_matrix` to calculate the Balanced Error Rate

**Details**

BER is appropriate in case of an unbalanced number of samples per class as it calculates the average proportion of wrongly classified samples in each class, weighted by the number of samples in each class. BER is less biased towards majority classes during the performance assessment.

**Value**

`get.confusion_matrix` returns a confusion matrix. `get.BER` returns the BER from a confusion matrix.

**Author(s)**

Florian Rohart, Al J Abadi

**References**

mixOmics article:

See Also

predict.

Examples

data(liver.toxicity)
X <- liver.toxicity$gene
Y <- as.factor(liver.toxicity$treatment[, 4])

## if training is performed on 4/5th of the original data
samp <- sample(1:5, nrow(X), replace = TRUE)
test <- which(samp == 1)  # testing on the first fold
train <- setdiff(1:nrow(X), test)

plsda.train <- plsda(X[train, ], Y[train], ncomp = 2)
test.predict <- predict(plsda.train, X[test, ], dist = "max.dist")
Prediction <- test.predict$class$max.dist[, 2]

# the confusion table compares the real subtypes with the predicted subtypes for a 2 component model
confusion.mat = get.confusion_matrix(truth = Y[test],
predicted = Prediction)

get.BER(confusion.mat)

---

**image.tune.rcc**

*Plot the cross-validation score.*

Description

This function provide a image map (checkerboard plot) of the cross-validation score obtained by the tune.rcc function.

Usage

```r
S3 method for class 'tune.rcc'
image(x, col = heat.colors, ...)

S3 method for class 'tune.rcc'
plot(x, col = heat.colors, ...)
```

Arguments

- `x` object returned by tune.rcc.
- `col` a character string specifying the colors function to use: terrain.colors, topo.colors, rainbow or similar functions. Defaults to heat.colors.
- `...` not used currently.
Details

plot.tune.rcc creates an image map of the matrix object$mat containing the cross-validation score obtained by the tune.rcc function. Also a color scales strip is plotted.

Value

none

Author(s)

Sébastien Déjean, Ignacio González, Kim-Anh Le Cao, Al J Abadi

See Also
tune.rcc, image.

Examples

data(nutrimouse)
X <- nutrimouse$lipid
Y <- nutrimouse$gene

## this can take some seconds
cv.score <- tune.rcc(X, Y, validation = "Mfold", plot = FALSE)
plot(cv.score)

# image(cv.score) # same result as plot()

---

**imgCor**  
*Image Maps of Correlation Matrices between two Data Sets*

**Description**

Display two-dimensional visualizations (image maps) of the correlation matrices within and between two data sets.

**Usage**

```r
imgCor(
 X,
 Y,
 type = "combine",
 X.var.names = TRUE,
 Y.var.names = TRUE,
 sideColors = TRUE,
 interactive.dev = TRUE,
 title = TRUE,
 color,
```
row.cex,
col.cex,
symkey,
keysizes,
xlab,
ylab,
margins,
lhei,
lwid
)

Arguments

X numeric matrix or data frame \((n \times p)\), the observations on the \(X\) variables. NAs are allowed.

Y numeric matrix or data frame \((n \times q)\), the observations on the \(Y\) variables. NAs are allowed.

type character string, (partially) matching one of "combine" or "separated", determining the kind of plots to be produced. See Details.

X.var.names, Y.var.names logical, should the name of \(X\) and/or \(Y\)-variables be shown? If TRUE (defaults) object$names$X and/or object$names$Y are used. Possible character vector with \(X\)- and/or \(Y\)-variable labels to use.

sideColors character vector of length two. The color name for horizontal and vertical side bars that may be used to annotate the \(X\) and \(Y\) correlation matrices.

interactive.dev logical. The current graphics device that will be opened is interactive?

title logical, should the main titles be shown?

color, xlab, ylab arguments passed to cim.

row.cex, col.cex positive numbers, used as cex.axis in for the row or column axis labeling. The defaults currently only use number of rows or columns, respectively.

symkey Logical indicating whether the color key should be made symmetric about 0. Defaults to TRUE.

keysizes positive numeric value indicating the size of the color key.

margins numeric vector of length two containing the margins (see par(mar)) for column and row names respectively.

lhei, lwid arguments passed to layout to divide the device up into two rows and two columns, with the row-heights lhei and the column-widths lwid.

Details

If type="combine", the correlation matrix is computed of the combined matrices cbind(X, Y) and then plotted. If type="separate", three correlation matrices are computed, cor(X), cor(Y) and cor(X, Y) and plotted separately on a device. In both cases, a color correlation scales strip is plotted.
The correlation matrices are pre-processed before calling the `image` function in order to get, as in the numerical representation, the diagonal from upper-left corner to bottom-right one. Missing values are handled by casewise deletion in the `imgCor` function.

If `X.names = FALSE`, the name of each X-variable is hidden. Default value is `TRUE`.
If `Y.names = FALSE`, the name of each Y-variable is hidden. Default value is `TRUE`.

Value

NULL (invisibly)

Author(s)

Ignacio González, Kim-Anh Lê Cao, Florian Rohart, Al J Abadi

See Also

cor, image, color.jet.

Examples

data(nutrimouse)
X <- nutrimouse$lipid
Y <- nutrimouse$gene

## 'combine' type plot (default)
imgCor(X, Y)

## Not run:
## 'separate' type plot
imgCor(X, Y, type = "separate")

## 'separate' type plot without the name of datas
imgCor(X, Y, X.var.names = FALSE, Y.var.names = FALSE, type = "separate")

## End(Not run)

---

**impute.nipals**

Impute missing values using **NIPALS** algorithm

Description

This function uses **nipals** function to decompose `X` into a set of components (`t`), (pseudo-) singular-values (`eig`), and feature loadings (`p`). The original matrix is then approximated/reconstituted using the following equation:

\[ \hat{X} = t \cdot diag(eig) \cdot t(p) \]

The missing values from `X` are then approximated from this matrix. It is best to ensure enough number of components are used in order to best impute the missing values.
Usage

impute.nipals(X, ncomp, ...)

Arguments

X
A numeric matrix containing missing values

ncomp
Positive integer, the number of components to derive from X using the nipals
function and reconstitute the original matrix

...
Optional arguments passed to nipals

Value

A numeric matrix with missing values imputed.

Author(s)

Al J Abadi

See Also

impute.nipals, pca

Examples

data("nutrimouse")
X <- data.matrix(nutrimouse$lipid)
## add missing values to X to impute and compare to actual values
set.seed(42)
na.ind <- sample(seq_along(X), size = 10)
true.values <- X[na.ind]
X[na.ind] <- NA
X.impute <- impute.nipals(X = X, ncomp = 5)
## compare
round(X.impute[na.ind], 2)
true.values

ipca

Independent Principal Component Analysis

Description

Performs independent principal component analysis on the given data matrix, a combination of
Principal Component Analysis and Independent Component Analysis.
ipca

Usage

ipca(
  X,
  ncomp = 2,
  mode = "deflation",
  fun = "logcosh",
  scale = FALSE,
  w.init = NULL,
  max.iter = 200,
  tol = 1e-04
)

Arguments

  X      a numeric matrix (or data frame).
  ncomp  integer, number of independent component to choose. Set by default to 3.
  mode   character string. What type of algorithm to use when estimating the unmixing
         matrix, choose one of "deflation", "parallel". Default set to deflation.
  fun    the function used in approximation to neg-entropy in the FastICA algorithm.
         Default set to logcosh, see details of FastICA.
  scale  (Default=FALSE) Logical indicating whether the variables should be scaled to
         have unit variance before the analysis takes place. The default is FALSE
         for consistency with prcomp function, but in general scaling is advisable. Alternatively,
         a vector of length equal the number of columns of X can be supplied. The value
         is passed to scale.
  w.init initial un-mixing matrix (unlike fastICA, this matrix is fixed here).
  max.iter integer, the maximum number of iterations.
  tol    a positive scalar giving the tolerance at which the un-mixing matrix is considered
         to have converged, see fastICA package.

Details

In PCA, the loading vectors indicate the importance of the variables in the principal components. In
large biological data sets, the loading vectors should only assign large weights to important variables
(genes, metabolites ...). That means the distribution of any loading vector should be super-Gaussian:
most of the weights are very close to zero while only a few have large (absolute) values.

However, due to the existence of noise, the distribution of any loading vector is distorted and tends
toward a Gaussian distribution according to the Central Limit Theroem. By maximizing the non-
Gaussianity of the loading vectors using FastICA, we obtain more noiseless loading vectors. We
then project the original data matrix on these noiseless loading vectors, to obtain independent principal
components, which should be also more noiseless and be able to better cluster the samples
according to the biological treatment (note, IPCA is an unsupervised approach).

Algorithm
1. The original data matrix is centered.
2. PCA is used to reduce dimension and generate the loading vectors.
3. ICA (FastICA) is implemented on the loading vectors to generate independent loading vectors.
4. The centered data matrix is projected on the independent loading vectors to obtain the independent principal components.

Value

`ipca` returns a list with class "ipca" containing the following components:

- `ncomp`: the number of independent principal components used.
- `unmixing`: the unmixing matrix of size (ncomp x ncomp)
- `mixing`: the mixing matrix of size (ncomp x ncomp)
- `X`: the centered data matrix
- `x`: the independent principal components
- `loadings`: the independent loading vectors
- `kurtosis`: the kurtosis measure of the independent loading vectors
- `prop_expl_var`: Proportion of the explained variance of derived components, after setting possible missing values to zero.

Author(s)

Fangzhou Yao, Jeff Coquery, Kim-Anh Lê Cao, Florian Rohart, Al J Abadi

References


See Also

`sipca`, `pca`, `plotIndiv`, `plotVar`, and http://www.mixOmics.org for more details.

Examples

```r
data(liver.toxicity)
implement IPCA on a microarray dataset
ipca.res <- ipca(liver.toxicity$gene, ncomp = 3, mode="deflation")
ipca.res

samples representation
plotIndiv(
 ipca.res,
 ind.names = as.character(liver.toxicity$treatment[, 4]),
 group = as.numeric(as.factor(liver.toxicity$treatment[, 4]))
)
```
Koren.16S

---

**16S microbiome atherosclerosis study**

---

### Description

The 16S data come from Koren et al. (2011) and compared the bodysites oral, gut and plaque microbial communities in patients with atherosclerosis. The data can be analysed with our mixMC module. The data include 43 samples measured on 980 OTUs.

### Usage

```r
data(Koren.16S)
```

### Format

A list containing two data sets, `data.TSS` and `data.raw` and some meta data information:

- **list("data.TSS")** data frame with 43 rows (samples) and 980 columns (OTUs). The prefiltered normalised data using Total Sum Scaling normalisation.
- **list("data.raw")** data frame with 43 rows (samples) and 980 columns (OTUs). The prefiltered raw count OTU data which include a 1 offset (i.e. no 0 values).
- **list("taxonomy")** data frame with 980 rows (OTUs) and 7 columns indicating the taxonomy of each OTU.
- **list("indiv")** data frame with 43 rows indicating sample meta data.
- **list("bodysite")** factor of length 43 indicating the bodysite with levels arterial plaque, saliva and stool.
Details

The data are from Koren et al. (2011) who examined the link between oral, gut and plaque microbial communities in patients with atherosclerosis and controls. Only healthy individuals were retained in the analysis. This study contained partially repeated measures from multiple sites including 15 unique patients samples from saliva and stool, and 13 unique patients only sampled from arterial plaque samples and we therefore considered a non multilevel analysis for that experimental design. After prefiltering, the data included 973 OTU for 43 samples. We strongly recommend to use log ratio transformations on the data.TSS normalisd data, as implemented in the PLS and PCA methods, see details on www.mixOmics.org/mixMC.

The data.raw include a 1 offset in order to be log ratios transformed after TSS normalisation. Consequently, the data.TSS are TSS normalisation of data.raw. The CSS normalisation was performed on the original data (including zero values)

Value

none

Source

The raw data were downloaded from the QIITA database. Filtering and normalisation described in our website www.mixOmics.org/mixMC

References


linnerud

Linnerud Dataset

Description

Three physiological and three exercise variables are measured on twenty middle-aged men in a fitness club.

Usage

data(linnerud)

Format

A list containing the following components:

list("exercise")  data frame with 20 observations on 3 exercise variables.
list("physiological")  data frame with 20 observations on 3 physiological variables.
liver.toxicity

Value

none

Source

Tenenhaus, M. (1998), Table 1, page 15.

References


---

**liver.toxicity**  
*Liver Toxicity Data*

**Description**

This data set contains the expression measure of 3116 genes and 10 clinical measurements for 64 subjects (rats) that were exposed to non-toxic, moderately toxic or severely toxic doses of acetaminophen in a controlled experiment.

**Usage**

data(liver.toxicity)

**Format**

A list containing the following components:

- **list("gene")** data frame with 64 rows and 3116 columns. The expression measure of 3116 genes for the 64 subjects (rats).
- **list("clinic")** data frame with 64 rows and 10 columns, containing 10 clinical variables for the same 64 subjects.
- **list("treatment")** data frame with 64 rows and 4 columns, containing the treatment information on the 64 subjects, such as doses of acetaminophen and times of necropsies.
- **list("gene.ID")** data frame with 3116 rows and 2 columns, containing geneBank IDs and gene titles of the annotated genes

**Details**

The data come from a liver toxicity study (Bushel *et al.*, 2007) in which 64 male rats of the inbred strain Fisher 344 were exposed to non-toxic (50 or 150 mg/kg), moderately toxic (1500 mg/kg) or severely toxic (2000 mg/kg) doses of acetaminophen (paracetamol) in a controlled experiment. Necropsies were performed at 6, 18, 24 and 48 hours after exposure and the mRNA from the liver was extracted. Ten clinical chemistry measurements of variables containing markers for liver injury are available for each subject and the serum enzymes levels are measured numerically. The data were further normalized and pre-processed by Bushel *et al.* (2007).
**Value**

none

**Source**

The two liver toxicity data sets are a companion resource for the paper of Bushel et al. (2007), and was downloaded from:

http://www.biomedcentral.com/1752-0509/1/15/additional/

**References**


---

**logratio-transformations**

*Log-ratio transformation*

**Description**

This function applies a log transformation to the data, either CLR or ILR

**Usage**

logratio.transfo(X, logratio = c("none", "CLR", "ILR"), offset = 0)

**Arguments**

X numeric matrix of predictors

logratio log-ratio transform to apply, one of "none", "CLR" or "ILR"

offset Value that is added to X for CLR and ILR log transformation. Default to 0.

**Details**

logratio.transfo applies a log transformation to the data, either CLR (centered log ratio transformation) or ILR (Isometric Log Ratio transformation). In the case of CLR log-transformation, X needs to be a matrix of non-negative values and offset is used to shift the values away from 0, as commonly done with counts data.

**Value**

logratio.transfo simply returns the log-ratio transformed data.
map

Author(s)
Florian Rohart, Kim-Anh Lê Cao, Al J Abadi

References
Kim-Anh Lê Cao, Mary-Ellen Costello, Vanessa Anne Lakis, Francois Bartolo, Xin-Yi Chua, Remi Brazeilles, Pascale Rondeau mixMC: a multivariate statistical framework to gain insight into Microbial Communities bioRxiv 044206; doi: http://dx.doi.org/10.1101/044206

See Also
pca, pls, spls, plsda, splsda.

Examples
data(diverse.16S)
CLR = logratio.transfo(X = diverse.16S$data.TSS, logratio = 'CLR')
# no offset needed here as we have put it prior to the TSS, see www.mixOmics.org/mixMC

map

Classification given Probabilities

Description
Converts a matrix in which each row sums to 1 into the nearest matrix of (0,1) indicator variables.

Usage
map(Y)

Arguments
Y A matrix (for example a matrix of conditional probabilities in which each row sums to 1).

Value
A integer vector with one entry for each row of Y, in which the i-th value is the column index at which the i-th row of Y attains a maximum.
References


See Also

unmap

Examples

```r
data(nutrimouse)
Y = unmap(nutrimouse$diet)
map(Y)
```

---

### mat.rank

**Matrix Rank**

**Description**

This function estimate the rank of a matrix.

**Usage**

```r
mat.rank(mat, tol)
```

**Arguments**

- **mat**: a numeric matrix or data frame that can contain missing values.
- **tol**: positive real, the tolerance for singular values, only those with values larger than `tol` are considered non-zero.

**Details**

`mat.rank` estimate the rank of a matrix by computing its singular values $d[i]$ (using `nipals`). The rank of the matrix can be defined as the number of singular values $d[i] > 0$. If `tol` is missing, it is given by `tol=max(dim(mat))*max(d)*.Machine$double.eps`.

**Value**

The returned value is a list with components:

- **rank**: a integer value, the matrix rank.
- **tol**: the tolerance used for singular values.
### Examples

#### Hilbert matrix
```r
hilbert <- function(n) { i <- 1:n; 1 / outer(i - 1, i, "+") }
mat <- hilbert(16)
mat.rank(mat)

Not run:
Hilbert matrix with missing data
idx.na <- matrix(sample(c(0, 1, 1, 1, 1, 1), 36, replace = TRUE), ncol = 6)
m.na <- m <- hilbert(9)[, 1:6]
m.na[idx.na == 0] <- NA
mat.rank(m)
mat.rank(m.na)

End(Not run)
```

---

### Description

Function to integrate data sets measured on the same samples (N-integration) and to combine multiple independent studies measured on the same variables or predictors (P-integration) using variants of multi-group and generalised PLS (unsupervised analysis).

### Usage

```r
mint.block.pls(
 X,
 Y,
 indY,
 study,
 ncomp = 2,
 design,
 scheme,
 mode,
 scale = TRUE,
 init,
 tol = 1e-06,
 max.iter = 100,
```
Arguments

X A named list of data sets (called 'blocks') measured on the same samples. Data in the list should be arranged in samples x variables, with samples order matching in all data sets.

Y Matrix or vector response for a multivariate regression framework. Data should be continuous variables (see ?mint.block.splsda for supervised classification and factor response).

indY To be supplied if Y is missing, indicates the position of the matrix / vector response in the list X

study Factor, indicating the membership of each sample to each of the studies being combined

ncomp the number of components to include in the model. Default to 2. Applies to all blocks.

design numeric matrix of size (number of blocks in X) x (number of blocks in X) with values between 0 and 1. Each value indicates the strength of the relationship to be modelled between two blocks; a value of 0 indicates no relationship, 1 is the maximum value. Alternatively, one of c('null', 'full') indicating a disconnected or fully connected design, respectively, or a numeric between 0 and 1 which will designate all off-diagonal elements of a fully connected design (see examples in block.splsda). If Y is provided instead of indY, the design matrix is changed to include relationships to Y.

scheme Character, one of 'horst', 'factorial' or 'centroid'. Default = 'horst', see reference.

mode Character string indicating the type of PLS algorithm to use. One of "regression", "canonical", "invariant" or "classic". See Details.

scale Logical. If scale = TRUE, each block is standardized to zero means and unit variances (default: TRUE)

init Mode of initialization use in the algorithm, either by Singular Value Decomposition of the product of each block of X with Y ('svd') or each block independently ('svd.single'). Default = svd.single

tol Positive numeric used as convergence criteria/tolerance during the iterative process. Default to 1e-06.

max.iter Integer, the maximum number of iterations. Default to 100.

near.zero.var Logical, see the internal nearZeroVar function (should be set to TRUE in particular for data with many zero values). Setting this argument to FALSE (when appropriate) will speed up the computations. Default value is FALSE.

all.outputs Logical. Computation can be faster when some specific (and non-essential) outputs are not calculated. Default = TRUE.
Details

The function fits multi-group generalised PLS models with a specified number of ncomp components. An outcome needs to be provided, either by Y or by its position indY in the list of blocks X.

Multi (continuous)response are supported. X and Y can contain missing values. Missing values are handled by being disregarded during the cross product computations in the algorithm block.pls without having to delete rows with missing data. Alternatively, missing data can be imputed prior using the nipals function.

The type of algorithm to use is specified with the mode argument. Four PLS algorithms are available: PLS regression ("regression"), PLS canonical analysis ("canonical"), redundancy analysis ("invariant") and the classical PLS algorithm ("classic") (see References and more details in ?pls).

Value

mint.block.pls returns an object of class "mint.pls", "block.pls", a list that contains the following components:

X the centered and standardized original predictor matrix.
Y the centered and standardized original response vector or matrix.
ncomp the number of components included in the model for each block.
mode the algorithm used to fit the model.
mat.c matrix of coefficients from the regression of X / residual matrices X on the X-variates, to be used internally by predict.
variates list containing the X and Y variates.
loadings list containing the estimated loadings for the variates.
names list containing the names to be used for individuals and variables.
nzv list containing the zero- or near-zero predictors information.
tol the tolerance used in the iterative algorithm, used for subsequent S3 methods
max.iter the maximum number of iterations, used for subsequent S3 methods
iter Number of iterations of the algorithm for each component

Author(s)

Florian Rohart, Benoit Gautier, Kim-Anh Lê Cao, Al J Abadi

References


See Also


Examples

data(breast.TCGA)

# for the purpose of this example, we create data that fit in the context of
# this function.
# We consider the training set as study1 and the test set as another
# independent study2.
study = c(rep("study1",150), rep("study2",70))

# to put the data in the MINT format, we rbind the two studies
mrna = rbind(breast.TCGA$data.train$mrna, breast.TCGA$data.test$mrna)
mirna = rbind(breast.TCGA$data.train$mirna, breast.TCGA$data.test$mirna)

# For the purpose of this example, we create a continuous response by
# taking the first mrna variable, and removing it from the data
Y = mrna[,1]
mrna = mrna[,-1]

data = list(mrna = mrna, mirna = mirna)

# we can now apply the function
res = mint.block.plsda(data, Y, study=study, ncomp=2)

res

mint.block.plsda

*NP-integration with Discriminant Analysis*

Description

Function to integrate data sets measured on the same samples (N-integration) and to combine multiple independent studies measured on the same variables or predictors (P-integration) using variants of multi-group and generalised PLS-DA for supervised classification.

Usage

mint.block.plsda(
  X,
  Y,
  indY,
  study,
  ncomp = 2,
  design,
mint.block.plsda

    scheme,
    scale = TRUE,
    init,
    tol = 1e-06,
    max.iter = 100,
    near.zero.var = FALSE,
    all.outputs = TRUE

Arguments

X A named list of data sets (called 'blocks') measured on the same samples. Data in the list should be arranged in samples x variables, with samples order matching in all data sets.

Y A factor or a class vector indicating the discrete outcome of each sample.

indY To be supplied if Y is missing, indicates the position of the matrix / vector response in the list X

study Factor, indicating the membership of each sample to each of the studies being combined

ncomp the number of components to include in the model. Default to 2. Applies to all blocks.

design numeric matrix of size (number of blocks in X) x (number of blocks in X) with values between 0 and 1. Each value indicates the strength of the relationship to be modelled between two blocks; a value of 0 indicates no relationship, 1 is the maximum value. Alternatively, one of c(‘null’, ‘full’) indicating a disconnected or fully connected design, respectively, or a numeric between 0 and 1 which will designate all off-diagonal elements of a fully connected design (see examples in block.splsda). If Y is provided instead of indY, the design matrix is changed to include relationships to Y.

scheme Character, one of ‘horst’, ‘factorial’ or ‘centroid’. Default = ‘horst’, see reference.

scale Logical. If scale = TRUE, each block is standardized to zero means and unit variances (default: TRUE)

init Mode of initialization use in the algorithm, either by Singular Value Decomposition of the product of each block of X with Y (‘svd’) or each block independently (‘svd.single’). Default = svd.single

tol Positive numeric used as convergence criteria/tolerance during the iterative process. Default to 1e-06.

max.iter Integer, the maximum number of iterations. Default to 100.

near.zero.var Logical, see the internal nearZeroVar function (should be set to TRUE in particular for data with many zero values). Setting this argument to FALSE (when appropriate) will speed up the computations. Default value is FALSE.

all.outputs Logical. Computation can be faster when some specific (and non-essential) outputs are not calculated. Default = TRUE.
Details

The function fits multi-group generalised PLS models with a specified number of ncomp components. A factor indicating the discrete outcome needs to be provided, either by \( Y \) or by its position \( \text{ind}Y \) in the list of blocks \( X \).

\( X \) can contain missing values. Missing values are handled by being disregarded during the cross product computations in the algorithm \texttt{block.pls} without having to delete rows with missing data. Alternatively, missing data can be imputed prior using the \texttt{impute.nipals} function.

The type of algorithm to use is specified with the \texttt{mode} argument. Four PLS algorithms are available: PLS regression ("regression"), PLS canonical analysis ("canonical"), redundancy analysis ("invariant") and the classical PLS algorithm ("classic") (see References and more details in \?pls).

Value

\texttt{mint.block.plsda} returns an object of class "mint.plsda", "block.plsda", a list that contains the following components:

- \( X \) the centered and standardized original predictor matrix.
- \( Y \) the centered and standardized original response vector or matrix.
- \texttt{ncomp} the number of components included in the model for each block.
- \texttt{mode} the algorithm used to fit the model.
- \texttt{mat.c} matrix of coefficients from the regression of \( X \) / residual matrices \( X \) on the \( X \)-variates, to be used internally by \texttt{predict}.
- \texttt{variates} list containing the \( X \) and \( Y \) variates.
- \texttt{loadings} list containing the estimated loadings for the variates.
- \texttt{names} list containing the names to be used for individuals and variables.
- \texttt{nzv} list containing the zero- or near-zero predictors information.
- \texttt{tol} the tolerance used in the iterative algorithm, used for subsequent S3 methods
- \texttt{max.iter} the maximum number of iterations, used for subsequent S3 methods
- \texttt{iter} Number of iterations of the algorithm for each component

Author(s)

Florian Rohart, Benoit Gautier, Kim-Anh Lê Cao, Al J Abadi

References

On multi-group PLS:


On multiple integration with PLSDA:


mixOmics article:

See Also


Examples

data(breast.TCGA)

# for the purpose of this example, we consider the training set as study1 and
# the test set as another independent study2.
study = c(rep("study1",150), rep("study2",70))

mrna = rbind(breast.TCGA$data.train$mrna, breast.TCGA$data.test$mrna)
mirna = rbind(breast.TCGA$data.train$mirna, breast.TCGA$data.test$mirna)
data = list(mrna = mrna, mirna = mirna)

Y = c(breast.TCGA$data.train$subtype, breast.TCGA$data.test$subtype)

res = mint.block.plsda(data,Y,study=study, ncomp=2)

res
Usage

mint.block.spls(
    X,
    Y,
    indY,
    study,
    ncomp = 2,
    keepX,
    keepY,
    design,
    mode,
    scale = TRUE,
    init,
    tol = 1e-06,
    max.iter = 100,
    near.zero.var = FALSE,
    all.outputs = TRUE
)

Arguments

X
A named list of data sets (called 'blocks') measured on the same samples. Data
in the list should be arranged in samples x variables, with samples order matching
in all data sets.

Y
Matrix or vector response for a multivariate regression framework. Data should
be continuous variables (see ?mint.block.splsda for supervised classification
and factor response).

indY
To be supplied if Y is missing, indicates the position of the matrix / vector
response in the list X.

study
Factor, indicating the membership of each sample to each of the studies being
combined.

cmp
the number of components to include in the model. Default to 2. Applies to all
blocks.

keepX
A named list of same length as X. Each entry is the number of variables to select
in each of the blocks of X for each component. By default all variables are kept
in the model.

keepY
Only if Y is provided (and not indY). Each entry is the number of variables to
select in each of the blocks of Y for each component.

design
numeric matrix of size (number of blocks in X) x (number of blocks in X) with
values between 0 and 1. Each value indicates the strenght of the relationship to
be modelled between two blocks; a value of 0 indicates no relationship, 1 is the
maximum value. Alternatively, one of c("null", "full") indicating a disconnected
or fully connected design, respectively, or a numeric between 0 and 1 which will
designate all off-diagonal elements of a fully connected design (see examples in
block.splsda). If Y is provided instead of indY, the design matrix is changed
to include relationships to Y.
mint.block.spls

scheme
mode
scale
init
tol
max.iter
near.zero.var
all.outputs

Character, one of 'horst', 'factorial' or 'centroid'. Default = 'horst', see reference.

Character string indicating the type of PLS algorithm to use. One of "regression", "canonical", "invariant" or "classic". See Details.

Logical. If scale = TRUE, each block is standardized to zero means and unit variances (default: TRUE).

Mode of initialization use in the algorithm, either by Singular Value Decomposition of the product of each block of X with Y ('svd') or each block independently ('svd.single'). Default = svd.single

Positive numeric used as convergence criteria/tolerance during the iterative process. Default to 1e-06.

Integer, the maximum number of iterations. Default to 100.

Logical, see the internal nearZeroVar function (should be set to TRUE in particular for data with many zero values). Setting this argument to FALSE (when appropriate) will speed up the computations. Default value is FALSE.

Logical. Computation can be faster when some specific (and non-essential) outputs are not calculated. Default = TRUE.

Details

The function fits sparse multi-group generalised PLS models with a specified number of ncomp components. An outcome needs to be provided, either by Y or by its position indY in the list of blocks X.

Multi (continuous)response are supported. X and Y can contain missing values. Missing values are handled by being disregarded during the cross product computations in the algorithm block.pls without having to delete rows with missing data. Alternatively, missing data can be imputed prior using the nipals function.

The type of algorithm to use is specified with the mode argument. Four PLS algorithms are available: PLS regression ("regression"), PLS canonical analysis ("canonical"), redundancy analysis ("invariant") and the classical PLS algorithm ("classic") (see References and more details in ?pls).

Value

mint.block.spls returns an object of class "mint.spls","block.spls", a list that contains the following components:

X the centered and standardized original predictor matrix.
Y the centered and standardized original response vector or matrix.
ncomp the number of components included in the model for each block.
mode the algorithm used to fit the model.
mat.c matrix of coefficients from the regression of X / residual matrices X on the X-variates, to be used internally by predict.
variates list containing the X and Y variates.
loadings list containing the estimated loadings for the variates.
names list containing the names to be used for individuals and variables.
nzv list containing the zero- or near-zero predictors information.
tol the tolerance used in the iterative algorithm, used for subsequent S3 methods
max.iter the maximum number of iterations, used for subsequent S3 methods
iter Number of iterations of the algorithm for each component

Author(s)
Florian Rohart, Benoit Gautier, Kim-Anh Lê Cao, Al J Abadi

References

See Also

Examples
data(breast.TCGA)

# for the purpose of this example, we create data that fit in the context of
# this function.
# We consider the training set as study1 and the test set as another
# independent study2.
study = c(rep("study1",150), rep("study2",70))

# to put the data in the MINT format, we rbind the two studies
mrna = rbind(breast.TCGA$data.train$mrna, breast.TCGA$data.test$mrna)
mirna = rbind(breast.TCGA$data.train$mirna, breast.TCGA$data.test$mirna)

# For the purpose of this example, we create a continuous response by
# taking the first mrna variable, and removing it from the data
Y = mrna[,1]
mrna = mrna[,-1]

data = list(mrna = mrna, mirna = mirna)

# we can now apply the function
res = mint.block.splsda(data, Y, study=study, ncomp=2,
keepX = list(mrna=c(10,10), mirna=c(20,20)))

res
mint.block.splsda  

NP-integration with Discriminant Analysis and variable selection

Description

Function to integrate data sets measured on the same samples (N-integration) and to combine multiple independent studies measured on the same variables or predictors (P-integration) using variants of sparse multi-group and generalised PLS-DA for supervised classification and variable selection.

Usage

mint.block.splsda(
  X,
  Y,
  indY,
  study,
  ncomp = 2,
  keepX,
  design,
  scheme,
  scale = TRUE,
  init,
  tol = 1e-06,
  max.iter = 100,
  near.zero.var = FALSE,
  all.outputs = TRUE
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>A named list of data sets (called 'blocks') measured on the same samples. Data in the list should be arranged in samples x variables, with samples order matching in all data sets.</td>
</tr>
<tr>
<td>Y</td>
<td>A factor or a class vector indicating the discrete outcome of each sample.</td>
</tr>
<tr>
<td>indY</td>
<td>To be supplied if Y is missing, indicates the position of the matrix / vector response in the list X</td>
</tr>
<tr>
<td>study</td>
<td>Factor, indicating the membership of each sample to each of the studies being combined</td>
</tr>
<tr>
<td>ncomp</td>
<td>the number of components to include in the model. Default to 2. Applies to all blocks.</td>
</tr>
<tr>
<td>keepX</td>
<td>A named list of same length as X. Each entry is the number of variables to select in each of the blocks of X for each component. By default all variables are kept in the model.</td>
</tr>
</tbody>
</table>
mint.block.splsda

design numeric matrix of size (number of blocks in X) x (number of blocks in X) with values between 0 and 1. Each value indicates the strength of the relationship to be modelled between two blocks; a value of 0 indicates no relationship, 1 is the maximum value. Alternatively, one of c('null', 'full') indicating a disconnected or fully connected design, respectively, or a numeric between 0 and 1 which will designate all off-diagonal elements of a fully connected design (see examples in block.splsda). If Y is provided instead of indY, the design matrix is changed to include relationships to Y.

scheme Character, one of 'horst', 'factorial' or 'centroid'. Default = 'horst', see reference.
scale Logical. If scale = TRUE, each block is standardized to zero means and unit variances (default: TRUE)
init Mode of initialization use in the algorithm, either by Singular Value Decomposition of the product of each block of X with Y ('svd') or each block independently ('svd.single'). Default = svd.single
tol Positive numeric used as convergence criteria/tolerance during the iterative process. Default to 1e-06.
max.iter Integer, the maximum number of iterations. Default to 100.
near.zero.var Logical, see the internal nearZeroVar function (should be set to TRUE in particular for data with many zero values). Setting this argument to FALSE (when appropriate) will speed up the computations. Default value is FALSE.
all.outputs Logical. Computation can be faster when some specific (and non-essential) outputs are not calculated. Default = TRUE.

Details

The function fits sparse multi-group generalised PLS Discriminant Analysis models with a specified number of ncomp components. A factor indicating the discrete outcome needs to be provided, either by Y or by its position indY in the list of blocks X.

X can contain missing values. Missing values are handled by being disregarded during the cross product computations in the algorithm block.pls without having to delete rows with missing data. Alternatively, missing data can be imputed prior using the impute.nipals function.

The type of algorithm to use is specified with the mode argument. Four PLS algorithms are available: PLS regression ("regression"), PLS canonical analysis ("canonical"), redundancy analysis ("invariant") and the classical PLS algorithm ("classic") (see References and more details in ?pls).

Value

mint.block.splsda returns an object of class "mint.splsda", "block.splsda", a list that contains the following components:

X the centered and standardized original predictor matrix.
Y the centered and standardized original response vector or matrix.
ncomp the number of components included in the model for each block.
mode the algorithm used to fit the model.
mint.block.splsda

mat.c matrix of coefficients from the regression of X / residual matrices X on the X-variates, to be used internally by predict.

variates list containing the X and Y variates.

loadings list containing the estimated loadings for the variates.

names list containing the names to be used for individuals and variables.

nzv list containing the zero- or near-zero predictors information.

tol the tolerance used in the iterative algorithm, used for subsequent S3 methods

max.iter the maximum number of iterations, used for subsequent S3 methods

iter Number of iterations of the algorithm for each component

Author(s)

Florian Rohart, Benoit Gautier, Kim-Anh Lê Cao, Al J Abadi

References


mixOmics article:


See Also


Examples

data(breast.TCGA)

# for the purpose of this example, we consider the training set as study1 and
# the test set as another independent study2.
study = c(rep("study1",150), rep("study2",70))
mrna = rbind(breast.TCGA$data.train$mrna, breast.TCGA$data.test$mrna)
mirna = rbind(breast.TCGA$data.train$mirna, breast.TCGA$data.test$mirna)
data = list(mrna = mrna, mirna = mirna)

Y = c(breast.TCGA$data.train$subtype, breast.TCGA$data.test$subtype)

res = mint.block.splsda(data,Y,study=study,
                       keepX = list(mrna=c(10,10), mirna=c(20,20)),ncomp=2)

res

mint.pca

P-integration with Principal Component Analysis

Description
Function to integrate and combine multiple independent studies measured on the same variables or
predictors (P-integration) using a multigroup Principal Component Analysis.

Usage
mint.pca(
  X,
  ncomp = 2,
  study,
  scale = TRUE,
  tol = 1e-06,
  max.iter = 100,
  verbose.call = FALSE
)

Arguments
X numeric matrix of predictors combining multiple independent studies on the
same set of predictors. NAs are allowed.
ncomp Number of components to include in the model (see Details). Default to 2
study factor indicating the membership of each sample to each of the studies being
combined
scale Logical. If scale = TRUE, each block is standardized to zero means and unit
variances. Default = TRUE.
tol Convergence stopping value.
max.iter integer, the maximum number of iterations.
verbose.call Logical (Default=FALSE), if set to TRUE then the $call component of the
returned object will contain the variable values for all parameters. Note that this
may cause large memory usage.
Details

`mint.pca` fits a vertical PCA model with `ncomp` components in which several independent studies measured on the same variables are integrated. The study factor indicates the membership of each sample in each study. We advise to only combine studies with more than 3 samples as the function performs internal scaling per study.

Missing values are handled by being disregarded during the cross product computations in the algorithm without having to delete rows with missing data. Alternatively, missing data can be imputed prior using the `nipals` function.

Useful graphical outputs are available, e.g. `plotIndiv`, `plotLoadings`, `plotVar`.

Value

`mint.pca` returns an object of class "`mint.pca"", "pca". a list that contains the following components:

- `X` the centered and standardized original predictor matrix.
- `ncomp` the number of components included in the model.
- `study` The study grouping factor
- `sdev` the eigenvalues of the covariance/correlation matrix, though the calculation is actually done with the singular values of the data matrix or by using NIPALS.
- `center`, `scale` the centering and scaling used, or `FALSE`.
- `rotation` the matrix of variable loadings (i.e., a matrix whose columns contain the eigenvectors).
- `loadings` same as 'rotation’ to keep the mixOmics spirit
- `x` the value of the rotated data (the centred (and scaled if requested) data multiplied by the rotation/loadings matrix), also called the principal components.
- `variates` same as 'x’ to keep the mixOmics spirit
- `prop_expl_var` Proportion of the explained variance from the multivariate model after setting possible missing values to zero in the data.
- `names` list containing the names to be used for individuals and variables.
- `call` if `verbose.call = FALSE`, then just the function call is returned. If `verbose.call = TRUE` then all the inputted values are accessible via this component.

Author(s)

Florian Rohart, Kim-Anh Lê Cao, Al J Abadi

References


mint.pls

See Also


Examples

data(stemcells)

res = mint.pca(X = stemcells$gene, ncomp = 3,
study = stemcells$study)

plotIndiv(res, group = stemcells$celltype, legend=TRUE)

mint.pls

P-integration

Description

Function to integrate and combine multiple independent studies measured on the same variables or predictors (P-integration) using variants of multi-group PLS (unsupervised analysis).

Usage

mint.pls(
  X,
  Y,
  ncomp = 2,
  mode = c("regression", "canonical", "invariant", "classic"),
  study,
  scale = TRUE,
  tol = 1e-06,
  max.iter = 100,
  near.zero.var = FALSE,
  all.outputs = TRUE,
  verbose.call = FALSE
)

Arguments

X numeric matrix of predictors combining multiple independent studies on the same set of predictors. NAs are allowed.

Y Matrix or vector response for a multivariate regression framework. Data should be continuous variables (see `mint.plsda` for supervised classification and factor response).

ncomp Positive Integer. The number of components to include in the model. Default to 2.
**mint.pls**

**mode**  
Character string indicating the type of PLS algorithm to use. One of "regression", "canonical", "invariant" or "classic". See Details.

**study**  
Factor, indicating the membership of each sample to each of the studies being combined

**scale**  
Logical. If scale = TRUE, each block is standardized to zero means and unit variances (default: TRUE)

**tol**  
Positive numeric used as convergence criteria/tolerance during the iterative process. Default to 1e-06.

**max.iter**  
Integer, the maximum number of iterations. Default to 100.

**near.zero.var**  
Logical, see the internal `nearZeroVar` function (should be set to TRUE in particular for data with many zero values). Setting this argument to FALSE (when appropriate) will speed up the computations. Default value is FALSE.

**all.outputs**  
Logical. Computation can be faster when some specific (and non-essential) outputs are not calculated. Default = TRUE.

**verbose.call**  
Logical (Default=FALSE), if set to TRUE then the `$call` component of the returned object will contain the variable values for all parameters. Note that this may cause large memory usage.

**Details**

`mint.pls` fits a vertical PLS-DA models with `ncomp` components in which several independent studies measured on the same variables are integrated. The aim is to explain the continuous outcome `Y`. The `study` factor indicates the membership of each sample in each study. We advise to only combine studies with more than 3 samples as the function performs internal scaling per study.

Multi (continuous)response are supported. `X` and `Y` can contain missing values. Missing values are handled by being disregarded during the cross product computations in the algorithm `mint.pls` without having to delete rows with missing data. Alternatively, missing data can be imputed prior using the `nipals` function.

The type of algorithm to use is specified with the `mode` argument. Four PLS algorithms are available: PLS regression ("regression"), PLS canonical analysis ("canonical"), redundancy analysis ("invariant") and the classical PLS algorithm ("classic") (see References and more details in `?pls`).

Useful graphical outputs are available, e.g. `plotIndiv, plotLoadings, plotVar`.

**Value**

`mint.pls` returns an object of class "mint.pls", "pls", a list that contains the following components:

- **X**  
  the centered and standardized original predictor matrix.

- **Y**  
  the centered and standardized original response vector or matrix.

- **ncomp**  
  the number of components included in the model.

- **study**  
  The study grouping factor

- **mode**  
  the algorithm used to fit the model.

- **variates**  
  list containing the variates of `X` - global variates.
loadings | list containing the estimated loadings for the variates - global loadings.

variates.partial | list containing the variates of X relative to each study - partial variates.

loadings.partial | list containing the estimated loadings for the partial variates - partial loadings.

names | list containing the names to be used for individuals and variables.

nzv | list containing the zero- or near-zero predictors information.

iter | Number of iterations of the algorithm for each component

prop_expl_var | Percentage of explained variance for each component and each study (note that contrary to PCA, this amount may not decrease as the aim of the method is not to maximise the variance, but the covariance between data sets).

call | if verbose.call = FALSE, then just the function call is returned. If verbose.call = TRUE then all the inputted values are accessible via this component

Author(s)

Florian Rohart, Kim-Anh Lê Cao, Al J Abadi

References


See Also


Examples

data(stemcells)

# for the purpose of this example, we artificially create a continuous response Y by taking gene 1.
res = mint.pls(X = stemcells$gene[, -1], Y = stemcells$gene[, 1], ncomp = 3, study = stemcells$study)

plotIndiv(res)

#plot study-specific outputs for all studies
plotIndiv(res, study = "all.partial")

## Not run:
#plot study-specific outputs for study "2"
plotIndiv(res, study = "2", col = 1:3, legend = TRUE)

## End(Not run)

mint.plsda

**P-integration with Projection to Latent Structures models (PLS) with Discriminant Analysis**

### Description

Function to combine multiple independent studies measured on the same variables or predictors (P-integration) using variants of multi-group PLS-DA for supervised classification.

### Usage

```r
mint.plsda(
 X,
 Y,
 ncomp = 2,
 study,
 scale = TRUE,
 tol = 1e-06,
 max.iter = 100,
 near.zero.var = FALSE,
 all.outputs = TRUE,
 verbose.call = FALSE
)
```

### Arguments

- **X**  
  numeric matrix of predictors combining multiple independent studies on the same set of predictors. NAs are allowed.

- **Y**  
  A factor or a class vector indicating the discrete outcome of each sample.

- **ncomp**  
  Positive Integer. The number of components to include in the model. Default to 2.

- **study**  
  Factor, indicating the membership of each sample to each of the studies being combined

- **scale**  
  Logical. If scale = TRUE, each block is standardized to zero means and unit variances (default: TRUE)

- **tol**  
  Positive numeric used as convergence criteria/tolerance during the iterative process. Default to 1e-06.

- **max.iter**  
  Integer, the maximum number of iterations. Default to 100.

- **near.zero.var**  
  Logical, see the internal `nearZeroVar` function (should be set to TRUE in particular for data with many zero values). Setting this argument to FALSE (when appropriate) will speed up the computations. Default value is FALSE.
all.outputs Logical. Computation can be faster when some specific (and non-essential) outputs are not calculated. Default = TRUE.

verbose.call Logical (Default=FALSE), if set to TRUE then the $call component of the returned object will contain the variable values for all parameters. Note that this may cause large memory usage.

Details

mint.plsda function fits a vertical PLS-DA models with ncomp components in which several independent studies measured on the same variables are integrated. The aim is to classify the discrete outcome Y. The study factor indicates the membership of each sample in each study. We advise to only combine studies with more than 3 samples as the function performs internal scaling per study, and where all outcome categories are represented.

X can contain missing values. Missing values are handled by being disregarded during the cross product computations in the algorithm mint.plsda without having to delete rows with missing data. Alternatively, missing data can be imputed prior using the impute.nipals function.

The type of deflation used is 'regression' for discriminant algorithms. i.e. no deflation is performed on Y.

Useful graphical outputs are available, e.g. plotIndiv, plotLoadings, plotVar.

Value

mint.plsda returns an object of class "mint.plsda", "plsda", a list that contains the following components:

X the centered and standardized original predictor matrix.
Y original factor
ind.mat the centered and standardized original response vector or matrix.
ncomp the number of components included in the model.
study The study grouping factor
mode the algorithm used to fit the model.
variates list containing the variates of X - global variates.
loadings list containing the estimated loadings for the variates - global loadings.
variates.partial list containing the variates of X relative to each study - partial variates.
loadings.partial list containing the estimated loadings for the partial variates - partial loadings.
names list containing the names to be used for individuals and variables.
nzv list containing the zero- or near-zero predictors information.
iter Number of iterations of the algorithm for each component
prop_expl_var Percentage of explained variance for each component and each study after setting possible missing values to zero (note that contrary to PCA, this amount may not decrease as the aim of the method is not to maximise the variance, but the covariance between X and the dummy matrix Y).

call if verbose.call = FALSE, then just the function call is returned. If verbose.call = TRUE then all the inputted values are accessable via this component
mint.spls

Author(s)
Florian Rohart, Kim-Anh Lê Cao, Al J Abadi

References
mixOmics article:

See Also
spls, summary, plotIndiv, plotVar, predict, perf, mint.pls, mint.spls, mint.splsda and http://www.mixOmics.org/mixMINT for more details.

Examples
data(stemcells)

res = mint.plsda(X = stemcells$gene, Y = stemcells$celltype, ncomp = 3, study = stemcells$study)
plotIndiv(res)

#plot study-specific outputs for all studies
plotIndiv(res, study = “all.partial”)

## Not run:
#plot study-specific outputs for study "2"
plotIndiv(res, study = "2", col = 1:3, legend = TRUE)

## End(Not run)

mint.spls

P-integration with variable selection

Description
Function to integrate and combine multiple independent studies measured on the same variables or predictors (P-integration) using variants of multi-group sparse PLS for variable selection (unsupervised analysis).
Usage

mint.spls(
  X,
  Y,
  ncomp = 2,
  mode = c("regression", "canonical", "invariant", "classic"),
  study,
  keepX = rep(ncol(X), ncomp),
  keepY = rep(ncol(Y), ncomp),
  scale = TRUE,
  tol = 1e-06,
  max.iter = 100,
  near.zero.var = FALSE,
  all.outputs = TRUE,
  verbose.call = FALSE
)

Arguments

X     numeric matrix of predictors combining multiple independent studies on the same set of predictors. NAs are allowed.

Y     Matrix or vector response for a multivariate regression framework. Data should be continuous variables (see mint.splspa for supervised classification and factor response)

ncomp Positve Integer. The number of components to include in the model. Default to 2.

mode Character string indicating the type of PLS algorithm to use. One of "regression", "canonical", "invariant" or "classic". See Details.

study Factor, indicating the membership of each sample to each of the studies being combined

keepX numeric vector indicating the number of variables to select in X on each component. By default all variables are kept in the model.

keepY numeric vector indicating the number of variables to select in Y on each component. By default all variables are kept in the model.

tol Positive numeric used as convergence criteria/tolerance during the iterative process. Default to 1e-06.

max.iter Integer, the maximum number of iterations. Default to 100.

near.zero.var Logical, see the internal nearZeroVar function (should be set to TRUE in particular for data with many zero values). Setting this argument to FALSE (when appropriate) will speed up the computations. Default value is FALSE.

all.outputs Logical. Computation can be faster when some specific (and non-essential) outputs are not calculated. Default = TRUE.
mint.spls

**verbose.call** Logical (Default=FALSE), if set to TRUE then the $call component of the returned object will contain the variable values for all parameters. Note that this may cause large memory usage.

**Details**

mint.spls fits a vertical sparse PLS-DA models with ncomp components in which several independent studies measured on the same variables are integrated. The aim is to explain the continuous outcome Y and selecting correlated features between both data sets X and Y. The study factor indicates the membership of each sample in each study. We advise to only combine studies with more than 3 samples as the function performs internal scaling per study.

Multi (continuous) response are supported. X and Y can contain missing values. Missing values are handled by being disregarded during the cross product computations in the algorithm mint.spls without having to delete rows with missing data. Alternatively, missing data can be imputed prior using the nipals function.

The type of algorithm to use is specified with the mode argument. Four PLS algorithms are available: PLS regression ("regression"), PLS canonical analysis ("canonical"), redundancy analysis ("invariant") and the classical PLS algorithm ("classic") (see References and more details in ?pls).

Variable selection is performed on each component for each block of X, and for Y if specified, via input parameter keepX and keepY.

Useful graphical outputs are available, e.g. plotIndiv, plotLoadings, plotVar.

**Value**

mint.spls returns an object of class "mint.spls", "spls", a list that contains the following components:

- **X** numeric matrix of predictors combining multiple independent studies on the same set of predictors. NAs are allowed.
- **Y** the centered and standardized original response vector or matrix.
- **ncomp** the number of components included in the model.
- **study** The study grouping factor.
- **mode** the algorithm used to fit the model.
- **keepX** Number of variables used to build each component of X.
- **keepY** Number of variables used to build each component of Y.
- **variates** list containing the variates of X - global variates.
- **loadings** list containing the estimated loadings for the variates - global loadings.
- **variates.partial** list containing the variates of X relative to each study - partial variates.
- **loadings.partial** list containing the estimated loadings for the partial variates - partial loadings.
- **names** list containing the names to be used for individuals and variables.
- **nzv** list containing the zero- or near-zero predictors information.
**iter**
Number of iterations of the algorithm for each component

**prop_expl_var**
The amount of the variance explained by each variate / component divided by the total variance in the data for each study (after removing the possible missing values) using the definition of 'redundancy'. Note that contrary to PCA, this amount may not decrease in the following components as the aim of the method is not to maximise the variance, but the covariance between data sets (including the dummy matrix representation of the outcome variable in case of the supervised approaches).

**call**
if `verbose.call = FALSE`, then just the function call is returned. If `verbose.call = TRUE` then all the inputted values are accessible via this component

**Author(s)**
Florian Rohart, Kim-Anh Lê Cao, Al J Abadi

**References**


**See Also**

**Examples**
```
data(stemcells)

for the purpose of this example, we artificially create a continuous response Y by taking gene 1.

res = mint.spls(X = stemcells[,,-1], Y = stemcells[,1], ncomp = 3, keepX = c(10, 5, 15), study = stemcells$study)

plotIndiv(res)

plot study-specific outputs for all studies
plotIndiv(res, study = "all.partial")

Not run:
plot study-specific outputs for study "2"
plotIndiv(res, study = "2", col = 1:3, legend = TRUE)

End(Not run)
```
P-integration with Discriminant Analysis and variable selection

Description

Function to combine multiple independent studies measured on the same variables or predictors (P-integration) using variants of multi-group sparse PLS-DA for supervised classification with variable selection.

Usage

mint.splsda(
  X,
  Y,
  ncomp = 2,
  study,
  keepX = rep(ncol(X), ncomp),
  scale = TRUE,
  tol = 1e-06,
  max.iter = 100,
  near.zero.var = FALSE,
  all.outputs = TRUE,
  verbose.call = FALSE
)

Arguments

X  
numeric matrix of predictors combining multiple independent studies on the same set of predictors. NAs are allowed.

Y  
A factor or a class vector indicating the discrete outcome of each sample.

ncomp  
Positive Integer. The number of components to include in the model. Default to 2.

study  
Factor, indicating the membership of each sample to each of the studies being combined

keepX  
numeric vector indicating the number of variables to select in X on each component. By default all variables are kept in the model.

scale  
Logical. If scale = TRUE, each block is standardized to zero means and unit variances (default: TRUE)

tol  
Positive numeric used as convergence criteria/tolerance during the iterative process. Default to 1e-06.

max.iter  
Integer, the maximum number of iterations. Default to 100.

near.zero.var  
Logical, see the internal nearZeroVar function (should be set to TRUE in particular for data with many zero values). Setting this argument to FALSE (when appropriate) will speed up the computations. Default value is FALSE.
mint.splsda

all.outputs Logical. Computation can be faster when some specific (and non-essential) outputs are not calculated. Default = TRUE.

verbose.call Logical (Default=FALSE), if set to TRUE then the $call component of the returned object will contain the variable values for all parameters. Note that this may cause large memory usage.

Details

mint.splsda function fits a vertical sparse PLS-DA models with ncomp components in which several independent studies measured on the same variables are integrated. The aim is to classify the discrete outcome Y and select variables that explain the outcome. The study factor indicates the membership of each sample in each study. We advise to only combine studies with more than 3 samples as the function performs internal scaling per study, and where all outcome categories are represented.

X can contain missing values. Missing values are handled by being disregarded during the cross product computations in the algorithm mint.splsda without having to delete rows with missing data. Alternatively, missing data can be imputed prior using the impute.nipals function.

The type of deflation used is ‘regression’ for discriminant algorithms. i.e. no deflation is performed on Y.

Variable selection is performed on each component for X via input parameter keepX.

Useful graphical outputs are available, e.g. plotIndiv, plotLoadings, plotVar.

Value

mint.splsda returns an object of class “mint.splsda”, “splsda”, a list that contains the following components:

X the centered and standardized original predictor matrix.
Y the centered and standardized original response vector or matrix.
ind.mat the centered and standardized original response vector or matrix.
ncomp the number of components included in the model.
study The study grouping factor
mode the algorithm used to fit the model.
keepX Number of variables used to build each component of X
variates list containing the variates of X - global variates.
loadings list containing the estimated loadings for the variates - global loadings.
variates.partial list containing the variates of X relative to each study - partial variates.
loadings.partial list containing the estimated loadings for the partial variates - partial loadings.
names list containing the names to be used for individuals and variables.
nzv list containing the zero- or near-zero predictors information.
iter Number of iterations of the algorithm for each component
prop_expl_var  Percentage of explained variance for each component and each study (note that contrary to PCA, this amount may not decrease as the aim of the method is not to maximise the variance, but the covariance between X and the dummy matrix Y).

call if verbose.call = FALSE, then just the function call is returned. If verbose.call = TRUE then all the inputted values are accessible via this component

Author(s)
Florian Rohart, Kim-Anh Lê Cao, Al J Abadi

References


mixOmics article:

See Also

Examples
data(stemcells)

# -- feature selection
res = mint.splsda(X = stemcells$gene, Y = stemcells$celltype, ncomp = 3, keepX = c(10, 5, 15), study = stemcells$study)

plotIndiv(res)
#plot study-specific outputs for all studies
plotIndiv(res, study = "all.partial")

## Not run:
#plot study-specific outputs for study "2"
plotIndiv(res, study = "2")

#plot study-specific outputs for study "2", "3" and "4"
plotIndiv(res, study = c(2, 3, 4))

## End(Not run)
mixOmics  

**mixOmics**  

PLS-derived methods: one function to rule them all!

---

### Description

*This is the documentation for mixOmics function from mixOmics package. For package documentation refer to help(package='mixOmics')*

### Usage

```r
mixOmics(
 X,
 Y,
 indY,
 study,
 ncomp,
 keepX,
 keepY,
 design,
 tau = NULL,
 scheme,
 mode = c("regression", "canonical", "invariant", "classic"),
 scale,
 init,
 tol = 1e-06,
 max.iter = 100,
 near.zero.var = FALSE
)
```

### Arguments

- **X**
  - Input data. Either a matrix or a list of data sets (called 'blocks') matching on the same samples. Data should be arranged in samples x variables, with samples order matching in all data sets.

- **Y**
  - Outcome. Either a numeric matrix of responses or a factor or a class vector for the discrete outcome.

- **indY**
  - To supply if Y is missing, indicates the position of the outcome in the list X

- **study**
  - grouping factor indicating which samples are from the same study

- **ncomp**
  - If X is a data matrix, ncomp is a single value. If X is a list of data sets, ncomp is a numeric vector of length the number of blocks in X. The number of components to include in the model for each block (does not necessarily need to take the same value for each block).

- **keepX**
  - Number of variables to keep in the X-loadings

- **keepY**
  - Number of variables to keep in the Y-loadings
design numeric matrix of size (number of blocks) x (number of blocks) with only 0 or 1 values. A value of 1 (0) indicates a relationship (no relationship) between the blocks to be modelled. If \( Y \) is provided instead of \( \text{indY} \), the design matrix is changed to include relationships to \( Y \).

tau numeric vector of length the number of blocks in \( X \). Each regularization parameter will be applied on each block and takes the value between 0 (no regularisation) and 1. If \( \text{tau} = \) "optimal" the shrinkage parameters are estimated for each block and each dimension using the Schafer and Strimmer (2005) analytical formula.

scheme Either "horst", "factorial" or "centroid" (Default: "centroid"), see reference paper.

mode character string. What type of algorithm to use, (partially) matching one of "regression", "canonical", "invariant" or "classic". See Details.

scale Logical. If scale = TRUE, each block is standardized to zero means and unit variances (default: TRUE)

init Mode of initialization use in the algorithm, either by Singular Value Decomposition of the product of each block of \( X \) with \( Y \) ("svd") or each block independently ("svd.single"). Default to "svd".

tol Convergence stopping value.

max.iter integer, the maximum number of iterations.

near.zero.var Logical, see the internal \texttt{nearZeroVar} function (should be set to TRUE in particular for data with many zero values). Setting this argument to FALSE (when appropriate) will speed up the computations. Default value is FALSE

Details

This function performs one of the PLS derived methods included in the mixOmics package that is the most appropriate for your input data, one of (mint).(block).(s)pls(da) depending on your input data (single data, list of data, discrete outcome, . . . )

This function performs one of the PLS derived methods included in the mixOmics package that is the most appropriate for your input data, one of (mint).(block).(s)pls(da).

If your input data \( X \) is a matrix, then the algorithm is directed towards one of (mint).(s)pls(da) depending on your input data \( Y \) (factor for the discrete outcome directs the algorithm to DA analysis) and whether you input a study parameter (MINT analysis) or a keepX parameter (sparse analysis).

If your input data \( X \) is a list of matrices, then the algorithm is directed towards one of (mint).block.(s)pls(da) depending on your input data \( Y \) (factor for the discrete outcome directs the algorithm to DA analysis) and whether you input a study parameter (MINT analysis) or a keepX parameter (sparse analysis).

More details about the PLS modes in \?pls.

Value

none

Author(s)

Florian Rohart, Kim-Anh Lê Cao, Al J Abadi
References

mixOmics article:

MINT models:


Integration of omics data sets:


Sparse SVD:

PLS-DA:

PLS:


On multilevel analysis:

Visualisations:

See Also
 pls, spls, plsda, splsda, mint.pls, mint.spls, mint.plsda, mint.splsda, block.pls, block.spls, block.plsda, block.splsda, mint.block.pls, mint.block.spls, mint.block.plsda, mint.block.splsda

Examples

```r
-- directed towards PLS framework because X is a matrix and the study argument is missing
--
data(liver.toxicity)
X = liver.toxicity$gene
Y = liver.toxicity$clinic
Y.factor = as.factor(liver.toxicity$treatment[, 4])

directed towards PLS
out = mixOmics(X, Y, ncomp = 2)

directed towards sPLS because of keepX and/or keepY
out = mixOmics(X, Y, ncomp = 2, keepX = c(50, 50), keepY = c(10, 10))

directed towards PLS-DA because Y is a factor
out = mixOmics(X, Y.factor, ncomp = 2)

directed towards sPLS-DA because Y is a factor and there is a keepX
out = mixOmics(X, Y.factor, ncomp = 2, keepX = c(20, 20))

Not run:
-- directed towards block.pls framework because X is a list
--
data(nutrimouse)
Y = unmap(nutrimouse$diet)
data = list(gene = nutrimouse$gene, lipid = nutrimouse$lipid, Y = Y)

directed towards block PLS
out = mixOmics(X = data, Y = Y, ncomp = 3)

directed towards block sPLS because of keepX and/or keepY
out = mixOmics(X = data, Y = Y, ncomp = 3, keepX = list(gene = c(10,10), lipid = c(15,15)))

directed towards block PLS-DA because Y is a factor
out = mixOmics(X = data, Y = nutrimouse$diet, ncomp = 3)

directed towards block sPLS-DA because Y is a factor and there is a keepX
out = mixOmics(X = data, Y = nutrimouse$diet, ncomp = 3, keepX = list(gene = c(10,10), lipid = c(15,15)))
```
multidrug

Multidrug Resistance Data

Description

This data set contains the expression of 48 known human ABC transporters with patterns of drug activity in 60 diverse cancer cell lines (the NCI-60) used by the National Cancer Institute to screen for anticancer activity.

Usage

data(multidrug)

Format

A list containing the following components:

- list("ABC.trans") data matrix with 60 rows and 48 columns. The expression of the 48 human ABC transporters.
- list("compound") data matrix with 60 rows and 1429 columns. The activity of 1429 drugs for the 60 cell lines.
- list("comp.name") character vector. The names or the NSC No. of the 1429 compounds.
- list("cell.line") a list containing two character vector components: Sample the names of the 60 cell line which were analysed, and Class the phenotypes of the 60 cell lines.
Details
The data come from a pharmacogenomic study (Szakacs et al., 2004) in which two kinds of measurements acquired on the NCI-60 cancer cell lines are considered:

- the expression of the 48 human ABC transporters measured by real-time quantitative RT-PCR for each cell line;
- the activity of 1429 drugs expressed as $G_{50}$ which corresponds to the concentration at which the drug induces 50% inhibition of cellular growth for the cell line tested.

The NCI-60 panel includes cell lines derived from cancers of colorectal (7 cell lines), renal (8), ovarian (6), breast (8), prostate (2), lung (9) and central nervous system origin (6), as well as leukemias (6) and melanomas (8). It was set up by the Developmental Therapeutics Program of the National Cancer Institute (NCI, one of the U.S. National Institutes of Health) to screen the toxicity of chemical compound repositories. The expressions of the 48 human ABC transporters is available as a supplement to the paper of Szakacs et al. (2004).

The drug dataset consists of 118 compounds whose mechanisms of action are putatively classifiable (Weinstein et al., 1992) and a larger set of 1400 compounds that have been tested multiple times and whose screening data met quality control criteria described elsewhere (Scherf et al., 2000). The two were combined to form a joint dataset that included 1429 compounds.

Value
none

Source
The NCI dataset was downloaded from The Genomics and Bioinformatics Group Supplemental Table S1 to the paper of Szakacs et al. (2004), http://discover.nci.nih.gov/abc/2004_cancercell_abstract.jsp#supplement

The two drug data sets are a companion resource for the paper of Scherf et al. (2000), and was downloaded from http://discover.nci.nih.gov/datasetsNature2000.jsp.

References


nearZeroVar  

Identification of zero- or near-zero variance predictors

Description

Borrowed from the caret package. It is used as an internal function in the PLS methods, but can also be used as an external function, in particular when the data contain a lot of zeroes values and need to be pre-filtered beforehand.

Usage

`nearZeroVar(x, freqCut = 95/5, uniqueCut = 10)`

Arguments

- `x`: a numeric vector or matrix, or a data frame with all numeric data.
- `freqCut`: the cutoff for the ratio of the most common value to the second most common value.
- `uniqueCut`: the cutoff for the percentage of distinct values out of the number of total samples.

Details

This function diagnoses predictors that have one unique value (i.e. are zero variance predictors) or predictors that are have both of the following characteristics: they have very few unique values relative to the number of samples and the ratio of the frequency of the most common value to the frequency of the second most common value is large.

For example, an example of near zero variance predictor is one that, for 1000 samples, has two distinct values and 999 of them are a single value.

To be flagged, first the frequency of the most prevalent value over the second most frequent value (called the “frequency ratio”) must be above `freqCut`. Secondly, the “percent of unique values,” the number of unique values divided by the total number of samples (times 100), must also be below `uniqueCut`.

In the above example, the frequency ratio is 999 and the unique value percentage is 0.0001.

Value

`nearZeroVar` returns a list that contains the following components:

- **Position**: a vector of integers corresponding to the column positions of the problematic predictors that will need to be removed.
- **Metrics**: a data frame containing the zero- or near-zero predictors information with columns: `freqRatio`, the ratio of frequencies for the most common value over the second most common value and, `percentUnique`, the percentage of unique data points out of the total number of data points.
network

Description

Display relevance associations network for (regularized) canonical correlation analysis and (sparse) PLS regression. The function avoids the intensive computation of Pearson correlation matrices on large data set by calculating instead a pair-wise similarity matrix directly obtained from the latent components of our integrative approaches (CCA, PLS, block.pls methods). The similarity value between a pair of variables is obtained by calculating the sum of the correlations between the original variables and each of the latent components of the model. The values in the similarity matrix can be seen as a robust approximation of the Pearson correlation (see González et al. 2012 for a mathematical demonstration and exact formula). The advantage of relevance networks is their ability to simultaneously represent positive and negative correlations, which are missed by methods based on Euclidean distances or mutual information. Those networks are bipartite and thus only a link between two variables of different types can be represented. The network can be saved in a .glm format using the igraph package, the function write.graph and extracting the output object$gR, see details.

Examples

data(diverse.16S)
nzv = nearZeroVar(diverse.16S$data.raw)
length(nzv$Position) # those would be removed for the default frequency cut

Usage

network(
    mat,
    comp = NULL,
    blocks = c(1, 2),
    cutoff = 0,
    row.names = TRUE,
    col.names = TRUE,
    block.var.names = TRUE,
    graph.scale = 0.5,
    size.node = 0.5,
    color.node = NULL,
    shape.node = NULL,
    alpha.node = 0.85,
)
Arguments

mat numeric matrix of values to be represented. Alternatively, an object from one of the following models: mix_pls, plsda, mixo_spls, splsda, rcc, sgcca, rgcca, sgccda.

comp atomic or vector of positive integers. The components to adequately account for the data association. Defaults to comp = 1.

blocks a vector indicating the block variables to display.

cutoff numeric value between 0 and 1. The tuning threshold for the relevant associations network (see Details).

row.names, col.names character vector containing the names of X- and Y-variables.

block.var.names either a list of vector components for variable names in each block or FALSE for no names. If TRUE, the columns names of the blocks are used as names.

graph.scale Numeric between 0 and 1 which alters the scale of the entire plot. Increasing the value decreases the size of nodes and increases their distance from one another. Defaults to 0.5.

size.node Numeric between 0 and 1 which determines the relative size of nodes. Defaults to 0.5.

color.node vector of length two, the colors of the X and Y nodes (see Details).

shape.node character vector of length two, the shape of the X and Y nodes (see Details).

alpha.node Numeric between 0 and 1 which determines the opacity of nodes. Only used in block objects.

cex.node.name the font size for the node labels.

color.edge vector of colors or character string specifying the colors function to using to color the edges, set to default to color.GreenRed(100) but other palettes can be chosen (see Details and Examples).
**network**

`lty.edge` character vector of length two, the line type for the edges (see Details).

`lwd.edge` vector of length two, the line width of the edges (see Details).

`show.edge.labels` logical. If TRUE, plot association values as edge labels (defaults to FALSE).

`cex.edge.label` the font size for the edge labels.

`show.color.key` Logical. If TRUE a color key should be plotted.

`symkey` Logical indicating whether the color key should be made symmetric about 0. Defaults to TRUE.

`keysize` numeric value indicating the size of the color key.

`keys.size.label` vector of length 1, indicating the size of the labels and title of the color key.

`breaks` (optional) either a numeric vector indicating the splitting points for binning mat into colors, or an integer number of break points to be used, in which case the break points will be spaced equally between `min(mat)` and `max(mat)`.

`interactive` logical. If TRUE, a scrollbar is created to change the cutoff value interactively (defaults to FALSE). See Details.

`layout.fun` a function. It specifies how the vertices will be placed on the graph. See help(layout) in the igraph package. Defaults to layout.fruchterman.reingold.

`save` should the plot be saved? If so, argument to be set either to 'jpeg', 'tiff', 'png' or 'pdf'.

`name.save` character string giving the name of the saved file.

`plot.graph` logical. If TRUE (default), plotting window will be filled with network. If FALSE, then no graph will be plotted, though the return value of the function is the exact same.

**Details**

`network` allows to infer large-scale association networks between the `X` and `Y` datasets in `rcc` or `spls`. The output is a graph where each `X`- and `Y`-variable corresponds to a node and the edges included in the graph portray associations between them.

In `rcc`, to identify `X-Y` pairs showing relevant associations, `network` calculate a similarity measure between `X` and `Y` variables in a pair-wise manner: the scalar product value between every pairs of vectors in dimension `length(comp)` representing the variables `X` and `Y` on the axis defined by `Z_i` with `i` in `comp`, where `Z_i` is the equiangular vector between the `i`-th `X` and `Y` canonical variate.

In `spls`, if `object$mode` is regression, the similarity measure between `X` and `Y` variables is given by the scalar product value between every pairs of vectors in dimension `length(comp)` representing the variables `X` and `Y` on the axis defined by `U_i` with `i` in `comp`, where `U_i` is the `i`-th `X` variate. If `object$mode` is canonical then `X` and `Y` are represented on the axis defined by `U_i` and `V_i` respectively.

Variable pairs with a high similarity measure (in absolute value) are considered as relevant. By changing the cut-off, one can tune the relevance of the associations to include or exclude relationships in the network.

`interactive=TRUE` open two device, one for association network, one for scrollbar, and define an interactive process: by clicking either at each end (− or +) of the scrollbar or at middle portion of this. The position of the slider indicate which is the ’cutoff’ value associated to the display network.
The network can be saved in a .glm format using the `igraph` package, the function `write.graph` and extracting the output `object$gR`.

The interactive process is terminated by clicking the second button and selecting `Stop` from the menu, or from the `Stop` menu on the graphics window.

The `color.node` is a vector of length two, of any of the three kind of R colors, i.e., either a color name (an element of `colors()`), a hexadecimal string of the form "#rrggbb", or an integer i meaning `palette()[i]`. `color.node[1]` and `color.node[2]` give the color for filled nodes of the X- and Y-variables respectively. Defaults to `c("white", "white")`.

`color.edge` give the color to edges with colors corresponding to the values in `mat`. Defaults to `color.GreenRed(100)` for negative (green) and positive (red) correlations. We also propose other palettes of colors, such as `color.jet` and `color.spectral`, see help on those functions, and examples below. Other palette of colors from the `stats` package can be used too.

`shape.node[1]` and `shape.node[2]` provide the shape of the nodes associate to X- and Y-variables respectively. Current acceptable values are "circle" and "rectangle". Defaults to `c("circle", "rectangle")`.

`lty.edge[1]` and `lty.edge[2]` give the line type to edges with positive and negative weight respectively. Can be one of "solid", "dashed", "dotted", "dotdash", "longdash" and "twodash". Defaults to `c("solid", "solid")`.

`lwd.edge[1]` and `lwd.edge[2]` provide the line width to edges with positive and negative weight respectively. This attribute is of type double with a default of `c(1, 1)`.

**Value**

`network` return a list containing the following components:

- `M` the correlation matrix used by `network`.
- `gR` a graph object to save the graph for cytoscape use (requires to load the `igraph` package).

**Warning**

If the number of variables is high, the generation of the network generation can take some time.

**Author(s)**

Ignacio González, Kim-Anh Lê Cao, AL J Abadi

**References**


Examples and illustrations:


Relevance networks:


See Also


Examples

```r
network representation for objects of class 'rcc'
data(nutrimouse)
X <- nutrimouse$lipid
Y <- nutrimouse$gene
nutri.res <- rcc(X, Y, ncomp = 3, lambda1 = 0.064, lambda2 = 0.008)

Not run:
may not work on the Linux version, use Windows instead
sometimes with Rstudio might not work because of margin issues,
in that case save it as an image
jpeg('example1-network.jpeg', res = 600, width = 4000, height = 4000)
network(nutri.res, comp = 1:3, cutoff = 0.6)
dev.off()

Changing the attributes of the network
sometimes with Rstudio might not work because of margin issues,
in that case save it as an image
jpeg('example2-network.jpeg')
network(nutri.res, comp = 1:3, cutoff = 0.45,
color.node = c("mistyrose", "lightcyan"),
shape.node = c("circle", "rectangle"),
color.edge = color.jet(100),
lty.edge = "solid", lwd.edge = 2,
show.edge.labels = FALSE)
dev.off()

interactive 'cutoff'
network(nutri.res, comp = 1:3, cutoff = 0.55, interactive = TRUE)

select the 'cutoff' and "see" the new network

network representation for objects of class 'spls'
data(liver.toxicity)
X <- liver.toxicity$gene
Y <- liver.toxicity$clinic
toxicity.spls <- spls(X, Y, ncomp = 3, keepX = c(50, 50, 50),
```
nipals

Non-linear Iterative Partial Least Squares (NIPALS) algorithm

Description

This function performs NIPALS algorithm, i.e. the singular-value decomposition (SVD) of a data table that can contain missing values.

Usage

nipals(X, ncomp = 2, max.iter = 500, tol = 1e-06)

Arguments

X

a numeric matrix (or data frame) which provides the data for the principal components analysis. It can contain missing values in which case center = TRUE is used as required by the nipals function.

ncomp

Integer, if data is complete ncomp decides the number of components and associated eigenvalues to display from the pcasvd algorithm and if the data has missing values, ncomp gives the number of components to keep to perform the reconstitution of the data using the NIPALS algorithm. If NULL, function sets ncomp = min(nrow(X),ncol(X))

max.iter

Integer, the maximum number of iterations in the NIPALS algorithm.

tol

Positive real, the tolerance used in the NIPALS algorithm.

Details

The NIPALS algorithm (Non-linear Iterative Partial Least Squares) has been developed by H. Wold at first for PCA and later-on for PLS. It is the most commonly used method for calculating the principal components of a data set. It gives more numerically accurate results when compared with the SVD of the covariance matrix, but is slower to calculate.

This algorithm allows to realize SVD with missing data, without having to delete the rows with missing data or to estimate the missing data.
nutrimouse

Description

The nutrimouse dataset contains the expression measure of 120 genes potentially involved in nutritional problems and the concentrations of 21 hepatic fatty acids for forty mice.

Usage

data(nutrimouse)

Format

A list containing the following components:

- list("gene") data frame with 40 observations on 120 numerical variables.
- list("lipid") data frame with 40 observations on 21 numerical variables.
- list("diet") factor of 5 levels containing 40 labels for the diet factor.
- list("genotype") factor of 2 levels containing 40 labels for the diet factor.
Details

The data sets come from a nutrigenomic study in the mouse (Martin et al., 2007) in which the effects of five regimens with contrasted fatty acid compositions on liver lipids and hepatic gene expression in mice were considered. Two sets of variables were acquired on forty mice:

- gene: expressions of 120 genes measured in liver cells, selected (among about 30,000) as potentially relevant in the context of the nutrition study. These expressions come from a nylon macroarray with radioactive labelling;
- lipid: concentrations (in percentages) of 21 hepatic fatty acids measured by gas chromatography.

Biological units (mice) were cross-classified according to two factors experimental design (4 replicates):

- Genotype: 2-levels factor, wild-type (WT) and PPARα -/- (PPAR).
- Diet: 5-levels factor. Oils used for experimental diets preparation were corn and colza oils (50/50) for a reference diet (REF), hydrogenated coconut oil for a saturated fatty acid diet (COC), sunflower oil for an Omega6 fatty acid-rich diet (SUN), linseed oil for an Omega3-rich diet (LIN) and corn/colza/enriched fish oils for the FISH diet (43/43/14).

Value

none

Source

The nutrimouse dataset was provided by Pascal Martin from the Toxicology and Pharmacology Laboratory, National Institute for Agronomic Research, French.

References


**pca**

Principal Components Analysis

Description

Performs a principal components analysis on the given data matrix that can contain missing values. If data are complete `pca` uses Singular Value Decomposition, if there are some missing values, it uses the NIPALS algorithm.
pca

Usage

pca(
  X,
  ncomp = 2,
  center = TRUE,
  scale = FALSE,
  max.iter = 500,
  tol = 1e-09,
  logratio = c("none", "CLR", "ILR"),
  ilr.offset = 0.001,
  V = NULL,
  multilevel = NULL,
  verbose.call = FALSE
)

Arguments

X
  a numeric matrix (or data frame) which provides the data for the principal components analysis. It can contain missing values in which case center = TRUE is used as required by the nipals function.

ncomp
  Integer, if data is complete ncomp decides the number of components and associated eigenvalues to display from the pcasvd algorithm and if the data has missing values, ncomp gives the number of components to keep to perform the reconstitution of the data using the NIPALS algorithm. If NULL, function sets ncomp = min(nrow(X),ncol(X))

center
  (Default=TRUE) Logical, whether the variables should be shifted to be zero centered. Only set to FALSE if data have already been centered. Alternatively, a vector of length equal the number of columns of X can be supplied. The value is passed to scale. If the data contain missing values, columns should be centered for reliable results.

scale
  (Default=FALSE) Logical indicating whether the variables should be scaled to have unit variance before the analysis takes place. The default is FALSE for consistency with prcomp function, but in general scaling is advisable. Alternatively, a vector of length equal the number of columns of X can be supplied. The value is passed to scale.

max.iter
  Integer, the maximum number of iterations in the NIPALS algorithm.

tol
  Positive real, the tolerance used in the NIPALS algorithm.

logratio
  (Default='none') one of ('none','CLR','ILR'). Specifies the log ratio transformation to deal with compositional values that may arise from specific normalisation in sequencing data. Default to 'none'

ilr.offset
  (Default=0.001) When logratio is set to 'ILR', an offset must be input to avoid infinite value after the logratio transform.

V
  Matrix used in the logratio transformation if provided.

multilevel
  sample information for multilevel decomposition for repeated measurements.
verbose.call Logical (Default=FALSE), if set to TRUE then the $call component of the returned object will contain the variable values for all parameters. Note that this may cause large memory usage.

Details
The calculation is done either by a singular value decomposition of the (possibly centered and scaled) data matrix, if the data is complete or by using the NIPALS algorithm if there is data missing. Unlike princomp, the print method for these objects prints the results in a nice format and the plot method produces a bar plot of the percentage of variance explained by the principal components (PCs).

When using NIPALS (missing values), we make the assumption that the first (min(ncol(X), nrow(X)) principal components will account for 100% of the explained variance. Note that scale = TRUE will throw an error if there are constant variables in the data, in which case it’s best to filter these variables in advance.

According to Filzmoser et al., a ILR log ratio transformation is more appropriate for PCA with compositional data. Both CLR and ILR are valid.

Logratio transform and multilevel analysis are performed sequentially as internal pre-processing step, through logratio.transfo and withinVariation respectively.

Logratio can only be applied if the data do not contain any 0 value (for count data, we thus advise the normalise raw data with a 1 offset). For ILR transformation and additional offset might be needed.

Value
pca returns a list with class "pca" and "prcomp" containing the following components:
call if verbose.call = FALSE, then just the function call is returned. If verbose.call = TRUE then all the inputted values are accessible via this component
X The input data matrix, possibly scaled and centered.
ncomp The number of principal components used.
center The centering used.
scale The scaling used.
names List of row and column names of data.
sdev The eigenvalues of the covariance/correlation matrix, though the calculation is actually done with the singular values of the data matrix or by using NIPALS.
loadings A length one list of matrix of variable loadings for X (i.e., a matrix whose columns contain the eigenvectors).
variates Matrix containing the coordinate values corresponding to the projection of the samples in the space spanned by the principal components. These are the dimension-reduced representation of observations/samples.
var.tot Total variance in the data.
prop_expl_var Proportion of variance explained per component after setting possible missing values in the data to zero (note that contrary to PCA, this amount may not decrease as the aim of the method is not to maximise the variance, but the covariance between X and the dummy matrix Y).
The cumulative explained variance for components.

If multilevel, the data matrix with within-group-variation removed.

If multilevel, the provided design.

Author(s)

Florian Rohart, Kim-Anh Lê Cao, Ignacio González, Al J Abadi

References


See Also

nipals, prcomp, biplot, plotIndiv, plotVar and http://www.mixOmics.org for more details.

Examples

# example with missing values where NIPALS is applied
# --------------------------------
data(multidrug)
X <- multidrug$ABC.trans
pca.res <- pca(X, ncomp = 4, scale = TRUE)
plot(pca.res)
print(pca.res)
biplot(pca.res, group = multidrug$cell.line$Class, legend.title = 'Class')

# samples representation
plotIndiv(pca.res, ind.names = multidrug$cell.line$Class,
          group = as.numeric(as.factor(multidrug$cell.line$Class)))

# variable representation
plotVar(pca.res, var.names = TRUE, cutoff = 0.4, pch = 16)

## Not run:
plotIndiv(pca.res, cex = 0.2,
          col = as.numeric(as.factor(multidrug$cell.line$Class)), style="3d")

plotVar(pca.res, rad.in = 0.5, cex = 0.5, style="3d")

## End(Not run)

# example with imputing the missing values using impute.nipals()
data("nutrimouse")
X <- data.matrix(nutrimouse$lipid)
X <- scale(X, center = TRUE, scale = TRUE)
## add missing values to X to impute and compare to actual values
set.seed(42)
na.ind <- sample(seq_along(X), size = 20)
true.values <- X[na.ind]
X[na.ind] <- NA
pca.no.impute <- pca(X, ncomp = 2)
plotIndiv(pca.no.impute, group = nutrimouse$diet, pch = 16)
X.impute <- impute.nipals(X, ncomp = 10)
## compare
cbind('imputed' = round(X.impute[na.ind], 2), 'actual' = round(true.values, 2))
## run pca using imputed matrix
pca.impute <- pca(X.impute, ncomp = 2)
plotIndiv(pca.impute, group = nutrimouse$diet, pch = 16)
# example with multilevel decomposition and CLR log ratio transformation
# (ILR takes longer to run)
# -----------------
data("diverse.16S")
pca.res = pca(X = diverse.16S$data.TSS, ncomp = 3, logratio = 'CLR', multilevel = diverse.16S$sample)
plot(pca.res)
plotIndiv(pca.res, ind.names = FALSE, group = diverse.16S$ bodysite, title = '16S diverse data', legend = TRUE, legend.title = 'Bodysite')

perf

### perf

**Compute evaluation criteria for PLS, sPLS, PLS-DA, sPLS-DA, MINT and DIABLO**

**Description**

Function to evaluate the performance of the fitted PLS, sparse PLS, PLS-DA, sparse PLS-DA, MINT (mint.splsda) and DIABLO (block.splsda) models using various criteria.

**Usage**

```r
perf(object, ...)
```

## S3 method for class 'mixo_pls'
perf(object, validation = c("Mfold", "loo"), folds, progressBar = FALSE, ...)

perf

  nrepeat = 1,
  ...
)

## S3 method for class 'mixo_spls'
perf(
  object,
  validation = c("Mfold", "loo"),
  folds,
  progressBar = FALSE,
  nrepeat = 1,
  ...
)

## S3 method for class 'mixo_plsda'
perf(
  object,
  dist = c("all", "max.dist", "centroids.dist", "mahalanobis.dist"),
  validation = c("Mfold", "loo"),
  folds = 10,
  nrepeat = 1,
  auc = FALSE,
  progressBar = FALSE,
  signif.threshold = 0.01,
  cpus = 1,
  ...
)

## S3 method for class 'mixo_splsda'
perf(
  object,
  dist = c("all", "max.dist", "centroids.dist", "mahalanobis.dist"),
  validation = c("Mfold", "loo"),
  folds = 10,
  nrepeat = 1,
  auc = FALSE,
  progressBar = FALSE,
  signif.threshold = 0.01,
  cpus = 1,
  ...
)

## S3 method for class 'sgccda'
perf(
  object,
  dist = c("all", "max.dist", "centroids.dist", "mahalanobis.dist"),
  validation = c("Mfold", "loo"),
  folds = 10,
nrepeat = 1,
auc = FALSE,
progressBar = FALSE,
signif.threshold = 0.01,
cpus = 1,
...)

## S3 method for class 'mint.pls'
perf(
  object,
  validation = c("Mfold", "loo"),
  folds = 10,
  progressBar = FALSE,
  ...
)

## S3 method for class 'mint.spls'
perf(
  object,
  validation = c("Mfold", "loo"),
  folds = 10,
  progressBar = FALSE,
  ...
)

## S3 method for class 'mint.plsda'
perf(
  object,
  dist = c("all", "max.dist", "centroids.dist", "mahalanobis.dist"),
  auc = FALSE,
  progressBar = FALSE,
  signif.threshold = 0.01,
  ...
)

## S3 method for class 'mint.splsda'
perf(
  object,
  dist = c("all", "max.dist", "centroids.dist", "mahalanobis.dist"),
  auc = FALSE,
  progressBar = FALSE,
  signif.threshold = 0.01,
  ...
)
Arguments

object  

object of class inherited from "pls", "plsda", "spls", "splsda" or "mint.splsda". The function will retrieve some key parameters stored in that object.

...  

not used

validation  

character. What kind of (internal) validation to use, matching one of "Mfold" or "loo" (see below). Default is "Mfold".

dist  

only applies to an object inheriting from "plsda", "splsda" or "mint.splsda" to evaluate the classification performance of the model. Should be a subset of "max.dist", "centroids.dist", "mahalanobis.dist". Default is "all". See predict.

auc  

if TRUE calculate the Area Under the Curve (AUC) performance of the model.

signif.threshold  

numeric between 0 and 1 indicating the significance threshold required for improvement in error rate of the components. Default to 0.01.

cpus  

Number of cpus to use when running the code in parallel.

Details

Procedure. The process of evaluating the performance of a fitted model object is similar for all PLS-derived methods; a cross-validation approach is used to fit the method of object on \( (\text{folds}-1) \) subsets of the data and then to predict on the subset left out. Different measures of performance are available depending on the model. Parameters such as logratio, multilevel, keepX or keepY are retrieved from object.

Parameters. If validation = "Mfold", M-fold cross-validation is performed. folds specifies the number of folds to generate. The folds also can be supplied as a list of vectors containing the indexes defining each fold as produced by split. When using validation = "Mfold", make sure that you repeat the process several times (as the results will be highly dependent on the random splits and the sample size).

If validation = "loo", leave-one-out cross-validation is performed (in that case, there is no need to repeat the process).

Measures of performance. For fitted PLS and sPLS regression models, perf estimates the mean squared error of prediction (MSEP), \( R^2 \), and \( Q^2 \) to assess the predictive perfity of the model using M-fold or leave-one-out cross-validation. Note that only the classic, regression and invariant modes can be applied. For sPLS, the MSEP, \( R^2 \), and \( Q^2 \) criteria are averaged across all folds. Note that for PLS and sPLS objects, perf is performed on the pre-processed data after log ratio transform and multilevel analysis, if any.

Sparse methods. The sPLS, sPLS-DA and sgccda functions are run on several and different subsets of data (the cross-folds) and will certainly lead to different subset of selected features. Those are summarised in the output features$stable (see output Value below) to assess how often the variables are selected across all folds. Note that for PLS-DA and sPLS-DA objects, perf is performed
on the original data, i.e. before the pre-processing step of the log ratio transform and multilevel analysis, if any. In addition for these methods, the classification error rate is averaged across all folds.

The mint.sPLS-DA function estimates errors based on Leave-one-group-out cross validation (where each levels of object$study is left out (and predicted) once) and provides study-specific outputs (study.specific.error) as well as global outputs (global.error).

AUROC. For PLS-DA, sPLS-DA, mint.PLS-DA, mint.sPLS-DA, and block.splsda methods: if auc=TRUE, Area Under the Curve (AUC) values are calculated from the predicted scores obtained from the predict function applied to the internal test sets in the cross-validation process, either for all samples or for study-specific samples (for mint models). Therefore we minimise the risk of overfitting. For block.splsda model, the calculated AUC is simply the blocks-combined AUC for each component calculated using auroc.sgcca. See auroc for more details. Our multivariate supervised methods already use a prediction threshold based on distances (see predict) that optimally determine class membership of the samples tested. As such AUC and ROC are not needed to estimate the performance of the model. We provide those outputs as complementary performance measures. See more details in our mixOmics article.

Prediction distances. See details from ?predict, and also our supplemental material in the mixOmics article.

Repeats of the CV-folds. Repeated cross-validation implies that the whole CV process is repeated a number of times (nrepeat) to reduce variability across the different subset partitions. In the case of Leave-One-Out CV (validation = 'loo'), each sample is left out once (folds = N is set internally) and therefore nrepeat is by default 1.

BER is appropriate in case of an unbalanced number of samples per class as it calculates the average proportion of wrongly classified samples in each class, weighted by the number of samples in each class. BER is less biased towards majority classes during the performance assessment.

For sgcca objects, we provide weighted measures (e.g. error rate) in which the weights are simply the correlation of the derived components of a given block with the outcome variable Y.

More details about the PLS modes in ?pls.

Value

For PLS and sPLS models, perf produces a list with the following components for every repeat:

- **MSEP**: Mean Square Error Prediction for each Y variable, only applies to object inherited from "pls" and "spls". Only available when in regression (s)PLS.

- **RMSEP**: Root Mean Square Error Prediction for each Y variable, only applies to object inherited from "pls" and "spls". Only available when in regression (s)PLS.

- **R2**: a matrix of $R^2$ values of the Y-variables for models with 1,...,ncomp components, only applies to object inherited from "pls" and "spls". Only available when in regression (s)PLS.

- **Q2**: if Y contains one variable, a vector of $Q^2$ values else a list with a matrix of $Q^2$ values for each Y-variable. Note that in the specific case of an sPLS model, it is better to have a look at the Q2.total criterion, only applies to object inherited from "pls" and "spls". Only available when in regression (s)PLS.
**perf**

Q2.total

A vector of $Q^2$-total values for models with 1, . . . , ncomp components, only applies to object inherited from "pls", and "spls". Available in both (s)PLS modes.

RSS

Residual Sum of Squares across all selected features and the components.

PRESS

Predicted Residual Error Sum of Squares across all selected features and the components.

features

A list of features selected across the folds ($stable.X$ and $stable.Y$) for the keepX and keepY parameters from the input object. Note, this will be NULL if using standard (non-sparse) PLS.

cor.tpred, cor.upred

Correlation between the predicted and actual components for X (t) and Y (u)

RSS.tpred, RSS.upred

Residual Sum of Squares between the predicted and actual components for X (t) and Y (u)

error.rate

For PLS-DA and sPLS-DA models, perf produces a matrix of classification error rate estimation. The dimensions correspond to the components in the model and to the prediction method used, respectively. Note that error rates reported in any component include the performance of the model in earlier components for the specified keepX parameters (e.g. error rate reported for component 3 for keepX = 20 already includes the fitted model on components 1 and 2 for keepX = 20). For more advanced usage of the perf function, see www.mixomics.org/methods/spls-da/ and consider using the predict function.

auc

Averaged AUC values over the nrepeat

For mint.splsda models, perf produces the following outputs:

study.specific.error

A list that gives BER, overall error rate and error rate per class, for each study

global.error

A list that gives BER, overall error rate and error rate per class for all samples

predict

A list of length ncomp that produces the predicted values of each sample for each class

class

A list which gives the predicted class of each sample for each dist and each of the ncomp components. Directly obtained from the predict output.

auc

AUC values

auc.study

AUC values for each study in mint models

For sgccda models, perf produces the following outputs:

error.rate

Prediction error rate for each block of object$X$ and each dist

error.rate.per.class

Prediction error rate for each block of object$X$, each dist and each class

predict

Predicted values of each sample for each class, each block and each component

class

Predicted class of each sample for each class, each block, each dist, each component and each nrepeat
features a list of features selected across the folds ($stable.X$ and $stable.Y$) for the keepX and keepY parameters from the input object.

AveragedPredict.class if more than one block, returns the average predicted class over the blocks (averaged of the Predict output and prediction using the max.dist distance)

AveragedPredict.error.rate if more than one block, returns the average predicted error rate over the blocks (using the AveragedPredict.class output)

WeightedPredict.class if more than one block, returns the weighted predicted class over the blocks (weighted average of the Predict output and prediction using the max.dist distance). See details for more info on weights.

WeightedPredict.error.rate if more than one block, returns the weighted average predicted error rate over the blocks (using the WeightedPredict.class output.)

MajorityVote if more than one block, returns the majority class over the blocks. NA for a sample means that there is no consensus on the predicted class for this particular sample over the blocks.

MajorityVote.error.rate if more than one block, returns the error rate of the MajorityVote output

WeightedVote if more than one block, returns the weighted majority class over the blocks. NA for a sample means that there is no consensus on the predicted class for this particular sample over the blocks.

WeightedVote.error.rate if more than one block, returns the error rate of the WeightedVote output

weights Returns the weights of each block used for the weighted predictions, for each nrepeat and each fold

choice.ncomp For supervised models; returns the optimal number of components for the model for each prediction distance using one-sided t-tests that test for a significant difference in the mean error rate (gain in prediction) when components are added to the model. See more details in Rohart et al 2017 Suppl. For more than one block, an optimal ncomp is returned for each prediction framework.

Author(s)

Ignacio González, Amrit Singh, Kim-Anh Lê Cao, Benoit Gautier, Florian Rohart, Al J Abadi

References


mixOmics article:


MINT:


Chavent, Marie and Patouille, Brigitte (2003). Calcul des coefficients de regression et du PRESS en regression PLS1. *Modulad n*, 30 1-11. (this is the formula we use to calculate the Q2 in perf.pls and perf.spls)


sparse PLS regression mode:


One-sided t-tests (suppl material):


See Also

`predict`, `nipals`, `plot.perf`, `auroc` and www.mixOmics.org for more details.

Examples

```r
validation for objects of class 'pls' (regression)
--
data(liver.toxicity)
X <- liver.toxicity$gene
Y <- liver.toxicity$clinic

try tune the number of component to choose

first learn the full model
liver.pls <- pls(X, Y, ncomp = 5)

with 5-fold cross validation: we use the same parameters as in model above
but we perform cross validation to compute the MSEP, Q2 and R2 criteria

liver.val <- perf(liver.pls, validation = "Mfold", folds = 5)

see available criteria
names(liver.val$measures)

see values for all repeats
liver.val$measures$Q2.total$values

see summary over repeats
liver.val$measures$Q2.total$summary

Q2 total should decrease until it reaches a threshold
```
liver.val$measures$Q2.total

# ncomp = 2 is enough
plot(liver.val, criterion = 'Q2.total')

## Not run:

# have a look at the other criteria
# ----------------------
# R2
plot(liver.val, criterion = 'R2')
## correlation of components (see docs)
plot(liver.val, criterion = 'cor.tpred')

# MSEP
plot(liver.val, criterion = 'MSEP')
## validation for objects of class 'spls' (regression)
# ----------------------------------------

ncomp = 7
# first, learn the model on the whole data set
model.spls = spls(X, Y, ncomp = ncomp, mode = 'regression',
                 keepX = c(rep(10, ncomp)), keepY = c(rep(4,ncomp)))

# with leave-one-out cross validation
set.seed(45)
model.spls.val <- perf(model.spls, validation = "Mfold", folds = 5)

#Q2 total
model.spls.val$measures$Q2$summary

# R2: we can see how the performance degrades when ncomp increases
plot(model.spls.val, criterion="R2")

## validation for objects of class 'splsda' (classification)
# ----------------------------------------
data(srbct)
X <- srbct$gene
Y <- srbct$class

comp = 2

# with Mfold
# ---------
set.seed(45)
error <- perf(srbct.splsda, validation = "Mfold", folds = 8,
               dist = "all", auc = TRUE)
error
error$auc

plot(error)
# parallel code
set.seed(45)
error <- perf(srbct.splsda, validation = "Mfold", folds = 8,
dist = "all", auc = TRUE, cpus = 2)

# with 5 components and nrepeat=5, to get a choice.ncomp
ncomp = 5
srbct.splsda <- splsda(X, Y, ncomp = ncomp, keepX = rep(10, ncomp))

set.seed(45)
error <- perf(srbct.splsda, validation = "Mfold", folds = 8,
dist = "all", nrepeat = 5)
error$choice.ncomp

plot(error)

## validation for objects of class 'mint.splsda' (classification)
# ----------------------------------------
data(stemcells)
res = mint.splsda(X = stemcells$gene, Y = stemcells$celltype,
ncomp = 3, keepX = c(10, 5, 15),
study = stemcells$study)

out = perf(res, auc = TRUE)
out
plot(out)
out$auc
out$auc.study

## validation for objects of class 'sgccda' (classification)
# ----------------------------------------
data(nutrimouse)
Y = nutrimouse$diet
data = list(gene = nutrimouse$gene, lipid = nutrimouse$lipid)
nutrimouse.sgccda <- block.splsda(X=data,
Y = Y,
design = 'full',
keepX = list(gene=c(10,10), lipid=c(15,15)),
ncomp = 2,
scheme = "horst")

perf = perf(nutrimouse.sgccda)
perf
plot(perf)

# with 5 components and nrepeat=5 to get $choice.ncomp
nutrimouse.sgccda <- block.splsda(X=data,
plot.perf

Y = Y,
design = 'full',
keepX = list(gene=c(10,10), lipid=c(15,15)),
ncomp = 5,
scheme = "horst")

perf = perf(nutrimouse.sgccda, folds = 5, nrepeat = 5)
plot(perf)
perf$choice.ncomp

## End(Not run)

plot.pca

Show (s)pca explained variance plots

Description
Show (s)pca explained variance plots

Usage
## S3 method for class 'pca'
plot(x, ncomp = NULL, type = "barplot", ...)

Arguments
x A (s)pca object
ncomp Integer, the number of components
type Character, default "barplot" or any other type available in plot, as "l","b","p"...
... Not used

Author(s)
Kim-Anh Lê Cao, Florian Rohart, Leigh Coonan, Al J Abadi

plot.perf

Plot for model performance for PSLDA analyses

Description
Function to plot classification performance for supervised methods, as a function of the number of components.
Usage

## S3 method for class 'perf.plsda.mthd'
plot(
x,  
dist = c("all", "max.dist", "centroids.dist", "mahalanobis.dist"),  
measure = c("all", "overall", "BER"),  
col,  
xlab = NULL,  
ylab = NULL,  
overlay = c("all", "measure", "dist"),  
legend.position = c("vertical", "horizontal"),  
sd = TRUE,  
...  
)

## S3 method for class 'perf.splsda.mthd'
plot(
x,  
dist = c("all", "max.dist", "centroids.dist", "mahalanobis.dist"),  
measure = c("all", "overall", "BER"),  
col,  
xlab = NULL,  
ylab = NULL,  
overlay = c("all", "measure", "dist"),  
legend.position = c("vertical", "horizontal"),  
sd = TRUE,  
...  
)

## S3 method for class 'perf.mint.plsda.mthd'
plot(
x,  
dist = c("all", "max.dist", "centroids.dist", "mahalanobis.dist"),  
measure = c("all", "overall", "BER"),  
col,  
xlab = NULL,  
ylab = NULL,  
study = "global",  
overlay = c("all", "measure", "dist"),  
legend.position = c("vertical", "horizontal"),  
...  
)

## S3 method for class 'perf.mint.splsda.mthd'
plot(
x,  
dist = c("all", "max.dist", "centroids.dist", "mahalanobis.dist"),  
measure = c("all", "overall", "BER"),  
col,  
xlab = NULL,  
ylab = NULL,  
study = "global",  
overlay = c("all", "measure", "dist"),  
legend.position = c("vertical", "horizontal"),  
...  
)
col,
  xlab = NULL,
  ylab = NULL,
  study = "global",
  overlay = c("all", "measure", "dist"),
  legend.position = c("vertical", "horizontal"),
  ...)

## S3 method for class 'perf.sgccda.mthd'
plot(  
  x,
  dist = c("all", "max.dist", "centroids.dist", "mahalanobis.dist"),
  measure = c("all", "overall", "BER"),
  col,
  weighted = TRUE,
  xlab = NULL,
  ylab = NULL,
  overlay = c("all", "measure", "dist"),
  legend.position = c("vertical", "horizontal"),
  sd = TRUE,
  ...)

Arguments

x
  an perf.plsda object.

dist
  prediction method applied in perf for plsda or splsda. See perf.

measure
  Two misclassification measure are available: overall misclassification error overall
  or the Balanced Error Rate BER

col
  character (or symbol) colour to be used, possibly vector. One color per distance
  dist.

xlab, ylab
  titles for x and y axes. Typically character strings, but can be expressions (e.g.,
  expression(R^2)).

overlay
  parameter to overlay graphs; if 'all', only one graph is shown with all outputs; if
  'measure', a graph is shown per distance; if 'dist', a graph is shown per measure.

legend.position
  position of the legend, one of "vertical" (only one column) or "horizontal" (two
  columns).

sd
  If 'nrepeat' was used in the call to 'perf', error bar shows the standard deviation
  if sd=TRUE. For mint objects sd is set to FALSE as the number of repeats is 1.

... Not used.

study
  Indicates which study-specific outputs to plot. A character vector containing
  some levels of object$study, "all.partial" to plot all studies or "global" is ex-
  pected. Default to "global".

weighted
  plot either the performance of the Majority vote or the Weighted vote.
plot.perf.pls

Details
More details about the prediction distances in predict and the supplemental material of the mixOmics article (Rohart et al. 2017). See ?perf for examples.

Value
none

Author(s)
Ignacio González, Florian Rohart, Francois Bartolo, Kim-Anh Lê Cao, Al J Abadi

References

See Also
pls, spls, plsda, splsda, perf.

plot.perf.pls  Plot for model performance for PLS analyses

Description
Function to plot performance criteria, such as MSEP, RMSEP, $R^2$, $Q^2$ for s/PLS methods as a function of the number of components.

Usage
## S3 method for class 'perf.pls.mthd'
plot(
x,
criterion = "MSEP",
xlab = "Number of components",
ylab = NULL,
LimQ2 = 0.0975,
LimQ2.col = "grey30",
sd = NULL,
pch = 1,
pch.size = 3,
cex = 1.2,
col = color.mixo(1),
title = NULL,
...
## S3 method for class 'perf.spls.mthd'
plot(
    x,
    criterion = "MSEP",
    xlab = "Number of components",
    ylab = NULL,
    LimQ2 = 0.0975,
    LimQ2.col = "grey30",
    sd = NULL,
    pch = 1,
    pch.size = 3,
    cex = 1.2,
    col = color.mixo(1),
    title = NULL,
    ...)
)

**Arguments**

- **x**: an `perf.pls` object.
- **criterion**: character string. What type of validation criterion to plot for pls or spls. One of "MSEP", "RMSEP", "R2" or "Q2". More measures available for pls2 methods. See `perf`.
- **xlab, ylab**: titles for x and y axes. Typically character strings, but can be expressions (e.g., `expression(R^2)`).
- **LimQ2**: numeric value. Signification limit for the components in the model. Default is `LimQ2 = 0.0975`.
- **LimQ2.col**: character string specifying the color for the LimQ2 line to be plotted. If "none" the line will not be plotted.
- **sd**: If 'nrepeat' was used in the call to 'perf', error bar shows the standard deviation if sd=TRUE. For mint objects sd is set to FALSE as the number of repeats is 1.
- **pch**: Plot character to use.
- **pch.size**: Plot character size to use.
- **cex**: A numeric which adjusts the font size in the plot.
- **col**: Character. Colour to be used for data points.
- **title**: Character, Plot title. Not used by PLS2 feature-wise measure plots.
- **...**: Not used.

**Details**

`plot.perf` creates one plot for each response variable in the model, laid out in a multi-panel display. See `?perf` for examples.

**Value**

none
**plot.rcc**

**Author(s)**

Al J Abadi

**References**


**See Also**

`pls, spls, plsda, splsda, perf`.

---

**plot.rcc**  
*Cannonical Correlations Plot*

**Description**

This function provides scree plot of the canonical correlations.

**Usage**

```
S3 method for class 'rcc'
plot(x, type = "barplot", ...)
```

**Arguments**

- `x`  
  object of class inheriting from "rcc".

- `type`  
  Character, default "barplot" or any other type available in plot, as "l", "b", "p"...

- `...`  
  Not used

**Value**

none

**Author(s)**

Sébastien Déjean, Ignacio González, Al J Abadi

**See Also**

`points, barplot, par`.
Examples

```r
data(nutrimouse)
X <- nutrimouse$lipid
Y <- nutrimouse$gene
nutri.res <- rcc(X, Y, lambda1 = 0.064, lambda2 = 0.008)

'pointplot' type scree
plot(nutri.res) #(default)

Not run:
plot(nutri.res, pch = 19, cex = 1.2,
col = c(rep("red", 3), rep("darkblue", 18)))

'barplot' type scree
plot(nutri.res, type = "barplot")
plot(nutri.res, type = "barplot", density = 20, col = "black")

End(Not run)
```

---

**plot.tune**

*Plot model performance*

**Description**

Function to plot performance criteria, such as classification error rate or correlation of cross-validated components for different models.

Function to plot performance criteria, such as classification error rate or balanced error rate on a tune.splsda result.

**Usage**

```r
S3 method for class 'tune.spls'
plot(x,
 measure = NULL,
 comp = c(1, 2),
 pch = 16,
 cex = 1.2,
 title = NULL,
 size.range = c(3, 10),
 sd = NULL,
 ...
)

S3 method for class 'tune.block.splsda'
plot(x, sd = NULL, col, ...)
```
## S3 method for class 'tune.spca'
plot(x, optimal = TRUE, sd = NULL, col = NULL, ...)

## S3 method for class 'tune.spls1'
plot(x, optimal = TRUE, sd = NULL, col, ...)

## S3 method for class 'tune.splsda'
plot(x, optimal = TRUE, sd = NULL, col, ...)

### Arguments

- **x**
  an `tune.splsda` object.

- **measure**
  Character. Measure used for plotting a `tune.spls` object. One of `c('cor', 'RSS')`.

- **comp**
  Integer of length 2 denoting the components to plot.

- **pch**
  plot character. A character string or a vector of single characters or integers. See `points` for all alternatives.

- **cex**
  numeric character (or symbol) expansion, possibly vector.

- **title**
  Plot title.

- **size.range**
  Numeric vector of length 2. Range of sizes used in plot.

- **sd**
  If 'nrepeat' was used in the call to 'tune.splsda', error bar shows the standard deviation if `sd=TRUE`

- **...**
  Not currently used.

- **col**
  character (or symbol) color to be used, possibly vector. One colour per component.

- **optimal**
  If TRUE, highlights the optimal keepX per component

### Details

`plot.tune.splsda` plots the classification error rate or the balanced error rate from `x$error.rate`, for each component of the model. A lozenge highlights the optimal number of variables on each component.

`plot.tune.block.splsda` plots the classification error rate or the balanced error rate from `x$error.rate`, for each component of the model. The error rate is ordered by increasing value, the yaxis shows the optimal combination of keepX at the top (e.g. ‘keepX on block 1’ ‘keepX on block 2’ ‘keepX on block 3’)

`plot.tune.spls` plots either the correlation of cross-validated components or the Residual Sum of Square (RSS) values for these components against those from the full model for both t (X components) and u (Y components). The optimal number of features chosen are indicated by squares.

If neither of the `object$test.keepX` or `object$test.keepY` are fixed, a dot plot is produced where a larger size indicates the strength of the measure (higher correlation or lower RSS). Otherwise, the measures are plotted against the number of features selected. In both cases, the colour shows the dispersion of the values across repeated cross validations.
plot.tune. spca plots the correlation of cross-validated components from the tune. spca function with respect to the full model.

plot.tune. splsda plots the classification error rate or the balanced error rate from x$error.rate, for each component of the model. A lozenge highlights the optimal number of variables on each component.

plot.tune. block. splsda plots the classification error rate or the balanced error rate from x$error.rate, for each component of the model. The error rate is ordered by increasing value, the yaxis shows the optimal combination of keepX at the top (e.g. 'keepX on block 1'_'keepX on block 2'_'keepX on block 3')

Value
none
none

plot arguments for pls2 tuning

For tune.spls objects where tuning is performed on both X and Y, arguments 'col.low.sd' and 'col.high.sd' can be used to indicate a low and high sd, respectively. Default to 'blue' & 'red'.

Author(s)
Kim-Anh Lê Cao, Florian Rohart, Francois Bartolo, Al J Abadi

See Also

Examples

```r
Not run:
validation for objects of class 'splsda'

data(breast.tumors)
X = breast.tumors$gene.exp
Y = as.factor(breast.tumors$sample$treatment)
out = tune.splsda(X, Y, ncomp = 3, nrepeat = 5, logratio = "none",
test.keepX = c(5, 10, 15), folds = 10, dist = "max.dist",
progressBar = TRUE)

plot(out, sd=TRUE)
```

## End(Not run)

## Not run:
## validation for objects of class 'mint.splsda'

data(stemcells)
data = stemcells$gene
type.id = stemcells$celltype
exp = stemcells$study

out = tune(method="mint.splsda", X=data,Y=type.id, ncomp=2, study=exp, test.keepX=seq(1,10,1))
out$choice.keepX

plot(out)

## validation for objects of class 'mint.splsda'

data("breast.TCGA")
# this is the X data as a list of mRNA and miRNA; the Y data set is a single data set of proteins
data = with(breast.TCGA$data.train, list(mrna = mrna,
                         mirna = mirna,
                         protein = protein,
                         Y = subtype))
# set number of component per data set
ncomp = 5

# Tuning the first two components
# ------------
# definition of the keepX value to be tested for each block mRNA miRNA and protein
# names of test.keepX must match the names of 'data'
test.keepX = list(mrna = seq(10,40,20), mirna = seq(10,30,10), protein = seq(1,10,5))

# the following may take some time to run, note that for through tuning
# nrepeat should be > 1
tune = tune.block.splsda(X = data, indY = 4,
ncomp = ncomp, test.keepX = test.keepX, design = 'full', nrepeat = 3)

tune$choice.ncomp
tune$choice.keepX

plot(tune)

## --- spls model

data(nutrimouse)
X <- nutrimouse$gene
Y <- nutrimouse$lipid
list.keepX <- c(2:10, 15, 20)
# tuning based on correlations
set.seed(30)
# tune X only
tune.spls.cor.X <- tune.spls(X, Y, ncomp = 3,
test.keepX = list.keepX,
validation = "Mfold", folds = 5,
nrepeat = 3, progressBar = FALSE,
measure = 'cor')
plot(tune.spls.cor.X)
plot(tune.spls.cor.X, measure = 'RSS')

## tune Y only
tune.spls.cor.Y <- tune.spls(X, Y, ncomp = 3,
  test.keepY = list.keepX,
  validation = "Mfold", folds = 5,
  nrepeat = 3, progressBar = FALSE,
  measure = 'cor')

plot(tune.spls.cor.Y)
plot(tune.spls.cor.Y, sd = FALSE)
plot(tune.spls.cor.Y, measure = 'RSS')

## tune Y and X
tune.spls.cor.XY <- tune.spls(X, Y, ncomp = 3,
  test.keepY = c(8, 15, 20),
  test.keepX = c(8, 15, 20),
  validation = "Mfold", folds = 5,
  nrepeat = 3, progressBar = FALSE,
  measure = 'cor')

plot(tune.spls.cor.XY)
## show RSS
plot(tune.spls.cor.XY, measure = 'RSS')
## customise point sizes
plot(tune.spls.cor.XY, size.range = c(6,12))

## End(Not run)

---

**plotArrow**

*Arrow sample plot*

### Description

Represents samples from multiple coordinates to assess the alignment in the latent space.

### Usage

```r
plotArrow(
 object,
 comp = c(1, 2),
 ind.names = TRUE,
 group = NULL,
 col.per.group = NULL,
 col = NULL,
 ind.names.position = c("start", "end"),
 ind.names.size = 2,
 pch = NULL,
)```
pch.size = 2,
arrow.alpha = 0.6,
arrow.size = 0.5,
arrow.length = 0.2,
legend = if (is.null(group)) FALSE else TRUE,
legend.title = NULL,
...

Arguments

object object of class inheriting from mixOmics: PLS, sPLS, rCC, rGCCA, sGCCA, sGCCDA
comp integer vector of length two (or three to 3d). The components that will be used
 on the horizontal and the vertical axis respectively to project the individuals.
ind.names either a character vector of names for the individuals to be plotted, or FALSE for
 no names. If TRUE, the row names of the first (or second) data matrix is used as
 names (see Details).
group Factor indicating the group membership for each sample.
col.per.group character (or symbol) color to be used when ’group’ is defined. Vector of the
 same length as the number of groups.
col character (or symbol) color to be used, possibly vector.
ind.names.position One of c(‘start’, ’end’) indicating where to show the ind.names . Not used in
 block analyses, where centroids are used.
ind.names.size Numeric, sample name size.
pch plot character. A character string or a named vector of single characters or inte-
 gers whose names match those of object$variates.
pch.size Numeric, sample point character size.
arrow.alpha Numeric between 0 and 1 determining the opacity of arrows.
arrow.size Numeric, variable arrow head size.
arrow.length Numeric, length of the arrow head in ‘cm’.
legend Logical, whether to show the legend if group != NULL.
legend.title Character, the legend title if group != NULL.
...

Details

Graphical of the samples (individuals) is displayed in a superimposed manner where each sample
will be indicated using an arrow. The start of the arrow indicates the location of the sample in X in
one plot, and the tip the location of the sample in Y in the other plot. Short arrows indicate a strong
agreement between the matching data sets, long arrows a disagreement between the matching data
sets. The representation space is scaled using the range of coordinates so minimum and maximum
values are equal for all blocks. Since the algorithm maximises the covariance of these components,
the absolute values do not affect the alignment.
For objects of class "GCCA" and if there are more than 2 blocks, the start of the arrow indicates the centroid between all data sets for a given individual and the tips of the arrows the location of that individual in each block.

Value

A ggplot object

Author(s)

Al J Abadi

References

See Also

`arrows`, `text`, `points` and http://mixOmics.org/graphics for more details.

Examples

```r
## plot of individuals for objects with two datasets only (X and Y)
# ----------------------------------------------------
data(nutrimouse)
X <- nutrimouse$lipid
Y <- nutrimouse$gene
nutri.res <- rcc(X, Y, ncomp = 3, lambda1 = 0.064, lambda2 = 0.008)
## plot of individuals for objects of class 'pls' or 'spls'
# ----------------------------------------------------
plotArrow(nutri.res)
## customise the ggplot object as you wish
plotArrow(nutri.res) + geom_vline(xintercept = 0, alpha = 0.5) +
  geom_hline(yintercept = 0, alpha = 0.5) +
  labs(x = 'Dim 1', y = 'Dim 2', title = 'Nutrimouse') +
  theme_minimal()
## individual name position
plotArrow(nutri.res, ind.names.position = 'end')
plotArrow(nutri.res, comp = c(1,3))
## custom pch
plotArrow(nutri.res, pch = 10, pch.size = 3)
plotArrow(nutri.res, pch = c(X = 1, Y = 0))
## custom arrow
plotArrow(nutri.res, arrow.alpha = 0.6, arrow.size = 0.6, arrow.length = 0.15)
## group samples
plotArrow(nutri.res, group = nutrimouse$genotype)
plotArrow(nutri.res, group = nutrimouse$genotype, legend.title = 'Genotype')
## custom ind.names
```
```r
data(liver.toxicity)
X <- liver.toxicity$gene
Y <- liver.toxicity$clinic
toxicity.spls <- spls(X, Y, ncomp = 3, keepX = c(50, 50, 50),
                      keepY = c(10, 10, 10))

# colors indicate time of necropsy, text is the dose, label at start of arrow
plotArrow(toxicity.spls, group = liver.toxicity$treatment[, 'Time.Group'],
          ind.names = liver.toxicity$treatment[, 'Dose.Group'],
          legend = TRUE, position.names = 'start', legend.title = 'Time.Group')

data(nutrimouse)
Y = unmap(nutrimouse$diet)
data = list(gene = nutrimouse$gene, lipid = nutrimouse$lipid, Y = Y)
design1 = matrix(c(0,1,1,1,0,1,1,1,0), ncol = 3, nrow = 3, byrow = TRUE)
nutrimouse.sgcca <- wrapper.sgcca(X = data,
                                   design = design1,
                                   penalty = c(0.3, 0.5, 1),
                                   ncomp = 3,
                                   scheme = "centroid")

plotArrow(nutrimouse.sgcca, group = nutrimouse$genotype, ind.names = TRUE,
          legend.title = 'Genotype')

blocks <- names(nutrimouse.sgcca$variates)
pch <- seq_along(blocks)
names(pch) <- blocks
pch
p <- plotArrow(nutrimouse.sgcca, group = nutrimouse$genotype, ind.names = TRUE,
                pch = pch, legend.title = 'Genotype')
p
### further customise the ggplot object
p + labs(x = 'Variate 1',
         y = 'Variate 2') +
  guides(
    shape = guide_legend(title = 'BLOCK'))
```

```r
# plotArrow(nutri.res,
#            ind.names = paste0('ID', rownames(nutrimouse$gene)),
#            ind.names.size = 3)

## plot of individuals for objects of class 'pls' or 'spls'
# ---------------------------------------------
data(liver.toxicity)
X <- liver.toxicity$gene
Y <- liver.toxicity$clinic
toxicity.spls <- spls(X, Y, ncomp = 3, keepX = c(50, 50, 50),
                      keepY = c(10, 10, 10))

# colors indicate time of necropsy, text is the dose, label at start of arrow
plotArrow(toxicity.spls, group = liver.toxicity$treatment[, 'Time.Group'],
          ind.names = liver.toxicity$treatment[, 'Dose.Group'],
          legend = TRUE, position.names = 'start', legend.title = 'Time.Group')

## individual representation for objects of class 'sgcca' (or 'rgcca')
# ---------------------------------------------
data(nutrimouse)
Y = unmap(nutrimouse$diet)
data = list(gene = nutrimouse$gene, lipid = nutrimouse$lipid, Y = Y)
design1 = matrix(c(0,1,1,1,0,1,1,1,0), ncol = 3, nrow = 3, byrow = TRUE)
nutrimouse.sgcca <- wrapper.sgcca(X = data,
                                   design = design1,
                                   penalty = c(0.3, 0.5, 1),
                                   ncomp = 3,
                                   scheme = "centroid")

plotArrow(nutrimouse.sgcca, group = nutrimouse$genotype, ind.names = TRUE,
          legend.title = 'Genotype')

blocks <- names(nutrimouse.sgcca$variates)
pch <- seq_along(blocks)
names(pch) <- blocks
pch
p <- plotArrow(nutrimouse.sgcca, group = nutrimouse$genotype, ind.names = TRUE,
                pch = pch, legend.title = 'Genotype')
p
### further customise the ggplot object
# custom labels
p + labs(x = 'Variate 1',
         y = 'Variate 2') +
  guides(
    shape = guide_legend(title = 'BLOCK'))
# TODO include these customisations into function args
```
p + scale_shape_manual(values = c(
 centroid = 1,
 gene = 2,
 lipid = 3,
 Y = 4
))

individual representation for objects of class 'sgccda'
--
Note: the code differs from above as we use a 'supervised' GCCA analysis
data(nutrimouse)
Y = nutrimouse$diet
data = list(gene = nutrimouse$gene, lipid = nutrimouse$lipid)
design1 = matrix(c(0,1,0,1), ncol = 2, nrow = 2, byrow = TRUE)
nutrimouse.sgccda1 <-
 wrapper.sgccda(X = data,
 Y = Y,
 design = design1,
 ncomp = 2,
 keepX = list(gene = c(10,10), lipid = c(15,15)),
 scheme = "centroid")

Default colours correspond to outcome Y
plotArrow(nutrimouse.sgccda1)

plotDiablo

Graphical output for the DIABLO framework

Description

Function to visualise correlation between components from different data sets

Usage

```r
plotDiablo(
  object,  
  ncomp = 1,  
  legend = TRUE,  
  legend.ncol,  
  col.per.group = NULL,  
  ...
)
```

S3 method for class 'sgccda'

plot(x, ...)
Arguments

- **object, x**: object of class inheriting from "block.splsda".
- **ncomp**: Which component to plot calculated from each data set. Has to be lower than the minimum of object$ncomp$.
- **legend**: Logical. Whether the legend should be added. Default is TRUE.
- **legend.ncol**: Number of columns for the legend. Default to min(5,nlevels(x$Y)).
- **col.per.group**: A named character of colours for each group class representation. Its names must match the levels of objectY.
- **...**: not used

Details

The function uses a plot.data.frame to plot the component ncomp calculated from each data set to visualise whether DIABLO (block.splsda) is successful at maximising the correlation between each data sets’ component. The lower triangular panel indicated the Pearson’s correlation coefficient, the upper triangular panel the scatter plot.

Value

none

Author(s)

Amrit Singh, Florian Rohart, Kim-Anh Lê Cao, Al J Abadi

References

See Also

block.splsda and http://www.mixOmics.org/mixDIABLO for more details.

Examples

```r
data('breast.TCGA')
Y = breast.TCGA$data.train$subtype

data = list(mrna = breast.TCGA$data.train$mrna, mirna = breast.TCGA$data.train$mirna, prot = breast.TCGA$data.train$protein)

# set number of component per data set
ncomp = 3
# set number of variables to select, per component and per data set (arbitrarily set)
list.keepX = list(mrna = rep(20, 3), mirna = rep(10,3), prot = rep(10,3))

# DIABLO using a full design where every block is connected
```
plotIndiv

Plot of Individuals (Experimental Units)

Description

This function provides scatter plots for individuals (experimental units) representation in (sparse)(I)PCA, (regularized)CCA, (sparse)PLS(DA) and (sparse)(R)GCCA(DA).

Usage

```r
plotIndiv(object, ...)```

### S3 method for class 'mint.pls'

```r
plotIndiv(
 object,
 comp = NULL,
 study = "global",
 rep.space = c("X-variate", "XY-variate", "Y-variate", "multi"),
 group,
 col.per.group,
 style = "ggplot2",
 ellipse = FALSE,
 ellipse.level = 0.95,
 centroid = FALSE,
 star = FALSE,
 title = NULL,
 subtitle,
 legend = FALSE,
 X.label = NULL,
 Y.label = NULL,
 abline = FALSE,
 xlim = NULL,
 ylim = NULL,
 col,
 cex,
 pch,
 layout = NULL,
 size.title = rel(2),
 size.subtitle = rel(1.5),
)```

```r
BC.diablo = block.splsda(X = data, Y = Y, ncomp = ncomp, keepX = list.keepX, design = 'full')
## default col.per.group
plotDiablo(BC.diablo, ncomp = 1, legend = TRUE, col.per.group = NULL)
## custom col.per.group
col.per.group <- color.mixo(1:3)
names(col.per.group) <- levels(Y)
plotDiablo(BC.diablo, ncomp = 1, legend = TRUE, col.per.group = col.per.group)
```
plotIndiv

size.xlabel = rel(1),
size.ylabel = rel(1),
size.axis = rel(0.8),
size.legend = rel(1),
size.legend.title = rel(1.1),
legend.title = "Legend",
legend.position = "right",
point.lwd = 1,
background = NULL,

S3 method for class 'mint.spls'
plotIndiv(
 object,
 comp = NULL,
 study = "global",
 rep.space = c("X-variate", "XY-variate", "Y-variate", "multi"),
 group,
 col.per.group,
 style = "ggplot2",
 ellipse = FALSE,
 ellipse.level = 0.95,
 centroid = FALSE,
 star = FALSE,
 title = NULL,
 subtitle,
 legend = FALSE,
 X.label = NULL,
 Y.label = NULL,
 abline = FALSE,
 xlim = NULL,
 ylim = NULL,
 col,
 cex,
 pch,
 layout = NULL,
 size.title = rel(2),
 size.subtitle = rel(1.5),
 size.xlabel = rel(1),
 size.ylabel = rel(1),
 size.axis = rel(0.8),
 size.legend = rel(1),
 size.legend.title = rel(1.1),
 legend.title = "Legend",
 legend.position = "right",
 point.lwd = 1,
 background = NULL,
plotIndiv(
 object,
 comp = NULL,
 study = "global",
 rep.space = c("X-variate", "XY-variate", "Y-variate", "multi"),
 group,
 col.per.group,
 style = "ggplot2",
 ellipse = FALSE,
 ellipse.level = 0.95,
 centroid = FALSE,
 star = FALSE,
 title = NULL,
 subtitle,
 legend = FALSE,
 X.label = NULL,
 Y.label = NULL,
 abline = FALSE,
 xlim = NULL,
 ylim = NULL,
 col,
 cex,
 pch,
 layout = NULL,
 size.title = rel(2),
 size.subtitle = rel(1.5),
 size.xlabel = rel(1),
 size.ylabel = rel(1),
 size.axis = rel(0.8),
 size.legend = rel(1),
 size.legend.title = rel(1.1),
 legend.title = "Legend",
 legend.position = "right",
 point.lwd = 1,
 background = NULL,
 ...
)
plotIndiv

plotIndiv(
 group,
 col.per.group,
 style = "ggplot2",
 ellipse = FALSE,
 ellipse.level = 0.95,
 centroid = FALSE,
 star = FALSE,
 title = NULL,
 subtitle,
 legend = FALSE,
 X.label = NULL,
 Y.label = NULL,
 abline = FALSE,
 xlim = NULL,
 ylim = NULL,
 col,
 cex,
 pch,
 layout = NULL,
 size.title = rel(2),
 size.subtitle = rel(1.5),
 size.xlabel = rel(1),
 size.ylabel = rel(1),
 size.axis = rel(0.8),
 size.legend = rel(1),
 size.legend.title = rel(1.1),
 legend.title = "Legend",
 legend.position = "right",
 point.lwd = 1,
 background = NULL,
 ...
)

S3 method for class 'pca'
plotIndiv(
 object,
 comp = NULL,
 ind.names = TRUE,
 group,
 col.per.group,
 style = "ggplot2",
 ellipse = FALSE,
 ellipse.level = 0.95,
 centroid = FALSE,
 star = FALSE,
 title = NULL,
 legend = FALSE,
 X.label = NULL,
plotIndiv

Y.label = NULL,
Z.label = NULL,
abline = FALSE,
xlim = NULL,
ylim = NULL,
col,
cex,
pch,
pch.levels,
alpha = 0.2,
axes.box = "box",
layout = NULL,
size.title = rel(2),
size.subtitle = rel(1.5),
size.xlabel = rel(1),
size.ylabel = rel(1),
size.axis = rel(0.8),
size.legend = rel(1),
size.legend.title = rel(1.1),
legend.title = "Legend",
legend.title.pch = "Legend",
legend.position = "right",
point.lwd = 1,
...
)

S3 method for class 'mixo_pls'

plotIndiv(
 object,
 comp = NULL,
 rep.space = NULL,
 ind.names = TRUE,
 group,
 col.per.group,
 style = "ggplot2",
 ellipse = FALSE,
 ellipse.level = 0.95,
 centroid = FALSE,
 star = FALSE,
 title = NULL,
 subtitle,
 legend = FALSE,
 X.label = NULL,
 Y.label = NULL,
 Z.label = NULL,
 abline = FALSE,
 xlim = NULL,
 ylim = NULL,
)
plotIndiv
col,
cex,
pch,
pch.levels,
alpha = 0.2,
axes.box = "box",
layout = NULL,
size.title = rel(2),
size.subtitle = rel(1.5),
size.xlabel = rel(1),
size.ylabel = rel(1),
size.axis = rel(0.8),
size.legend = rel(1),
size.legend.title = rel(1.1),
legend.title = "Legend",
legend.title.pch = "Legend",
legend.position = "right",
point.lwd = 1,
background = NULL,
...
)

S3 method for class 'sgcca'
plotIndiv(
 object,
 comp = NULL,
 blocks = NULL,
 ind.names = TRUE,
 group,
 col.per.group,
 style = "ggplot2",
 ellipse = FALSE,
 ellipse.level = 0.95,
 centroid = FALSE,
 star = FALSE,
 title = NULL,
 subtitle,
 legend = FALSE,
 X.label = NULL,
 Y.label = NULL,
 Z.label = NULL,
 abline = FALSE,
 xlim = NULL,
 ylim = NULL,
 col,
 cex,
 pch,
 pch.levels,
plotIndiv(
 object,
 comp = NULL,
 blocks = NULL,
 ind.names = TRUE,
 group,
 col.per.group,
 style = "ggplot2",
 ellipse = FALSE,
 ellipse.level = 0.95,
 centroid = FALSE,
 star = FALSE,
 title = NULL,
 subtitle,
 legend = FALSE,
 X.label = NULL,
 Y.label = NULL,
 Z.label = NULL,
 abline = FALSE,
 xlim = NULL,
 ylim = NULL,
 col,
 cex,
 pch,
 pch.levels,
 alpha = 0.2,
 axes.box = "box",
 layout = NULL,
 size.title = rel(2),
 size.subtitle = rel(1.5),
 size.xlabel = rel(1),
 size.ylabel = rel(1),
 size.axis = rel(0.8),
 size.legend = rel(1),
 size.legend.title = rel(1.1),
 legend.title = "Legend",
 legend.title.pch = "Legend",
 legend.position = "right",
 point.lwd = 1,
 ...
)

S3 method for class 'rgcca'
plotIndiv(
 object,
 comp = NULL,
 blocks = NULL,
 ind.names = TRUE,
 group,
 col.per.group,
 style = "ggplot2",
 ellipse = FALSE,
 ellipse.level = 0.95,
 centroid = FALSE,
 star = FALSE,
 title = NULL,
 subtitle,
 legend = FALSE,
 X.label = NULL,
 Y.label = NULL,
 Z.label = NULL,
 abline = FALSE,
 xlim = NULL,
 ylim = NULL,
 col,
 cex,
 pch,
 pch.levels,
 alpha = 0.2,
 axes.box = "box",
 layout = NULL,
 size.title = rel(2),
 size.subtitle = rel(1.5),
Arguments

object object of class inherited from any mixOmics: PLS, sPLS, PLS-DA, SPLS-DA, rCC, PCA, sPCA, IPCA, sIPCA, rGCCA, sGCCA, sGCCDA

... Optional arguments or type par can be added with style = 'graphics'

comp integer vector of length two (or three to 3d). The components that will be used on the horizontal and the vertical axis respectively to project the individuals.

study Indicates which study-specific outputs to plot. A character vector containing some levels of object$study, "all.partial" to plot all studies or "global" is expected. Default to "global".

rep.space For objects of class "pca", "plsda", "plsdas" default is "X-variate". For the objects of class "pls", "rcc" default is a panel plot representing each data sub-space. For objects of class "rgcca" and "sgcca", numerical value(s) indicating the block data set to represent needs to be specified.

group factor indicating the group membership for each sample, useful for ellipse plots. Coded as default for the supervised methods PLS-DA, SPLS-DA, sGCCDA, but needs to be input for the unsupervised methods PCA, sPCA, IPCA, sIPCA, PLS, sPLS, rCC, rGCCA, sGCCA

col.per.group character (or symbol) color to be used when 'group' is defined. Vector of the same length as the number of groups.

style argument to be set to either 'graphics', 'lattice', 'ggplot2' or '3d' for a style of plotting. Default set to 'ggplot2'. See details. 3d is not available for MINT objects.

ellipse Logical indicating if ellipse plots should be plotted. In the non supervised objects PCA, sPCA, IPCA, sIPCA, PLS, sPLS, rCC, rGCCA, sGCCA ellipse plot is only be plotted if the argument group is provided. In the PLS-DA, SPLS-DA, sGCCDA supervised object, by default the ellipse will be plotted according to the outcome Y.

ellipse.level Numerical value indicating the confidence level of ellipse being plotted when ellipse =TRUE (i.e. the size of the ellipse). The default is set to 0.95, for a 95% region.

centroid Logical indicating whether centroid points should be plotted. In the non supervised objects PCA, sPCA, IPCA, sIPCA, PLS, sPLS, rCC, rGCCA, sGCCA the centroid will only be plotted if the argument group is provided. The centroid
will be calculated based on the group categories. In the supervised objects PLS-DA, SPLS-DA, sGCCDA the centroid will be calculated according to the outcome Y.

star Logical indicating whether a star plot should be plotted, with arrows starting from the centroid (see argument centroid, and ending for each sample belonging to each group or outcome. In the non supervised objects PCA, sPCA, IPCA, sIPCA, PLS, sPLS, rCC, rGCCA, sGCCA star plot is only be plotted if the argument group is provided. In the supervised objects PLS-DA, SPLS-DA, sGCCDA the star plot is plotted according to the outcome Y.

title set of characters indicating the title plot.
subtitle subtitle for each plot, only used when several block or study are plotted.
legend Logical. Whether the legend should be added. Default is FALSE.
X.label x axis titles.
Y.label y axis titles.
abline should the vertical and horizontal line through the center be plotted? Default set to FALSE
xlim, ylim numeric list of vectors of length 2 and length =length(blocks), giving the x and y coordinates ranges.
col character (or symbol) color to be used, possibly vector.
cex numeric character (or symbol) expansion, possibly vector.
pch plot character. A character string or a vector of single characters or integers. See points for all alternatives.
layout layout parameter passed to mfrow. Only used when study is not "global"
size.title size of the title
size.subtitle size of the subtitle
size.xlabel size of xlabel
size.ylabel size of ylabel
size.axis size of the axis
size.legend size of the legend
size.legend.title size of the legend title
legend.title title of the legend
legend.position position of the legend, one of "bottom", "left", "top" and "right".
point.lwd lwd of the points, used when ind.names = FALSE
background color the background by the predicted class, see background.predict
ind.names either a character vector of names for the individuals to be plotted, or FALSE for no names. If TRUE, the row names of the first (or second) data matrix is used as names (see Details).
Z.label z axis titles (when style = '3d').
plotIndiv

pch.levels
Only used when pch is different from col or col.per.group, i.e. when pch creates a second factor. Only used for the legend.

alpha
Semi-transparent colors (0 < ‘alpha’ < 1)

axes.box
for style '3d', argument to be set to either 'axes', 'box', 'bbox' or 'all', defining the shape of the box.

legend.title.pch
title of the second legend created by pch, if any.

blocks
integer value or name(s) of block(s) to be plotted using the GCCA module. "average" and "weighted.average" will create average and weighted average plots, respectively. See details and examples.

Details

plotIndiv method makes scatter plot for individuals representation depending on the subspace of projection. Each point corresponds to an individual.

If ind.names=TRUE and row names is NULL, then ind.names=1:n, where n is the number of individuals. Also, if pch is an input, then ind.names is set to FALSE as we do not show both names and shapes.

plotIndiv can have a two layers legend. This is especially convenient when you have two grouping factors, such as a gender effect and a study effect, and you want to highlight both simultaneously on the graphical output. A first layer is coded by the group factor, the second by the pch argument. When pch is missing, a single layer legend is shown. If the group factor is missing, the col argument is used to create the grouping factor group. When a second grouping factor is needed and added via pch, pch needs to be a vector of length the number of samples. In the case where pch is a vector or length the number of groups, then we consider that the user wants a different pch for each level of group. This leads to a single layer legend and we merge col and pch. In the similar case where pch is a single value, then this value is used to represent all samples. See examples below for object of class plsda and splsda.

In the specific case of a single `omics supervised model (plsda, splsda), users can overlay prediction results to sample plots in order to visualise the prediction areas of each class, via the background input parameter. Note that this functionality is only available for models with less than 2 components as the surfaces obtained for higher order components cannot be projected onto a 2D representation in a meaningful way. For more details, see background.predict

The argument block = 'average' averages the components from all blocks to produce a consensus plot. The argument block="weighted.average" is a weighted average of the components according to their correlation with the outcome Y.

For customized plots (i.e. adding points, text), use the style = 'graphics' (default is ggplot2).

Note: the ellipse options were borrowed from the ellipse.

Value

none

Author(s)

Ignacio González, Benoit Gautier, Francois Bartolo, Florian Rohart, Kim-Anh Lê Cao, Al J Abadi
See Also

text, background.predict, points and http://mixOmics.org/graphics for more details.

Examples

plot of individuals for objects of class 'rcc'
--
data(nutrimouse)
X <- nutrimouse$lipid
Y <- nutrimouse$gene
nutri.res <- rcc(X, Y, ncomp = 3, lambda1 = 0.064, lambda2 = 0.008)

default, panel plot for X and Y subspaces
plotIndiv(nutri.res)

Not run:
ellipse with respect to genotype in the XY space,
names also indicate genotype
plotIndiv(nutri.res, rep.space = 'XY-variate',
 ellipse = TRUE, ellipse.level = 0.9,
 group = nutrimouse$genotype, ind.names = nutrimouse$genotype)

ellipse with respect to genotype in the XY space, with legend
plotIndiv(nutri.res, rep.space = 'XY-variate', group = nutrimouse$genotype,
 legend = TRUE)

lattice style
plotIndiv(nutri.res, rep.space = 'XY-variate', group = nutrimouse$genotype,
 legend = TRUE, style = 'lattice')

classic style, in the Y space
plotIndiv(nutri.res, rep.space = 'Y-variate', group = nutrimouse$genotype,
 legend = TRUE, style = 'graphics')

plot of individuals for objects of class 'pls' or 'spls'
--
data(liver.toxicity)
X <- liver.toxicity$gene
Y <- liver.toxicity$clinic
toxicity.spls <- spls(X, Y, ncomp = 3, keepX = c(50, 50, 50),
 keepY = c(10, 10, 10))

#default
plotIndiv(toxicity.spls)

two layers legend: a first grouping with Time.Group and 'group'
and a second with Dose.Group and 'pch'
plotIndiv

plotIndiv(toxicity.spls, rep.space="X-variate", ind.name = FALSE,
group = liver.toxicity$treatment[, 'Time.Group'], # first factor
pch = as.numeric(factor(liver.toxicity$treatment$Dose.Group)), #second factor
pch.levels =liver.toxicity$treatment$Dose.Group,
legend = TRUE)

indicating the centroid
plotIndiv(toxicity.spls, rep.space='X-variate', ind.names = FALSE,
group = liver.toxicity$treatment[, 'Time.Group'], centroid = TRUE)

indicating the star and centroid
plotIndiv(toxicity.spls, rep.space='X-variate', ind.names = FALSE,
group = liver.toxicity$treatment[, 'Time.Group'], centroid = TRUE, star = TRUE)

indicating the star and ellipse
plotIndiv(toxicity.spls, rep.space='X-variate', ind.names = FALSE,
group = liver.toxicity$treatment[, 'Time.Group'], centroid = TRUE,
star = TRUE, ellipse = TRUE)

in the Y space, colors indicate time of necropsy, text is the dose
plotIndiv(toxicity.spls, rep.space='Y-variate',
group = liver.toxicity$treatment[, 'Time.Group'],
ind.names = liver.toxicity$treatment[, 'Dose.Group'],
legend = TRUE)

plot of individuals for objects of class 'plsda' or 'splsda'
--
data(breast.tumors)
X <- breast.tumors$gene.exp
Y <- breast.tumors$sample$treatment

splsda.breast <- splsda(X, Y,keepX=c(10,10),ncomp=2)

default option: note the outcome color is included by default!
plotIndiv(splsda.breast)

also check ?background.predict for to visualise the prediction
area with a plsda or splsda object!

default option with no ind name: pch and color are set automatically
plotIndiv(splsda.breast, ind.names = FALSE, comp = c(1, 2))

default option with no ind name: pch and color are set automatically,
with legend
plotIndiv(splsda.breast, ind.names = FALSE, comp = c(1, 2), legend = TRUE)
trying the different styles
plotIndiv(splsda.breast, ind.names = TRUE, comp = c(1, 2),
 ellipse = TRUE, style = "ggplot2", cex = c(1, 1))
plotIndiv(splsda.breast, ind.names = TRUE, comp = c(1, 2),
 ellipse = TRUE, style = "lattice", cex = c(1, 1))

changing pch of the two groups
plotIndiv(splsda.breast, ind.names = FALSE, comp = c(1, 2),
 pch = c(15, 16), legend = TRUE)

creating a second grouping factor with a pch of length 3,
which is recycled to obtain a vector of length n
plotIndiv(splsda.breast, ind.names = FALSE, comp = c(1, 2),
 pch = c(15, 16, 17), legend = TRUE)

same thing as
pch.indiv = c(rep(15:17,15), 15, 16) # length n
plotIndiv(splsda.breast, ind.names = FALSE, comp = c(1, 2),
 pch = pch.indiv, legend = TRUE)

change the names of the second legend with pch.levels
plotIndiv(splsda.breast, ind.names = FALSE, comp = c(1, 2),
 pch = 15:17, pch.levels = c("a","b","c"),legend = TRUE)

plot of individuals for objects of class 'mint.plsda' or 'mint.splsda'
--
data(stemcells)
res = mint.splsda(X = stemcells$gene, Y = stemcells$celltype, ncomp = 2,
 keepX = c(10, 5), study = stemcells$study)
plotIndiv(res)

#plot study-specific outputs for all studies
plotIndiv(res, study = "all.partial")

#plot study-specific outputs for study "2"
plotIndiv(res, study = "2")

variable representation for objects of class 'sgcca' (or 'rgcca')
--
data(nutrimouse)
Y = unmap(nutrimouse$diet)
data = list(gene = nutrimouse$gene, lipid = nutrimouse$lipid, Y = Y)
design1 = matrix(c(0,1,1,1,0,1,1,1,0), ncol = 3, nrow = 3, byrow = TRUE)
nutrimouse.sgcca <- wrapper.sgcca(X = data,
 design = design1,
 penalty = c(0.3, 0.5, 1),
 ncomp = 3,
plotIndiv

scheme = "horst")

default style: one panel for each block
plotIndiv(nutrimouse.sgcca)

for the block 'lipid' with ellipse plots and legend, different styles
plotIndiv(nutrimouse.sgcca, group = nutrimouse$diet, legend =TRUE,
ellipse = TRUE, ellipse.level = 0.5, blocks = "lipid", title = 'my plot')
plotIndiv(nutrimouse.sgcca, style = "lattice", group = nutrimouse$diet,
legend = TRUE, ellipse = TRUE, ellipse.level = 0.5, blocks = "lipid",
title = 'my plot')
plotIndiv(nutrimouse.sgcca, style = "graphics", group = nutrimouse$diet,
legend = TRUE, ellipse = TRUE, ellipse.level = 0.5, blocks = "lipid",
title = 'my plot')

variable representation for objects of class 'sgccda'

Note: the code differs from above as we use a 'supervised' GCCA analysis
data(nutrimouse)
Y = nutrimouse$diet
data = list(gene = nutrimouse$gene, lipid = nutrimouse$lipid)
design1 = matrix(c(0,1,0,1), ncol = 2, nrow = 2, byrow = TRUE)
nutrimouse.sgccda1 <- wrapper.sgccda(X = data,
Y = Y,
design = design1,
ncomp = 2,
keepX = list(gene = c(10,10), lipid = c(15,15)),
scheme = "centroid")

plotIndiv

displaying all blocks. bu default colors correspond to outcome Y
plotIndiv(nutrimouse.sgccda1)

displaying only 2 blocks
plotIndiv(nutrimouse.sgccda1, blocks = c(1,2), group = nutrimouse$diet)

include the average plot (average the components across datasets)
plotIndiv(nutrimouse.sgccda1, blocks = "average", group = nutrimouse$diet)

include the weighted average plot (average of components weighted by
correlation of each dataset with Y)
plotIndiv(
 nutrimouse.sgccda1,
 blocks = c("average", "weighted.average"),
 group = nutrimouse$diet
)
with some ellipse, legend and title
plotIndiv(nutrimouse.sgccda1, blocks = c(1,2), group = nutrimouse$diet,
 ellipse = TRUE, legend = TRUE, title = 'my sample plot')

End(Not run)

plotLoadings | Plot of Loading vectors

Description

This function provides a horizontal bar plot to visualise loading vectors. For discriminant analysis, it provides visualisation of highest or lowest mean/median value of the variables with color code corresponding to the outcome of interest.

Usage

```r
plotLoadings(object, ...)
```

S3 method for class 'mixo_pls'
```r
plotLoadings(
  object,
  block,
  comp = 1,
  col = NULL,
  ndisplay = NULL,
  size.name = 0.7,
  name.var = NULL,
  name.var.complete = FALSE,
  title = NULL,
  subtitle,
  size.title = rel(2),
  size.subtitle = rel(1.5),
  layout = NULL,
  border = NA,
  xlim = NULL,
  ...)
```

S3 method for class 'mixo_spls'
```r
plotLoadings(
  object,
  block,
  comp = 1,
  col = NULL,
  ndisplay = NULL,
  size.name = 0.7,
  name.var = NULL,
  name.var.complete = FALSE,
  title = NULL,
  subtitle,
  size.title = rel(2),
  size.subtitle = rel(1.5),
  layout = NULL,
  border = NA,
  xlim = NULL,
  ...)
```
S3 method for class 'rcc'
plotLoadings(
 object,
 block,
 comp = 1,
 col = NULL,
 ndisplay = NULL,
 size.name = 0.7,
 name.var = NULL,
 name.var.complete = FALSE,
 title = NULL,
 subtitle,
 size.title = rel(2),
 size.subtitle = rel(1.5),
 layout = NULL,
 border = NA,
 xlim = NULL,
 ...
)

S3 method for class 'sgcca'
plotLoadings(
 object,
 block,
 comp = 1,
 col = NULL,
 ndisplay = NULL,
 size.name = 0.7,
 name.var = NULL,
 name.var.complete = FALSE,
 title = NULL,
 subtitle,
 size.title = rel(2),
 size.subtitle = rel(1.5),
 layout = NULL,
 border = NA,
 xlim = NULL,
 ...
)
plotLoadings

layout = NULL,
border = NA,
xlim = NULL,
...
)

S3 method for class 'rgcca'
plotLoadings(
 object,
 block,
 comp = 1,
 col = NULL,
 ndisplay = NULL,
 size.name = 0.7,
 name.var = NULL,
 name.var.complete = FALSE,
 title = NULL,
 subtitle,
 size.title = rel(2),
 size.subtitle = rel(1.5),
 layout = NULL,
 border = NA,
 xlim = NULL,
 ...
)

S3 method for class 'pca'
plotLoadings(
 object,
 comp = 1,
 col = NULL,
 ndisplay = NULL,
 size.name = 0.7,
 name.var = NULL,
 name.var.complete = FALSE,
 title = NULL,
 subtitle,
 size.title = rel(2),
 layout = NULL,
 border = NA,
 xlim = NULL,
 ...
)

S3 method for class 'mixo_plsda'
plotLoadings(
 object,
 contrib = NULL,
 method = "mean",
 ...
plotLoadings

block,
comp = 1,
plot = TRUE,
show.ties = TRUE,
col.ties = "white",
ndisplay = NULL,
size.name = 0.7,
size.legend = 0.8,
name.var = NULL,
name.var.complete = FALSE,
title = NULL,
subtitle,
size.title = rel(1.8),
size.subtitle = rel(1.4),
legend = TRUE,
legend.color = NULL,
legend.title = "Outcome",
layout = NULL,
border = NA,
xlim = NULL,
...

S3 method for class 'mixo_splsda'
plotLoadings(
 object,
 contrib = NULL,
 method = "mean",
 block,
 comp = 1,
 plot = TRUE,
 show.ties = TRUE,
col.ties = "white",
ndisplay = NULL,
size.name = 0.7,
size.legend = 0.8,
name.var = NULL,
name.var.complete = FALSE,
title = NULL,
subtitle,
size.title = rel(1.8),
size.subtitle = rel(1.4),
legend = TRUE,
legend.color = NULL,
legend.title = "Outcome",
layout = NULL,
border = NA,
xlim = NULL,
S3 method for class 'sgccda'
plotLoadings(
 object,
 contrib = NULL,
 method = "mean",
 block,
 comp = 1,
 plot = TRUE,
 show.ties = TRUE,
 col.ties = "white",
 ndisplay = NULL,
 size.name = 0.7,
 size.legend = 0.8,
 name.var = NULL,
 name.var.complete = FALSE,
 title = NULL,
 subtitle,
 size.title = rel(1.8),
 size.subtitle = rel(1.4),
 legend = TRUE,
 legend.color = NULL,
 legend.title = "Outcome",
 layout = NULL,
 border = NA,
 xlim = NULL,
 ...
)

S3 method for class 'mint.pls'
plotLoadings(
 object,
 study = "global",
 comp = 1,
 col = NULL,
 ndisplay = NULL,
 size.name = 0.7,
 name.var = NULL,
 name.var.complete = FALSE,
 title = NULL,
 subtitle,
 size.title = rel(1.8),
 size.subtitle = rel(1.4),
 layout = NULL,
 border = NA,
 xlim = NULL,
 ...
)
S3 method for class 'mint.spls'
plotLoadings(
 object,
 study = "global",
 comp = 1,
 col = NULL,
 ndisplay = NULL,
 size.name = 0.7,
 name.var = NULL,
 name.var.complete = FALSE,
 title = NULL,
 subtitle,
 size.title = rel(1.8),
 size.subtitle = rel(1.4),
 layout = NULL,
 border = NA,
 xlim = NULL,
 ...
)

S3 method for class 'mint.plsda'
plotLoadings(
 object,
 contrib = NULL,
 method = "mean",
 study = "global",
 comp = 1,
 plot = TRUE,
 show.ties = TRUE,
 col.ties = "white",
 ndisplay = NULL,
 size.name = 0.7,
 size.legend = 0.8,
 name.var = NULL,
 name.var.complete = FALSE,
 title = NULL,
 subtitle,
 size.title = rel(1.8),
 size.subtitle = rel(1.4),
 legend = TRUE,
 legend.color = NULL,
 legend.title = "Outcome",
 layout = NULL,
 border = NA,
 xlim = NULL,
 ...)
...)

S3 method for class 'mint.splsda'
plotLoadings(
 object,
 contrib = NULL,
 method = "mean",
 study = "global",
 comp = 1,
 plot = TRUE,
 show.ties = TRUE,
 col.ties = "white",
 ndisplay = NULL,
 size.name = 0.7,
 size.legend = 0.8,
 name.var = NULL,
 name.var.complete = FALSE,
 title = NULL,
 subtitle,
 size.title = rel(1.8),
 size.subtitle = rel(1.4),
 legend = TRUE,
 legend.color = NULL,
 legend.title = "Outcome",
 layout = NULL,
 border = NA,
 xlim = NULL,
...
)

Arguments

object: object

... not used.

block: A single value indicating which block to consider in a sgccda object.

comp: integer value indicating the component of interest from the object.

col: color used in the barplot, only for object from non Discriminant analysis.

ndisplay: integer indicating how many of the most important variables are to be plotted (ranked by decreasing weights in each PLS-component). Useful to lighten a graph.

size.name: A numerical value giving the amount by which plotting the variable name text should be magnified or reduced relative to the default.

name.var: A character vector indicating the names of the variables. The names of the vector should match the names of the input data, see example.
name.var.complete
Logical. If name.var is supplied with some empty names, name.var.complete allows you to use the initial variable names to complete the graph (from colnames(X)). Default to FALSE.

title
A set of characters to indicate the title of the plot. Default value is NULL.
subtitle
subtitle for each plot, only used when several block or study are plotted.
size.title
size of the title
size.subtitle
size of the subtitle
layout
Vector of two values (rows,cols) that indicates the layout of the plot. If layout is provided, the remaining empty subplots are still active
border
Argument from barplot: indicates whether to draw a border on the barplot.
xlim
Argument from barplot: limit of the x-axis. When plotting several block, a matrix is expected where each row is the xlim used for each of the blocks.
contrib
a character set to 'max' or 'min' indicating if the color of the bar should correspond to the group with the maximal or minimal expression levels / abundance.
method
a character set to 'mean' or 'median' indicating the criterion to assess the contribution. We recommend using median in the case of count or skewed data.
plot
Logical indicating of the plot should be output. If set to FALSE the user can extract the contribution matrix, see example. Default value is TRUE.
show.ties
Logical. If TRUE then tie groups appear in the color set by col.ties, which will appear in the legend. Ties can happen when dealing with count data type. By default set to TRUE.
col.ties
Color corresponding to ties, only used if show.ties=TRUE and ties are present.
size.legend
A numerical value giving the amount by which plotting the legend text should be magnified or reduced relative to the default.
legend
Logical indicating if the legend indicating the group outcomes should be added to the plot. Default value is TRUE.
legend.color
A color vector of length the number of group outcomes. See examples.
legend.title
A set of characters to indicate the title of the legend. Default value is NULL.
study
Indicates which study are to be plotted. A character vector containing some levels of object$study, "all.partial" to plot all studies or "global" is expected.

Details

The contribution of each variable for each component (depending on the object) is represented in a barplot where each bar length corresponds to the loading weight (importance) of the feature. The loading weight can be positive or negative.

For discriminant analysis, the color corresponds to the group in which the feature is most 'abundant'. Note that this type of graphical output is particularly insightful for count microbial data - in that latter case using the method = 'median' is advised. Note also that if the parameter contrib is not provided, plots are white.

For MINT analysis, study="global" plots the global loadings while partial loadings are plotted when study is a level of object$study. Since variable selection in MINT is performed at the global level, only the selected variables are plotted for the partial loadings even if the partial loadings are not sparse. See references. Importantly for multi plots, the legend accounts for one subplot in the layout design.
plotLoadings

Value

Invisibly returns a data.frame containing the contribution of features on each component. For supervised models the contributions for each class is also specified. See details.

Author(s)

Florian Rohart, Kim-Anh Lê Cao, Benoit Gautier, Al J Abadi

References

See Also

pls, spls, plsda, splsda, mint.pls, mint.spls, mint.plsda, mint.splsda, block.pls, block.spls, block.plsda, block.splsda, mint.block.pls, mint.block.spls, mint.block.plsda, mint.block.splsda

Examples

```r
## object of class 'spls'
# --------------------------
data(liver.toxicity)
X = liver.toxicity$gene
Y = liver.toxicity$clinic
toxicity.spls = spls(X, Y, ncomp = 2, keepX = c(50, 50),
keepY = c(10, 10))
plotLoadings(toxicity.spls)

# with xlim
xlim = matrix(c(-0.1,0.3, -0.4,0.6), nrow = 2, byrow = TRUE)
plotLoadings(toxicity.spls, xlim = xlim)

## Not run:
## object of class 'splsda'
```

data(liver.toxicity)
X = as.matrix(liver.toxicity$gene)
Y = as.factor(paste0('treatment_', liver.toxicity$treatment[, 4]))
splsda.liver = splsda(X, Y, ncomp = 2, keepX = c(20, 20))

contribution on comp 1, based on the median.
Colors indicate the group in which the median expression is maximal
plotLoadings(splsda.liver, comp = 1, method = 'median')

contribution on comp 2, based on median.
Colors indicate the group in which the median expression is maximal
plotLoadings(splsda.liver, comp = 2, method = 'median')

changing the name to gene names
if the user input a name.var but names(name.var) is NULL,
then a warning will be output and assign names of name.var to colnames(X)
this is to make sure we can match the name of the selected variables to the contribution plot.
name.var = liver.toxicity$gene.ID[, 'geneBank']

if names are provided: ok, even when NAs
name.var = liver.toxicity$gene.ID[, 'geneBank']
names(name.var) = rownames(liver.toxicity$gene.ID)

missing names of some genes? complete with the original names
plotLoadings(splsda.liver, comp = 2, method = 'median', name.var = name.var, size.name = 0.5, contrib = "max")

look at the contribution (median) for each variable
plot.contrib = plotLoadings(splsda.liver, comp = 2, method = 'median', plot = FALSE, contrib = "max")
head(plot.contrib[,1:4])

change the title of the legend and title name
plotLoadings(splsda.liver, comp = 2, method = 'median', legend.title = 'Time', title = 'Contribution plot', contrib = "max")

no legend
plotLoadings(splsda.liver, comp = 2, method = 'median', legend = FALSE, contrib = "max")

change the color of the legend
plotLoadings(splsda.liver, comp = 2, method = 'median', legend.color = c(1:4), contrib = "max")
object 'splsda multilevel'

data(vac18)
X = vac18$genes
Y = vac18$stimulation
sample indicates the repeated measurements
sample = vac18$sample
stimul = vac18$stimulation

multilevel sPLS-DA model
res.1level = splsda(X, Y = stimul, ncomp = 3, multilevel = sample,
keepX = c(30, 137, 123))

name.var = vac18$tab.prob.gene[, 'Gene']
names(name.var) = colnames(X)

plotLoadings(res.1level, comp = 2, method = 'median', legend.title = 'Stimu',
name.var = name.var, size.name = 0.2, contrib = "max")

too many transcripts? only output the top ones
plotLoadings(res.1level, comp = 2, method = 'median', legend.title = 'Stimu',
name.var = name.var, size.name = 0.5, ndisplay = 60, contrib = "max")

object 'plsda'

breast tumors

data(breast.tumors)
X = breast.tumors$gene.exp
Y = breast.tumors$sample$treatment

plsda.breast = plsda(X, Y, ncomp = 2)

name.var = as.character(breast.tumors$genes$name)
names(name.var) = colnames(X)

with gene IDs, showing the top 60
plotLoadings(plsda.breast, contrib = 'max', comp = 1, method = 'median',
ndisplay = 60,
name.var = name.var,
size.name = 0.6,
legend.color = color.mixo(1:2))

liver toxicity

data(liver.toxicity)
X = liver.toxicity$gene
Y = liver.toxicity$treatment[, 4]

plsda.liver = plsda(X, Y, ncomp = 2)
plotIndiv(plsda.liver, ind.names = Y, ellipse = TRUE)

name.var = liver.toxicity$gene.ID[, "geneBank"]
names(name.var) = rownames(liver.toxicity$gene.ID)

plotLoadings(plsda.liver, contrib = 'max', comp = 1, method = 'median', ndisplay = 100,
name.var = name.var, size.name = 0.4,
legend.color = color.mixo(1:4))

object 'sgccda'

data(nutrimouse)
Y = nutrimouse$diet
data = list(gene = nutrimouse$gene, lipid = nutrimouse$lipid)
design = matrix(c(0,1,1,0,1,1,0,1,1,1,0), ncol = 3, nrow = 3, byrow = TRUE)
nutrimouse.sgccda = wrapper.sgccda(X = data,
Y = Y,
design = design,
keepX = list(gene = c(10,10), lipid = c(15,15)),
ncomp = 2,
scheme = "centroid")

plotLoadings(nutrimouse.sgccda,block=2)
plotLoadings(nutrimouse.sgccda,block="gene")

object 'mint.splsda'

data(stemcells)
data = stemcells$gene
type.id = stemcells$celltype
exp = stemcells$study

res = mint.splsda(X = data, Y = type.id, ncomp = 3, keepX = c(10,5,15), study = exp)

plotLoadings(res)
plotLoadings(res, contrib = "max")
plotLoadings(res, contrib = "min", study = 1:4,comp=2)

combining different plots by setting a layout of 2 rows and 4columns.
Note that the legend accounts for a subplot so 4columns instead of 2.
plotLoadings(res,contrib="min",study=c(1,2,3),comp=2, layout = c(2,4))
plotMarkers

Plot the values for multivariate markers in block analyses

Description

Plots the standardised values (after centring and/or scaling) for the selected variables for a given block on a given component. Only applies to block.splsda or block.spls.

Usage

plotMarkers(
 object,
 block,
 markers = NULL,
 comp = 1,
 group = NULL,
 col.per.group = NULL,
 global = FALSE,
 title = NULL,
 violin = TRUE,
 boxplot.width = NULL,
 violin.width = 0.9
)

Arguments

object An object of class block.splsda or block.spls
block Name or index of the block to use
markers Character or integer, only include these markers. If integer, the top 'markers' features are shown
comp Integer, the component to use
group Factor, the grouping variable (only required for block.spls objects)
col.per.group character (or symbol) color to be used when 'group' is defined. Vector of the same length as the number of groups.
global Logical indicating whether to show the global plots (TRUE) or segregate by feature (FALSE). Only available when object$scale=TRUE
title The plot title
violin (if global = FALSE) Logical indicating whether violin plots should also be shown
boxplot.width Numeric, adjusts the width of the box plots
violin.width Numeric, adjusts the width of the violin plots
plotVar

Value

A ggplot object

See Also

plotLoadings, block.splsda, block.spls

Examples

see ?block.splsda and ?block.spls

Description

This function provides variables representation for (regularized) CCA, (sparse) PLS regression, PCA and (sparse) Regularized generalised CCA.

Usage

plotVar(
 object,
 comp = NULL,
 comp.select = comp,
 plot = TRUE,
 var.names = NULL,
 blocks = NULL,
 X.label = NULL,
 Y.label = NULL,
 Z.label = NULL,
 abline = TRUE,
 col,
 cex,
 pch,
 font,
 cutoff = 0,
 rad.in = 0.5,
 title = "Correlation Circle Plot",
 legend = FALSE,
 legend.title = "Block",
 style = "ggplot2",
 overlap = TRUE,
 axes.box = "all",
 label.axes.box = "both"
)
Arguments

- **object**: object of class inheriting from "rcc", "pls", "plsda", "spls", "splsda", "pca" or "spca".
- **comp**: integer vector of length two. The components that will be used on the horizontal and the vertical axis respectively to project the variables. By default, `comp=c(1,2)` except when `style='3d'`, `comp=c(1:3)`.
- **comp.select**: for the sparse versions, an input vector indicating the components on which the variables were selected. Only those selected variables are displayed. By default, `comp.select=comp`.
- **plot**: if TRUE (the default) then a plot is produced. If not, the summaries which the plots are based on are returned.
- **var.names**: either a character vector of names for the variables to be plotted, or FALSE for no names. If TRUE, the col names of the first (or second) data matrix is used as names.
- **blocks**: for an object of class "rgcca" or "sgcca", a numerical vector indicating the block variables to display.
- **X.label**: x axis titles.
- **Y.label**: y axis titles.
- **Z.label**: z axis titles (when style = '3d').
- **abline**: should the vertical and horizontal line through the center be plotted? Default set to FALSE.
- **col**: character or integer vector of colors for plotted character and symbols, can be of length 2 (one for each data set) or of length (p+q) (i.e. the total number of variables). See Details.
- **cex**: numeric vector of character expansion sizes for the plotted character and symbols, can be of length 2 (one for each data set) or of length (p+q) (i.e. the total number of variables).
- **pch**: plot character. A vector of single characters or integers, can be of length 2 (one for each data set) or of length (p+q) (i.e. the total number of variables). See points for all alternatives.
- **font**: numeric vector of font to be used, can be of length 2 (one for each data set) or of length (p+q) (i.e. the total number of variables). See par for details.
- **cutoff**: numeric between 0 and 1. Variables with correlations below this cutoff in absolute value are not plotted (see Details).
- **rad.in**: numeric between 0 and 1, the radius of the inner circle. Defaults to 0.5.
- **title**: character indicating the title plot.
- **legend**: Logical when more than 3 blocks. Can be a character vector when one or 2 blocks to customize the legend. See examples. Default is FALSE.
- **legend.title**: title of the legend.
- **style**: argument to be set to either 'graphics', 'lattice', 'ggplot2' or '3d' for a style of plotting.
overlap Logical. Whether the variables should be plotted in one single figure. Default is TRUE.

axes.box for style '3d', argument to be set to either 'axes', 'box', 'bbox' or 'all', defining the shape of the box.

label.axes.box for style '3d', argument to be set to either 'axes', 'box', 'both', indicating which labels to print.

Details

plotVar produce a "correlation circle", i.e. the correlations between each variable and the selected components are plotted as scatter plot, with concentric circles of radius one et radius given by rad.in. Each point corresponds to a variable. For (regularized) CCA the components correspond to the equiangular vector between X- and Y-variates. For (sparse) PLS regression mode the components correspond to the X-variates. If mode is canonical, the components for X and Y variables correspond to the X- and Y-variates respectively.

For plsda and splsda objects, only the X variables are represented.
For spls and splsda objects, only the X and Y variables selected on dimensions comp are represented.

The arguments col, pch, cex and font can be either vectors of length two or a list with two vector components of length p and q respectively, where p is the number of X-variables and q is the number of Y-variables. In the first case, the first and second component of the vector determine the graphics attributes for the X- and Y-variables respectively. Otherwise, multiple arguments values can be specified so that each point (variable) can be given its own graphic attributes. In this case, the first component of the list correspond to the X attributs and the second component correspond to the Y attributs. Default values exist for this arguments.

Value

A list containing the following components:

- x a vector of coordinates of the variables on the x-axis.
- y a vector of coordinates of the variables on the y-axis.
- Block the data block name each variable belongs to.
- names the name of each variable, matching their coordinates values.

Author(s)

Ignacio González, Benoit Gautier, Francois Bartolo, Florian Rohart, Kim-Anh Lê Cao, Al J Abadi

References

See Also
cim, network, par and http://www.mixOmics.org for more details.
Examples

```r
## variable representation for objects of class 'rcc'
# ----------------------------------------------------
data(nutrimouse)
X <- nutrimouse$lipid
Y <- nutrimouse$gene
nutri.res <- rcc(X, Y, ncomp = 3, lambda1 = 0.064, lambda2 = 0.008)

plotVar(nutri.res) #(default)

plotVar(nutri.res, comp = c(1,3), cutoff = 0.5)

## Not run:
## variable representation for objects of class 'pls' or 'spls'
# ----------------------------------------------------
data(liver.toxicity)
X <- liver.toxicity$gene
Y <- liver.toxicity$clinic
toxicity.spls <- spls(X, Y, ncomp = 3, keepX = c(50, 50, 50),
keepY = c(10, 10, 10))

plotVar(toxicity.spls, cex = c(1,0.8))

# with a customized legend
plotVar(toxicity.spls, legend = c("block 1", "my block 2"),
legend.title="my legend")

## variable representation for objects of class 'splsda'
# ----------------------------------------------------
data(liver.toxicity)
X <- liver.toxicity$gene
Y <- as.factor(liver.toxicity$treatment[, 4])
ncomp <- 2
keepX <- rep(20, ncomp)
splsda.liver <- splsda(X, Y, ncomp = ncomp, keepX = keepX)
plotVar(splsda.liver)

## variable representation for objects of class 'sgcca' (or 'rgcca')
# --------------------------------------------------------------
## see example in ??wrapper.sgcca
data(nutrimouse)
# need to unmap the Y factor diet
Y = unmap(nutrimouse$diet)
# set up the data as list
data = list(gene = nutrimouse$gene, lipid = nutrimouse$lipid, Y = Y)

# set up the design matrix:
# with this design, gene expression and lipids are connected to the diet factor
```
design = matrix(c(0,0,1,
0,0,1,
1,1,0), ncol = 3, nrow = 3, byrow = TRUE)

with this design, gene expression and lipids are connected to the diet factor
and gene expression and lipids are also connected
design = matrix(c(0,1,1,
1,0,1,
1,1,0), ncol = 3, nrow = 3, byrow = TRUE)

note: the penalty parameters will need to be tuned
wrap.result.sgcca = wrapper.sgcca(X = data, design = design, penalty = c(.3,.3, 1),
ncomp = 2,
scheme = "centroid")
wrap.result.sgcca

variables selected on component 1 for each block
selectVar(wrap.result.sgcca, comp = 1, block = c(1,2))$'gene'$name
selectVar(wrap.result.sgcca, comp = 1, block = c(1,2))$'lipid'$name

variables selected on component 2 for each block
selectVar(wrap.result.sgcca, comp = 2, block = c(1,2))$'gene'$name
selectVar(wrap.result.sgcca, comp = 2, block = c(1,2))$'lipid'$name

plotVar(wrap.result.sgcca, comp = c(1,2), block = c(1,2), comp.select = c(1,1),
title = c('Variables selected on component 1 only'))

plotVar(wrap.result.sgcca, comp = c(1,2), block = c(1,2), comp.select = c(2,2),
title = c('Variables selected on component 2 only'))

-> this one shows the variables selected on both components
plotVar(wrap.result.sgcca, comp = c(1,2), block = c(1,2),
title = c('Variables selected on components 1 and 2'))

variable representation for objects of class 'rgcca'

data(nutrimouse)
need to unmap Y for an unsupervised analysis, where Y is included as a data block in data
Y = unmap(nutrimouse$diet)
data = list(gene = nutrimouse$gene, lipid = nutrimouse$lipid, Y = Y)
with this design, all blocks are connected
design = matrix(c(0,1,1,0,1,1,0,1,1,0), ncol = 3, nrow = 3, byrow = TRUE, dimnames = list(names(data), names(data)))
nutrimouse.rgcca <- wrapper.rgcca(X = data,
design = design,
tau = "optimal",
ncomp = 2,
scheme = "centroid")
PLS

Partial Least Squares (PLS) Regression

Description

Function to perform Partial Least Squares (PLS) regression.

Usage

`pls(X, Y, ncomp = 2, scale = TRUE, mode = c("regression", "canonical", "invariant", "classic"), tol = 1e-06, max.iter = 100, near.zero.var = FALSE, logratio = "none", multilevel = NULL)`

```r
plotVar(nutrimouse.rgcca, comp = c(1,2), block = c(1,2), cex = c(1.5, 1.5))

plotVar(nutrimouse.rgcca, comp = c(1,2), block = c(1,2))

# set up the data as list
data = list(gene = nutrimouse$gene, lipid = nutrimouse$lipid, Y = Y)
# with this design, gene expression and lipids are connected to the diet factor
# design = matrix(c(0,0,1, 0,0,1, 1,1,0), ncol = 3, nrow = 3, byrow = TRUE)

# with this design, gene expression and lipids are connected to the diet factor
# and gene expression and lipids are also connected
design = matrix(c(0,1,1, 1,0,1, 1,1,0), ncol = 3, nrow = 3, byrow = TRUE)
# note: the tau parameter is the regularization parameter
wrap.result.rgcca = wrapper.rgcca(X = data, design = design, tau = c(1, 1, 0), ncomp = 2,
scheme = "centroid")
# wrap.result.rgcca
plotVar(wrap.result.rgcca, comp = c(1,2), block = c(1,2))

## End(Not run)
```
all.outputs = TRUE,
 verbose.call = FALSE
)

Arguments

X numeric matrix of predictors with the rows as individual observations. Missing values (NAs) are allowed.

Y numeric matrix of response(s) with the rows as individual observations matching X. Missing values (NAs) are allowed.

ncomp Positive Integer. The number of components to include in the model. Default to 2.

scale Logical. If scale = TRUE, each block is standardized to zero means and unit variances (default: TRUE)

mode Character string indicating the type of PLS algorithm to use. One of "regression", "canonical", "invariant" or "classic". SeeDetails.

tol Positive numeric used as convergence criteria/tolerance during the iterative process. Default to 1e-06.

max.iter Integer, the maximum number of iterations. Default to 100.

near.zero.var Logical, see the internal nearZeroVar function (should be set to TRUE in particular for data with many zero values). Setting this argument to FALSE (when appropriate) will speed up the computations. Default value is FALSE.

logratio Character, one of ('none','CLR') specifies the log ratio transformation to deal with compositional values that may arise from specific normalisation in sequencing data. Default to 'none'. See ?logratio.transfo for details.

multilevel Numeric, design matrix for repeated measurement analysis, where multilevel decomposition is required. For a one factor decomposition, the repeated measures on each individual, i.e. the individuals ID is input as the first column. For a 2 level factor decomposition then 2nd AND 3rd columns indicate those factors. See examples in ?spls.

all.outputs Logical. Computation can be faster when some specific (and non-essential) outputs are not calculated. Default = TRUE.

verbose.call Logical (Default=FALSE), if set to TRUE then the $call component of the returned object will contain the variable values for all parameters. Note that this may cause large memory usage.

Details

pls function fit PLS models with 1, ..., ncomp components. Multi-response models are fully supported. The X and Y datasets can contain missing values.

The type of algorithm to use is specified with the mode argument. Four PLS algorithms are available: PLS regression ("regression"), PLS canonical analysis ("canonical"), redundancy analysis ("invariant") and the classical PLS algorithm ("classic") (see References). Different modes relate on how the Y matrix is deflated across the iterations of the algorithms - i.e. the different components.
- Regression mode: the Y matrix is deflated with respect to the information extracted/modelled from the local regression on X. Here the goal is to predict Y from X (Y and X play an asymmetric role). Consequently the latent variables computed to predict Y from X are different from those computed to predict X from Y.

- Canonical mode: the Y matrix is deflated to the information extracted/modelled from the local regression on Y. Here X and Y play a symmetric role and the goal is similar to a Canonical Correlation type of analysis.

- Invariant mode: the Y matrix is not deflated

- Classic mode: is similar to a regression mode. It gives identical results for the variates and loadings associated to the X data set, but differences for the loadings vectors associated to the Y data set (different normalisations are used). Classic mode is the PLS2 model as defined by Tenenhaus (1998), Chap 9.

Note that in all cases the results are the same on the first component as deflation only starts after component 1.

Value

`pls` returns an object of class "pls", a list that contains the following components:

- `call` if `verbose.call = FALSE`, then just the function call is returned. If `verbose.call = TRUE` then all the inputted values are accessible via this component
- `X` the centered and standardized original predictor matrix.
- `Y` the centered and standardized original response vector or matrix.
- `ncomp` the number of components included in the model.
- `mode` the algorithm used to fit the model.
- `variates` list containing the variates.
- `loadings` list containing the estimated loadings for the X and Y variates. The loading weights multiplied with their associated deflated (residual) matrix gives the variate.
- `loadings.stars` list containing the estimated weighted loadings for the X and Y variates. The loading weights are projected so that when multiplied with their associated original matrix we obtain the variate.
- `names` list containing the names to be used for individuals and variables.
- `tol` the tolerance used in the iterative algorithm, used for subsequent S3 methods
- `iter` Number of iterations of the algorithm for each component
- `max.iter` the maximum number of iterations, used for subsequent S3 methods
- `nzv` list containing the zero- or near-zero predictors information.
- `scale` whether scaling was applied per predictor.
- `logratio` whether log ratio transformation for relative proportion data was applied, and if so, which type of transformation.
- `prop_expl_var` The proportion of the variance explained by each variate / component divided by the total variance in the data (after removing the possible missing values) using the definition of ‘redundancy’. Note that contrary to PCA, this amount
may not decrease in the following components as the aim of the method is not to maximise the variance, but the covariance between data sets (including the dummy matrix representation of the outcome variable in case of the supervised approaches).

input.X numeric matrix of predictors in X that was input, before any scaling / logratio / multilevel transformation.

mat.c matrix of coefficients from the regression of X / residual matrices X on the X-variates, to be used internally by predict.

defl.matrix residual matrices X for each dimension.

missing values

The estimation of the missing values can be performed using the impute.nipals function. Otherwise, missing values are handled by element-wise deletion in the pls function without having to delete the rows with missing data.

multilevel

Multilevel (s)PLS enables the integration of data measured on two different data sets on the same individuals. This approach differs from multilevel sPLS-DA as the aim is to select subsets of variables from both data sets that are highly positively or negatively correlated across samples. The approach is unsupervised, i.e. no prior knowledge about the sample groups is included.

logratio and multilevel

logratio transform and multilevel analysis are performed sequentially as internal pre-processing step, through logratio.transfo and withinVariation respectively.

Author(s)

Sébastien Déjean, Ignacio González, Florian Rohart, Kim-Anh Lê Cao, Al J Abadi

References

See Also

spls, summary, plotIndiv, plotVar, predict, perf and http://www.mixOmics.org for more details.
Examples

data(linnerud)
X <- linnerud$exercise
Y <- linnerud$physiological
linn.pls <- pls(X, Y, mode = "classic")

Not run:
data(liver.toxicity)
X <- liver.toxicity$gene
Y <- liver.toxicity$clinic
toxicity.pls <- pls(X, Y, ncomp = 3)

End(Not run)

plsdapartial least squares discriminant analysis (pls-da).

Description

Function to perform standard Partial Least Squares regression to classify samples.

Usage

plsdा(
 X,
 Y,
 ncomp = 2,
 scale = TRUE,
 tol = 1e-06,
 max.iter = 100,
 near.zero.var = FALSE,
 logratio = c("none", "clr"),
 multilevel = NULL,
 all.outputs = TRUE
)

Arguments

X numeric matrix of predictors with the rows as individual observations. Missing values (NaS) are allowed.

Y a factor or a class vector for the discrete outcome.

ncomp Positive Integer. The number of components to include in the model. Default to 2.

scale Logical. If scale = TRUE, each block is standardized to zero means and unit variances (default: TRUE)
tol
Positive numeric used as convergence criteria/tolerance during the iterative process. Default to $1e^{-06}$.

max.iter
Integer, the maximum number of iterations. Default to 100.

near.zero.var
Logical, see the internal `nearZeroVar` function (should be set to TRUE in particular for data with many zero values). Setting this argument to FALSE (when appropriate) will speed up the computations. Default value is FALSE.

logratio
Character, one of ('none','CLR') specifies the log ratio transformation to deal with compositional values that may arise from specific normalisation in sequencing data. Default to 'none'. See `?logratio.transfo` for details.

multilevel
sample information for multilevel decomposition for repeated measurements. A numeric matrix or data frame indicating the repeated measures on each individual, i.e. the individuals ID. See examples in `?splsda`.

all.outputs
Logical. Computation can be faster when some specific (and non-essential) outputs are not calculated. Default = TRUE.

Details

`plsda` function fit PLS models with 1, ..., ncomp components to the factor or class vector `Y`. The appropriate indicator matrix is created.

Logratio transformation and multilevel analysis are performed sequentially as internal pre-processing step, through `logratio.transfo` and `withinVariation` respectively. Logratio can only be applied if the data do not contain any 0 value (for count data, we thus advise the normalise raw data with a 1 offset).

The type of deflation used is 'regression' for discriminant algorithms, i.e. no deflation is performed on `Y`.

Value

`plsda` returns an object of class "plysda", a list that contains the following components:

X
the centered and standardized original predictor matrix.

Y
the centered and standardized indicator response vector or matrix.

ind.mat
the indicator matrix.

ncomp
the number of components included in the model.

variates
list containing the `X` and `Y` variates.

loadings
list containing the estimated loadings associated to each component/variate. The loading weights multiplied with the deflated (residual) matrix gives the variate.

loadings.stars
list containing the estimated loadings associated to each component/variate. The loading weights are projected so that when multiplied with the original matrix we obtain the variate.

names
list containing the names to be used for individuals and variables.

nzv
list containing the zero- or near-zero predictors information.

tol
the tolerance used in the iterative algorithm, used for subsequent S3 methods

max.iter
the maximum number of iterations, used for subsequent S3 methods
iter

Number of iterations of the algorithm for each component

prop_expl_var

The proportion of the variance explained by each variate / component divided by the total variance in the data (after removing the possible missing values) using the definition of ‘redundancy’. Note that contrary to PCA, this amount may not decrease in the following components as the aim of the method is not to maximise the variance, but the covariance between data sets (including the dummy matrix representation of the outcome variable in case of the supervised approaches).

mat.c

matrix of coefficients from the regression of X / residual matrices X on the X-variates, to be used internally by predict.

defl.matrix

central residuals X for each dimension.

Author(s)

Ignacio González, Kim-Anh Lê Cao, Florian Rohart, Al J Abadi

References

See Also

Examples

```r
## First example
data(breast.tumors)
X <- breast.tumors$gene.exp
Y <- breast.tumors$sample$treatment

plsda.breast <- plsda(X, Y, ncomp = 2)
plotIndiv(plsda.breast, ind.names = TRUE, ellipse = TRUE, legend = TRUE)

## Not run:
```
Second example

data(liver.toxicity)
X <- liver.toxicity$gene
Y <- liver.toxicity$treatment[, 4]

plsda.liver <- plsda(X, Y, ncomp = 2)
plotIndiv(plsda.liver, ind.names = Y, ellipse = TRUE, legend = TRUE)

End(Not run)

predict

Predict Method for (mint). (block). (s)pls(da) methods

Description

Predicted values based on PLS models. New responses and variates are predicted using a fitted model and a new matrix of observations.

Usage

```r
## S3 method for class 'mixo_pls'
predict(
  object,
  newdata,
  study.test,
  dist = c("all", "max.dist", "centroids.dist", "mahalanobis.dist"),
  multilevel = NULL,
  ...
)

## S3 method for class 'mixo_spls'
predict(
  object,
  newdata,
  study.test,
  dist = c("all", "max.dist", "centroids.dist", "mahalanobis.dist"),
  multilevel = NULL,
  ...
)

## S3 method for class 'mint.splsda'
predict(
  object,
  newdata,
  study.test,
  dist = c("all", "max.dist", "centroids.dist", "mahalanobis.dist"),
  multilevel = NULL,
  ...
)
```
S3 method for class 'block.pls'
predict(
 object,
 newdata,
 study.test,
 dist = c("all", "max.dist", "centroids.dist", "mahalanobis.dist"),
 multilevel = NULL,
...
)

S3 method for class 'block.spls'
predict(
 object,
 newdata,
 study.test,
 dist = c("all", "max.dist", "centroids.dist", "mahalanobis.dist"),
 multilevel = NULL,
...
)

Arguments

object object of class inheriting from "(mint).(block).(s)pls(da)".
newdata data matrix in which to look for explanatory variables to be used for prediction. Please note that this method does not perform multilevel decomposition or log ratio transformations, which need to be processed beforehand.
study.test For MINT objects, grouping factor indicating which samples of newdata are from the same study. Overlap with object$study are allowed.
dist distance to be applied for discriminant methods to predict the class of new data, should be a subset of "centroids.dist", "mahalanobis.dist" or "max.dist" (see Details). Defaults to "all".
multilevel Design matrix for multilevel analysis (for repeated measurements). A numeric matrix or data frame. For a one level factor decomposition, the input is a vector indicating the repeated measures on each individual, i.e. the individuals ID. For a two level decomposition with splsda models, the two factors are included in Y. Finally for a two level decomposition with spls models, 2nd AND 3rd columns in design indicate those factors (see example in ?splsda and ?spls).
...

... not used currently.

Details

predict produces predicted values, obtained by evaluating the PLS-derived methods, returned by (mint).(block).(s)pls(da) in the frame newdata. Variates for newdata are also returned. Please note that this method performs multilevel decomposition and/or log ratio transformations if needed (multilevel is an input parameter while logratio is extracted from object).
Different prediction distances are proposed for discriminant analysis. The reason is that our supervised models work with a dummy indicator matrix of Y to indicate the class membership of each sample. The prediction of a new observation results in either a predicted dummy variable (output `object$predict`), or a predicted variate (output `object$variates`). Therefore, an appropriate distance needs to be applied to those predicted values to assign the predicted class. We propose distances such as ‘maximum distance’ for the predicted dummy variables, ‘Mahalanobis distance’ and ‘Centroids distance’ for the predicted variates.

"max.dist" is the simplest method to predict the class of a test sample. For each new individual, the class with the largest predicted dummy variable is the predicted class. This distance performs well in single data set analysis with multiclass problems (PLS-DA).

"centroids.dist" allocates to the new observation the class that minimises the distance between the predicted score and the centroids of the classes calculated on the latent components or variates of the trained model.

"mahalanobis.dist" allocates the new sample the class defined as the centroid distance, but using the Mahalanobis metric in the calculation of the distance.

In practice we found that the centroid-based distances ("centroids.dist" and "mahalanobis.dist"), and specifically the Mahalanobis distance led to more accurate predictions than the maximum distance for complex classification problems and N-integration problems (block.splsda). The centroid distances consider the prediction in dimensional space spanned by the predicted variates, while the maximum distance considers a single point estimate using the predicted scores on the last dimension of the model. The user can assess the different distances, and choose the prediction distance that leads to the best performance of the model, as highlighted from the tune and perf outputs.

More (mathematical) details about the prediction distances are available in the supplemental of the mixOmics article (Rohart et al 2017).

For a visualisation of those prediction distances, see `background.predict` that overlays the prediction area in `plotIndiv` for a sPLS-DA object.

Allocates the individual x to the class of Y minimizing $\text{dist}(x\text{-variate}, G_l)$, where G_l, $l = 1, \ldots, L$ are the centroids of the classes calculated on the X-variates of the model. "mahalanobis.dist" allocates the individual x to the class of Y as in "centroids.dist" but by using the Mahalanobis metric in the calculation of the distance.

For MINT objects, the `study.test` argument is required and provides the grouping factor of `newdata`.

For multi block analysis (thus block objects), `newdata` is a list of matrices whose names are a subset of `names(object$X)` and missing blocks are allowed. Several predictions are returned, either for each block or for all blocks. For non discriminant analysis, the predicted values (predict) are returned for each block and these values are combined by average (`AveragedPredict`) or weighted average (`WeightedPredict`), using the weights of the blocks that are calculated as the correlation between a block’s components and the outcome’s components.

For discriminant analysis, the predicted class is returned for each block (class) and each distance (dist) and these predictions are combined by majority vote (`MajorityVote`) or weighted majority vote (`WeightedVote`), using the weights of the blocks that are calculated as the correlation between a block’s components and the outcome’s components. NA means that there is no consensus among the block. For PLS-DA and sPLS-DA objects, the prediction area can be visualised in `plotIndiv` via the `background.predict` function.
Value

predict produces a list with the following components:

- predict: predicted response values. The dimensions correspond to the observations, the response variables and the model dimension, respectively. For a supervised model, it corresponds to the predicted dummy variables.
- variates: matrix of predicted variates.
- B.hat: matrix of regression coefficients (without the intercept).
- AveragedPredict: if more than one block, returns the average predicted values over the blocks (using the predict output).
- WeightedPredict: if more than one block, returns the weighted average of the predicted values over the blocks (using the predict and weights outputs).
- class: predicted class of newdata for each 1,...,ncomp components.
- MajorityVote: if more than one block, returns the majority class over the blocks. NA for a sample means that there is no consensus on the predicted class for this particular sample over the blocks.
- WeightedVote: if more than one block, returns the weighted majority class over the blocks. NA for a sample means that there is no consensus on the predicted class for this particular sample over the blocks.
- weights: Returns the weights of each block used for the weighted predictions, for each nrepeat and each fold.
- centroids: matrix of coordinates for centroids.
- dist: type of distance requested.
- vote: majority vote result for multi block analysis (see details above).

Author(s)

Florian Rohart, Sébastien Déjean, Ignacio González, Kim-Anh Lê Cao, Al J Abadi

References

See Also

Examples

data(linnerud)
X <- linnerud$exercise
Y <- linnerud$physiological
linn.pls <- pls(X, Y, ncomp = 2, mode = "classic")

div1 <- c(200, 40, 60)
indiv2 <- c(190, 45, 45)
newdata <- rbind(indiv1, indiv2)
colnames(newdata) <- colnames(X)
newdata

pred <- predict(linn.pls, newdata)

plotIndiv(linn.pls, comp = 1:2, rep.space = "X-variate\n", style = "graphics", ind.names = FALSE)
points(pred$variates[, 1], pred$variates[, 2], pch = 19, cex = 1.2)
text(pred$variates[, 1], pred$variates[, 2],
c("new ind.1", "new ind.2"), pos = 3)

First example with pllda

data(liver.toxicity)
X <- liver.toxicity$gene
Y <- as.factor(liver.toxicity$treatment[, 4])

if training is performed on 4/5th of the original data
samp <- sample(1:5, nrow(X), replace = TRUE)
test <- which(samp == 1) # testing on the first fold
train <- setdiff(1:nrow(X), test)

pllda.train <- pllda(X[train,], Y[train], ncomp = 2)
test.predict <- predict(pllda.train, X[test,], dist = "max.dist")
Prediction <- test.predict$class$max.dist[, 2]
cbind(Y = as.character(Y[test]), Prediction)

Not run:

Second example with spllda

spllda.train <- spllda(X[train,], Y[train], ncomp = 2, keepX = c(30, 30))
test.predict <- predict(spllda.train, X[test,], dist = "max.dist")
Prediction <- test.predict$class$max.dist[, 2]
cbind(Y = as.character(Y[test]), Prediction)

example with block.spllda=diablo=sgccda and a missing block

data(nutrimouse)
Y.mat = unmap(nutrimouse$diet)
data = list(gene = nutrimouse$gene, lipid = nutrimouse$lipid, Y = Y.mat)

data = list(gene = nutrimouse$gene, lipid = nutrimouse$lipid, Y = Y.mat)

with this design, all blocks are connected
design = matrix(c(0,1,1,0,1,1,0,1,1,0), ncol = 3, nrow = 3,
byrow = TRUE, dimnames = list(names(data), names(data)))
train on 75% of the data
ind.train=NULL
for(i in 1:levels(nutrimouse$diet))
 ind.train=c(ind.train,which(nutrimouse$diet==levels(nutrimouse$diet)[i])[1:6])

training set
gene.train=nutrimouse$gene[ind.train,]
lipid.train=nutrimouse$lipid[ind.train,]
Y.mat.train=Y.mat[ind.train,]
Y.train=nutrimouse$diet[ind.train]
data.train=list(gene=gene.train,lipid=lipid.train,Y=Y.mat.train)

test set
gene.test=nutrimouse$gene[-ind.train,]
lipid.test=nutrimouse$lipid[-ind.train,]
Y.mat.test=Y.mat[-ind.train,]
Y.test=nutrimouse$diet[-ind.train]
data.test=list(gene=gene.test,lipid=lipid.test)

example with block.splsda=diablo=sgccda and a missing block
res.train = block.splsda(X=list(gene=gene.train,lipid=lipid.train),Y=Y.train,
ncomp=3,keepX=list(gene=c(10,10,10),lipid=c(5,5,5)))
test.predict = predict(res.train, newdata=data.test[2], method = "max.dist")

example with mint.splsda
data(stemcells)

training set
ind.test = which(stemcells$study == "3")
gene.train = stemcells$gene[-ind.test,]
Y.train = stemcells$celltype[-ind.test]
study.train = factor(stemcells$study[-ind.test])

test set
gene.test = stemcells$gene[ind.test,]
Y.test = stemcells$celltype[ind.test]
study.test = factor(stemcells$study[ind.test])

res = mint.splsda(X = gene.train, Y = Y.train, ncomp = 3, keepX = c(10, 5, 15),
study = study.train)
pred = predict(res, newdata = gene.test, study.test = study.test)
data.frame(Truth = Y.test, prediction = pred$class$max.dist)

End(Not run)

print

Print Methods for CCA, (s)PLS, PCA and Summary objects
Description

Produce print methods for class "rcc", "pls", "spls", "pca", "rgcca", "sgcca" and "summary".

Usage

S3 method for class 'mixo_pls'
print(x, ...)

S3 method for class 'mint.pls'
print(x, ...)

S3 method for class 'mixo_plsda'
print(x, ...)

S3 method for class 'mint.plsda'
print(x, ...)

S3 method for class 'mixo_spls'
print(x, ...)

S3 method for class 'mint.spls'
print(x, ...)

S3 method for class 'mixo_splsd'
print(x, ...)

S3 method for class 'mint.splsd'
print(x, ...)

S3 method for class 'rcc'
print(x, ...)

S3 method for class 'pca'
print(x, ...)

S3 method for class 'ipca'
print(x, ...)

S3 method for class 'sipca'
print(x, ...)

S3 method for class 'rgcca'
print(x, ...)

S3 method for class 'sgcca'
print(x, ...)

S3 method for class 'sgccda'
print(x, ...)

S3 method for class 'summary'
print(x, ...)

S3 method for class 'perf.pls.mthd'
print(x, ...)

S3 method for class 'perf.plsda.mthd'
print(x, ...)

S3 method for class 'perf.spls.mthd'
print(x, ...)

S3 method for class 'perf.splsda.mthd'
print(x, ...)

S3 method for class 'perf.mint.splsda.mthd'
print(x, ...)

S3 method for class 'perf.sgccda.mthd'
print(x, ...)

S3 method for class 'tune.pca'
print(x, ...)

S3 method for class 'tune.spca'
print(x, ...)

S3 method for class 'tune.rcc'
print(x, ...)

S3 method for class 'tune.splsda'
print(x, ...)

S3 method for class 'tune.pls'
print(x, ...)

S3 method for class 'tune.splsl'
print(x, ...)

S3 method for class 'tune.mint.splsda'
print(x, ...)

S3 method for class 'tune.block.splsda'
print(x, ...)

S3 method for class 'predict'
print(x, ...)
Arguments

x object of class inherited from "rcc", "pls", "spls", "pca", "spca", "rgcca", "sgcca" or "summary".
... not used currently.

Details

print method for "rcc", "pls", "spls", "pca", "rgcca", "sgcca" class, returns a description of the x object including: the function used, the regularization parameters (if x of class "rcc"), the (s)PLS algorithm used (if x of class "pls" or "spls"), the samples size, the number of variables selected on each of the sPLS components (if x of class "spls") and the available components of the object.

print method for "summary" class, gives the (s)PLS algorithm used (if x of class "pls" or "spls"), the number of variates considered, the canonical correlations (if x of class "rcc"), the number of variables selected on each of the sPLS components (if x of class "spls") and the available components for Communalities Analysis, Redundancy Analysis and Variable Importance in the Projection (VIP).

Value

none

Author(s)

Sébastien Déjean, Ignacio González, Kim-Anh Lê Cao, Fangzhou Yao, Jeff Coquery, Al J Abadi.

See Also

rcc, pls, spls, vip.

Examples

print for objects of class 'rcc'
data(nutrimouse)
X <- nutrimouse$lipid
Y <- nutrimouse$gene
nutri.res <- rcc(X, Y, ncomp = 3, lambda1 = 0.064, lambda2 = 0.008)
print(nutri.res)

Not run:
print for objects of class 'summary'
more <- summary(nutri.res, cutoff = 0.65)
print(more)

print for objects of class 'pls'
data(linnerud)
X <- linnerud$exercise
Y <- linnerud$physiological
linn.pls <- pls(X, Y)
print(linn.pls)
print for objects of class 'spls'

```r
data(liver.toxicity)
X <- liver.toxicity$gene
Y <- liver.toxicity$clinic
toxicity.spls <- spls(X, Y, ncomp = 3, keepX = c(50, 50, 50),
                      keepY = c(10, 10, 10))
print(toxicity.spls)
```

End(Not run)

rcc

Regularized Canonical Correlation Analysis

Description

The function performs the regularized extension of the Canonical Correlation Analysis to seek
 correlations between two data matrices.

Usage

```r
rcc(
  X,
  Y,
  ncomp = 2,
  method = c("ridge", "shrinkage"),
  lambda1 = 0,
  lambda2 = 0,
  verbose.call = FALSE
)
```

Arguments

- **X**: numeric matrix or data frame \((n \times p)\), the observations on the \(X\) variables. NAs are allowed.
- **Y**: numeric matrix or data frame \((n \times q)\), the observations on the \(Y\) variables. NAs are allowed.
- **ncomp**: the number of components to include in the model. Default to 2.
- **method**: One of "ridge" or "shrinkage". If "ridge", \(\lambda_1\) and \(\lambda_2\) need to be supplied (see also our function tune.rcc); if "shrinkage", parameters are directly estimated with Strimmer's formula, see below and reference.
- **lambda1, lambda2**: a non-negative real. The regularization parameter for the \(X\) and \(Y\) data. Defaults to \(\lambda_1=\lambda_2=0\). Only used if method="ridge".
- **verbose.call**: Logical (Default=FALSE), if set to TRUE then the $call component of the returned object will contain the variable values for all parameters. Note that this may cause large memory usage.
Details

The main purpose of Canonical Correlations Analysis (CCA) is the exploration of sample correlations between two sets of variables X and Y observed on the same individuals (experimental units) whose roles in the analysis are strictly symmetric.

The cancor function performs the core of computations but additional tools are required to deal with data sets highly correlated (nearly collinear), data sets with more variables than units by example. The rcc function, the regularized version of CCA, is one way to deal with this problem by including a regularization step in the computations of CCA. Such a regularization in this context was first proposed by Vinod (1976), then developed by Leurgans et al. (1993). It consists in the regularization of the empirical covariances matrices of X and Y by adding a multiple of the matrix identity, that is, $\text{Cov}(X) + \lambda_1 I$ and $\text{Cov}(Y) + \lambda_2 I$.

When $\lambda_1 = 0$ and $\lambda_2 = 0$, rcc performs a classical CCA, if possible (i.e. when $n > p + q$).

The shrinkage estimates method = "shrinkage" can be used to bypass tune.rcc to choose the shrinkage parameters - which can be long and costly to compute with very large data sets. Note that both functions tune.rcc (which uses cross-validation) and the shrinkage parameters (which uses the formula from Schafer and Strimmer, see the corpcor package estimate.lambda) may output different results.

Note: when method = "shrinkage" the parameters are estimated using estimate.lambda from the corpcor package. Data are then centered to calculate the regularised variance-covariance matrices in rcc.

Missing values are handled in the function, except when using method = "shrinkage". In that case the estimation of the missing values can be performed by the reconstitution of the data matrix using the nipals function.

Value

rcc returns a object of class "rcc", a list that contains the following components:

- X the original X data.
- Y the original Y data.
- cor a vector containing the canonical correlations.
- lambda a vector containing the regularization parameters whether those were input if ridge method or directly estimated with the shrinkage method.
- loadings list containing the estimated coefficients used to calculate the canonical variates in X and Y.
- variates list containing the canonical variates.
- names list containing the names to be used for individuals and variables.
- prop_expl_var Proportion of the explained variance of derived components, after setting possible missing values to zero.
- call if verbose.call = FALSE, then just the function call is returned. If verbose.call = TRUE then all the inputted values are accessable via this component

Author(s)

Sébastien Déjean, Ignacio González, Francois Bartolo, Kim-Anh Lê Cao, Florian Rohart, Al J Abadi
References

See Also

summary, tune.rcc, plot.rcc, plotIndiv, plotVar, cim, network and http://www.mixOmics.org for more details.

Examples

Classic CCA
data(linnerud)
X <- linnerud$exercise
Y <- linnerud$physiological
linn.res <- rcc(X, Y)

Not run:
Regularized CCA
data(nutrimouse)
X <- nutrimouse$lipid
Y <- nutrimouse$gene
nutri.res1 <- rcc(X, Y, ncomp = 3, lambda1 = 0.064, lambda2 = 0.008)

using shrinkage parameters
nutri.res2 <- rcc(X, Y, ncomp = 3, method = 'shrinkage')
nutri.res2$lambda # the shrinkage parameters

End(Not run)
selectVar

Output of selected variables

Description

This function outputs the selected variables on each component for the sparse versions of the approaches (was also generalised to the non sparse versions for our internal functions).

Usage

selectVar(...)

S3 method for class 'mixo_pls'
selectVar(object, comp = 1, block = NULL, ...)

S3 method for class 'mixo_spls'
selectVar(object, comp = 1, block = NULL, ...)

S3 method for class 'pca'
selectVar(object, comp = 1, block = NULL, ...)

S3 method for class 'sgcca'
selectVar(object, comp = 1, block = NULL, ...)

S3 method for class 'rgcca'
selectVar(object, comp = 1, block = NULL, ...)

Arguments

... other arguments.
object object of class inherited from "pls", "spls", "plsdA", "splsdA", "sgcca", "rgcca", "pca", "spca", "sipca".
comp integer value indicating the component of interest.
block for an object of class "sgcca", the block data sets can be specified as an input vector, for example c(1,2) for the first two blocks. Default to NULL (all block data sets)

Details

selectVar provides the variables selected on a given component.

list("name") outputs the name of the selected variables (provided that the input data have column names) ranked in decreasing order of importance.

list("value") outputs the loading value for each selected variable, the loadings are ranked according to their absolute value.

These functions are only implemented for the sparse versions.
Value
none

Author(s)
Kim-Anh Lê Cao, Florian Rohart, Al J Abadi

Examples

data(liver.toxicity)
X = liver.toxicity$gene
Y = liver.toxicity$clinic

example with sPCA

liver.spca <- spca(X, ncomp = 1, keepX = 10)
selectVar(liver.spca, comp = 1)$name
selectVar(liver.spca, comp = 1)$value

Not run:
example with sIPCA

liver.sipca <- sipca(X, ncomp = 3, keepX = rep(10, 3))
selectVar(liver.sipca, comp = 1)

example with sPLS

liver.spls = spls(X, Y, ncomp = 2, keepX = c(20, 40), keepY = c(5, 5))
selectVar(liver.spls, comp = 1)

example with sPLS-DA
data(srbct) # an example with no gene name in the data
X = srbct$gene
Y = srbct$class

srbct.splsda = splsda(X, Y, ncomp = 2, keepX = c(5, 10))
select = selectVar(srbct.splsda, comp = 2)
select
this is a very specific case where a data set has no rownames.
srbct$gene.name[substr(select$select, 2,5),]

example with sGCCA

data(nutrimouse)

! need to unmap the Y factor
Y = unmap(nutrimouse$diet)
data = list(gene = nutrimouse$gene, lipid = nutrimouse$lipid, Y)
in this design, gene expression and lipids are connected to the diet factor
and gene expression and lipids are also connected

```r
design = matrix(c(0,1,1, 
1,0,1, 
1,1,0), ncol = 3, nrow = 3, byrow = TRUE)

# note: the penalty parameters need to be tuned
wrap.result.sgcca = wrapper.sgcca(X = data, design = design, penalty = c(.3,.3, 1),
ncomp = 2,
scheme = "horst")
```

variables selected and loadings values on component 1 for the two blocs
selectVar(wrap.result.sgcca, comp = 1, block = c(1,2))

variables selected on component 1 for each block
selectVar(wrap.result.sgcca, comp = 1, block = c(1,2))$'gene'$name
selectVar(wrap.result.sgcca, comp = 1, block = c(1,2))$'lipid'$name

variables selected on component 2 for each block
selectVar(wrap.result.sgcca, comp = 2, block = c(1,2))$'gene'$name
selectVar(wrap.result.sgcca, comp = 2, block = c(1,2))$'lipid'$name

loading value of the variables selected on the first block
selectVar(wrap.result.sgcca, comp = 1, block = 1)$'gene'$value

End(Not run)

sipca

Independent Principal Component Analysis

Description

Performs sparse independent principal component analysis on the given data matrix to enable variable selection.

Usage

```r
sipca(
  X,
  ncomp = 3,
  mode = c("deflation", "parallel"),
  fun = c("logcosh", "exp"),
  scale = FALSE,
  max.iter = 200,
  tol = 1e-04,
  keepX = rep(50, ncomp),
  w.init = NULL
)
```
Arguments

- **X**: a numeric matrix (or data frame).
- **ncomp**: integer, number of independent component to choose. Set by default to 3.
- **mode**: character string. What type of algorithm to use when estimating the unmixing matrix, choose one of "deflation", "parallel". Default set to deflation.
- **fun**: the function used in approximation to neg-entropy in the FastICA algorithm. Default set to logcosh, see details of FastICA.
- **scale**: (Default=FALSE) Logical indicating whether the variables should be scaled to have unit variance before the analysis takes place. The default is FALSE for consistency with prcomp function, but in general scaling is advisable. Alternatively, a vector of length equal the number of columns of X can be supplied. The value is passed to scale.
- **max.iter**: integer, the maximum number of iterations.
- **tol**: a positive scalar giving the tolerance at which the un-mixing matrix is considered to have converged, see fastICA package.
- **keepX**: the number of variable to keep on each dimensions.
- **w.init**: initial un-mixing matrix (unlike fastICA, this matrix is fixed here).

Details

See Details of ipca.

Soft thresholding is implemented on the independent loading vectors to obtain sparse loading vectors and enable variable selection.

Value

pca returns a list with class "ipca" containing the following components:

- **ncomp**: the number of principal components used.
- **unmixing**: the unmixing matrix of size (ncomp x ncomp)
- **mixing**: the mixing matrix of size (ncomp x ncomp)
- **X**: the centered data matrix
- **x**: the principal components (with sparse independent loadings)
- **loadings**: the sparse independent loading vectors
- **kurtosis**: the kurtosis measure of the independent loading vectors
- **prop_expl_var**: Proportion of the explained variance of derived components, after setting possible missing values to zero.

Author(s)

Fangzhou Yao, Jeff Coquery, Francois Bartolo, Kim-Anh Lê Cao, Al J Abadi
References

See Also

Examples

data(liver.toxicity)

implement IPCA on a microarray dataset
sipca.res <- sipca(liver.toxicity$gene, ncomp = 3, mode="deflation", keepX=c(50,50,50))

samples representation
plotIndiv(sipca.res, ind.names = liver.toxicity$treatment[, 4], group = as.numeric(as.factor(liver.toxicity$treatment[, 4])))

Not run:
plotIndiv(sipca.res, cex = 0.01,
 col = as.numeric(as.factor(liver.toxicity$treatment[, 4])),
 style="3d")

variables representation
plotVar(sipca.res, cex = 2.5)

plotVar(sipca.res, rad.in = 0.5, cex = .6, style="3d")

End(Not run)

spca

Sparse Principal Components Analysis

Description

Performs a sparse principal component analysis for variable selection using singular value decomposition and lasso penalisation on the loading vectors.
Usage

```
spca(
  X,  
  ncomp = 2,  
  center = TRUE,  
  scale = TRUE,  
  keepX = rep(ncol(X), ncomp),  
  max.iter = 500,  
  tol = 1e-06,  
  logratio = c("none", "CLR"),  
  multilevel = NULL,  
  verbose.call = FALSE
)
```

Arguments

- **X**: a numeric matrix (or data frame) which provides the data for the sparse principal components analysis. It should not contain missing values.
- **ncomp**: Integer, if data is complete ncomp decides the number of components and associated eigenvalues to display from the pcasvd algorithm and if the data has missing values, ncomp gives the number of components to keep to perform the reconstitution of the data using the NIPALS algorithm. If NULL, function sets ncomp = min(nrow(X),ncol(X))
- **center**: (Default=TRUE) Logical, whether the variables should be shifted to be zero centered. Only set to FALSE if data have already been centered. Alternatively, a vector of length equal the number of columns of X can be supplied. The value is passed to `scale`. If the data contain missing values, columns should be centered for reliable results.
- **scale**: (Default=TRUE) Logical indicating whether the variables should be scaled to have unit variance before the analysis takes place.
- **keepX**: numeric vector of length ncomp, the number of variables to keep in loading vectors. By default all variables are kept in the model. See details.
- **max.iter**: Integer, the maximum number of iterations in the NIPALS algorithm.
- **tol**: Positive real, the tolerance used in the NIPALS algorithm.
- **logratio**: one of ('none', 'CLR'). Specifies the log ratio transformation to deal with compositional values that may arise from specific normalisation in sequencing data. Default to 'none'
- **multilevel**: sample information for multilevel decomposition for repeated measurements.
- **verbose.call**: Logical (Default=FALSE), if set to TRUE then the $call component of the returned object will contain the variable values for all parameters. Note that this may cause large memory usage.

Details

scale= TRUE is highly recommended as it will help obtaining orthogonal sparse loading vectors.
keepX is the number of variables to select in each loading vector, i.e. the number of variables with non zero coefficient in each loading vector.

Note that data can contain missing values only when logratio = 'none' is used. In this case, center = TRUE should be used to center the data in order to effectively ignore the missing values. This is the default behaviour in spca.

According to Filzmoser et al., a ILR log ratio transformation is more appropriate for PCA with compositional data. Both CLR and ILR are valid.

Logratio transform and multilevel analysis are performed sequentially as internal pre-processing step, through logratio.transfo and withinVariation respectively.

Logratio can only be applied if the data do not contain any 0 value (for count data, we thus advise the normalise raw data with a 1 offset). For ILR transformation and additional offset might be needed.

The principal components are not guaranteed to be orthogonal in sPCA. We adopt the approach of Shen and Huang 2008 (Section 2.3) to estimate the explained variance in the case where the sparse loading vectors (and principal components) are not orthogonal. The data are projected onto the space spanned by the first loading vectors and the variance explained is then adjusted for potential correlation between PCs. Note that in practice, the loading vectors tend to be orthogonal if the data are centered and scaled in sPCA.

Value

spca returns a list with class "spca" containing the following components:

- **call** if verbose.call = FALSE, then just the function call is returned. If verbose.call = TRUE then all the inputted values are accessable via this component

- **ncomp** the number of components to keep in the calculation.

- **prop.expl.var** the adjusted percentage of variance explained for each component.

- **cum.var** the adjusted cumulative percentage of variances explained.

- **keepX** the number of variables kept in each loading vector.

- **iter** the number of iterations needed to reach convergence for each component.

- **rotation** the matrix containing the sparse loading vectors.

- **x** the matrix containing the principal components.

Author(s)

Kim-Anh Lê Cao, Fangzhou Yao, Leigh Coonan, Ignacio Gonzalez, Al J Abadi

References

See Also

pca and http://www.mixOmics.org for more details.
Examples

```r
data(liver.toxicity)
spca.rat <- spca(liver.toxicity$gene, ncomp = 3, keepX = rep(50, 3))
spca.rat

## variable representation
plotVar(spca.rat, cex = 1)
## Not run:
plotVar(spca.rat, style = "3d")
## End(Not run)

## samples representation
plotIndiv(spca.rat, ind.names = liver.toxicity$treatment[, 3],
          group = as.numeric(liver.toxicity$treatment[, 3]))
## Not run:
plotIndiv(spca.rat, cex = 0.01,
          col = as.numeric(liver.toxicity$treatment[, 3]), style = "3d")
## End(Not run)

## example with multilevel decomposition and CLR log ratio transformation
data("diverse.16S")
spca.res = spca(X = diverse.16S$data.TSS, ncomp = 5,
                logratio = 'CLR', multilevel = diverse.16S$sample)
plot(spca.res)
plotIndiv(spca.res, ind.names = FALSE, group = diverse.16S$bodysite, title = '16S diverse data',
          legend = TRUE)
```

sps

Sparse Partial Least Squares (sPLS)

Description

Function to perform sparse Partial Least Squares (sPLS). The sPLS approach combines both integration and variable selection simultaneously on two data sets in a one-step strategy.

Usage

```r
spls(
    X,
    Y,
    ncomp = 2,
    mode = c("regression", "canonical", "invariant", "classic"),
    keepX, keepY,
    scale = TRUE,
    tol = 1e-06,
    ...)```
max.iter = 100,
near.zero.var = FALSE,
logratio = "none",
multilevel = NULL,
all.outputs = TRUE,
verbose.call = FALSE
)

Arguments

X    numeric matrix of predictors with the rows as individual observations. missing values (NAs) are allowed.
Y    numeric matrix of response(s) with the rows as individual observations matching X. missing values (NAs) are allowed.
ncomp Positive Integer. The number of components to include in the model. Default to 2.
mode Character string indicating the type of PLS algorithm to use. One of "regression", "canonical", "invariant" or "classic". See Details.
keepX numeric vector of length ncomp, the number of variables to keep in X-loadings. By default all variables are kept in the model.
keepY numeric vector of length ncomp, the number of variables
scale Logical. If scale = TRUE, each block is standardized to zero means and unit variances (default: TRUE)
tol Positive numeric used as convergence criteria/tolerance during the iterative process. Default to 1e-06.
max.iter Integer, the maximum number of iterations. Default to 100.
near.zero.var Logical, see the internal nearZeroVar function (should be set to TRUE in particular for data with many zero values). Setting this argument to FALSE (when appropriate) will speed up the computations. Default value is FALSE.
logratio Character, one of ("none","CLR") specifies the log ratio transformation to deal with compositional values that may arise from specific normalisation in sequencing data. Default to 'none'. See ?logratio.transfo for details.
multilevel Numeric, design matrix for repeated measurement analysis, where multilevel decomposition is required. For a one factor decomposition, the repeated measures on each individual, i.e. the individuals ID is input as the first column. For a 2 level factor decomposition then 2nd AND 3rd columns indicate those factors. See examples.
all.outputs Logical. Computation can be faster when some specific (and non-essential) outputs are not calculated. Default = TRUE.
verbose.call Logical (Default=FALSE), if set to TRUE then the $call component of the returned object will contain the variable values for all parameters. Note that this may cause large memory usage.

Details

spls function fit sPLS models with 1,...,ncomp components. Multi-response models are fully supported. The X and Y datasets can contain missing values.
Value

`spls` returns an object of class "`spls`", a list that contains the following components:

- **call**: if `verbose.call = FALSE`, then just the function call is returned. If `verbose.call = TRUE` then all the inputted values are accessable via this component.
- **X**: the centered and standardized original predictor matrix.
- **Y**: the centered and standardized original response vector or matrix.
- **ncomp**: the number of components included in the model.
- **mode**: the algorithm used to fit the model.
- **keepX**: number of `X` variables kept in the model on each component.
- **keepY**: number of `Y` variables kept in the model on each component.
- **variates**: list containing the variates.
- **loadings**: list containing the estimated loadings for the `X` and `Y` variates.
- **names**: list containing the names to be used for individuals and variables.
- **tol**: the tolerance used in the iterative algorithm, used for subsequent S3 methods
- **iter**: Number of iterations of the algorithm for each component
- **max.iter**: the maximum number of iterations, used for subsequent S3 methods
- **nzv**: list containing the zero- or near-zero predictors information.
- **scale**: whether scaling was applied per predictor.
- **logratio**: whether log ratio transformation for relative proportion data was applied, and if so, which type of transformation.
- **prop_expl_var**: Proportion of variance explained per component (note that contrary to PCA, this amount may not decrease as the aim of the method is not to maximise the variance, but the covariance between data sets).
- **input.X**: numeric matrix of predictors in `X` that was input, before any saling / logratio / multilevel transformation.
- **mat.c**: matrix of coefficients from the regression of `X` / residual matrices `X` on the `X` variates, to be used internally by `predict`.
- **defl.matrix**: residual matrices `X` for each dimension.

missing values

The estimation of the missing values can be performed using the `impute.nipals` function. Otherwise, missing values are handled by element-wise deletion in the `pls` function without having to delete the rows with missing data.

multilevel

Multilevel (s)PLS enables the integration of data measured on two different data sets on the same individuals. This approach differs from multilevel sPLS-DA as the aim is to select subsets of variables from both data sets that are highly positively or negatively correlated across samples. The approach is unsupervised, i.e. no prior knowledge about the sample groups is included.
**logratio and multilevel**

logratio transform and multilevel analysis are performed sequentially as internal pre-processing step, through `logratio.transfo` and `withinVariation` respectively.

**Author(s)**

Sébastien Déjean, Ignacio González, Florian Rohart, Kim-Anh Lê Cao, Al J abadi

**References**

Sparse PLS: canonical and regression modes:


On multilevel analysis:

**See Also**

`pls`, `summary`, `plotIndiv`, `plotVar`, `cim`, `network`, `predict`, `perf` and http://www.mixOmics.org for more details.

**Examples**

```r
data(liver.toxicity)
X <- liver.toxicity$gene
Y <- liver.toxicity$clinic
toxicity.spls <- spls(X, Y, ncomp = 2, keepX = c(50, 50), keepY = c(10, 10))
toxicity.spls <- spls(X, Y[,1:2,drop=FALSE], ncomp = 5, keepX = c(50, 50))#, mode="canonical")
```
## Not run:

## Second example: one-factor multilevel analysis with sPLS, selecting a subset of variables
#--------------------------------------------------------------

data(liver.toxicity)
# note: we made up those data, pretending they are repeated measurements
repeat.indiv <- c(1, 2, 1, 2, 1, 2, 1, 2, 3, 3, 4, 3, 4, 3, 4, 4, 5, 6, 5, 5, 6, 6, 7, 7, 8, 6, 7, 8, 7, 8, 9, 10, 9, 10, 11, 9, 9, 10, 12, 12, 10, 11, 12, 13, 14, 13, 14, 13, 14, 13, 14, 13, 14, 14, 15, 15, 16, 15, 16, 15, 16)
summary(as.factor(repeat.indiv)) # 16 rats, 4 measurements each
# this is a spls (unsupervised analysis) so no need to mention any factor in design
# we only perform a one level variation split
design <- data.frame(sample = repeat.indiv)
res.spls.1level <- spls(X = liver.toxicity$gene,
                        Y=liver.toxicity$clinic,
                        multilevel = design,
                        ncomp = 3,
                        keepX = c(50, 50, 50),
                        keepY = c(5, 5, 5),
                        mode = 'canonical')

# set up colors and pch for plotIndiv
col.stimu <- 1:nlevels(design$stimu)
plotIndiv(res.spls.1level, rep.space = 'X-variate', ind.names = FALSE,
group = liver.toxicity$treatment$Dose.Group,
pch = 20, main = 'Gene expression subspace',
legend = TRUE)

plotIndiv(res.spls.1level, rep.space = 'Y-variate', ind.names = FALSE,
group = liver.toxicity$treatment$Dose.Group,
pch = 20, main = 'Clinical measurements subspace',
legend = TRUE)

plotIndiv(res.spls.1level, rep.space = 'XY-variate', ind.names = FALSE,
group = liver.toxicity$treatment$Dose.Group,
pch = 20, main = 'Both Gene expression and Clinical subspaces',
legend = TRUE)

## Third example: two-factor multilevel analysis with sPLS, selecting a subset of variables
#--------------------------------------------------------------

data(liver.toxicity)
dose <- as.factor(liver.toxicity$treatment$Dose.Group)
time <- as.factor(liver.toxicity$treatment$Time.Group)
# note: we made up those data, pretending they are repeated measurements
repeat.indiv <- c(1, 2, 1, 2, 1, 2, 1, 2, 3, 3, 4, 3, 4, 3, 4, 4, 5, 6, 5, 5, 6, 6, 7, 7, 8, 6, 7, 8, 7, 8, 9, 10, 9, 10, 11, 9, 9, 10, 11, 12, 12, 10, 11, 12, 13, 14, 13, 14, 13, 14, 13, 14, 13, 14, 14, 15, 15, 16, 15, 16, 15, 16, 15)
summary(as.factor(repeat.indiv)) # 16 rats, 4 measurements each
design <- data.frame(sample = repeat.indiv, dose = dose, time = time)

res.spls.2level = spls(liver.toxicity$gene,
Y = liver.toxicity$clinic,
multilevel = design,
ncmp=2,
keepX = c(10,10), keepY = c(5,5))

## End(Not run)

---

**splsda**

Sparse Partial Least Squares Discriminant Analysis (sPLS-DA)

**Description**

Function to perform sparse Partial Least Squares to classify samples (supervised analysis) and select variables.

**Usage**

```r
splsda(
 X,
 Y,
 ncomp = 2,
 keepX,
 scale = TRUE,
 tol = 1e-06,
 max.iter = 100,
 near.zero.var = FALSE,
 logratio = "none",
 multilevel = NULL,
 all.outputs = TRUE
)
```

**Arguments**

- **X** numeric matrix of predictors with the rows as individual observations. missing values (NAs) are allowed.
- **Y** a factor or a class vector for the discrete outcome.
- **ncomp** Positive Integer. The number of components to include in the model. Default to 2.
- **keepX** numeric vector of length ncomp, the number of variables to keep in X-loadings. By default all variables are kept in the model.
- **scale** Logical. If scale = TRUE, each block is standardized to zero means and unit variances (default: TRUE)
splsda

**Details**

splsda function fits an sPLS model with 1, …, ncomp components to the factor or class vector \( Y \). The appropriate indicator (dummy) matrix is created.

Logratio transformation and multilevel analysis are performed sequentially as internal pre-processing step, through `logratio.transfo` and `withinVariation` respectively. Logratio can only be applied if the data do not contain any 0 value (for count data, we thus advise the normalise raw data with a 1 offset).

The type of deflation used is ‘regression’ for discriminant algorithms. i.e. no deflation is performed on \( Y \).

**Value**

splsda returns an object of class "splsda", a list that contains the following components:

- **X** the centered and standardized original predictor matrix.
- **Y** the centered and standardized indicator response vector or matrix.
- **ind.mat** the indicator matrix.
- **ncomp** the number of components included in the model.
- **keepX** number of \( X \) variables kept in the model on each component.
- **variates** list containing the variates.
- **loadings** list containing the estimated loadings for the \( X \) and \( Y \) variates.
- **names** list containing the names to be used for individuals and variables.
- **nzv** list containing the zero- or near-zero predictors information.
- **tol** the tolerance used in the iterative algorithm, used for subsequent S3 methods
- **iter** Number of iterations of the algorithm for each component
- **max.iter** the maximum number of iterations, used for subsequent S3 methods
- **scale** Logical indicating whether the data were scaled in MINT S3 methods
logratio whether logratio transformations were used for compositional data
prop_expl_var Proportion of variance explained per component after setting possible missing
values in the data to zero (note that contrary to PCA, this amount may not de-
crease as the aim of the method is not to maximise the variance, but the covari-
ance between X and the dummy matrix Y).
mat.c matrix of coefficients from the regression of X / residual matrices X on the X-
variates, to be used internally by predict.
defl.matrix residual matrices X for each dimension.

Author(s)
Florian Rohart, Ignacio González, Kim-Anh Lê Cao, Al J abadi

References

See Also

Examples
## First example
data(breast.tumors)
X <- breast.tumors$gene.exp
# Y will be transformed as a factor in the function, # but we set it as a factor to set up the colors.
Y <- as.factor(breast.tumors$sample$treatment)
res <- splsda(X, Y, ncomp = 2, keepX = c(25, 25))

# individual names appear
plotIndiv(res, ind.names = Y, legend = TRUE, ellipse =TRUE)

## Not run:
## Second example: one-factor analysis with sPLS-DA, selecting a subset of variables # as in the paper Liquet et al.
#--------------------------------------------------------------
data(vac18)
X <- vac18$genes
Y <- vac18$stimulation
# sample indicates the repeated measurements
design <- data.frame(sample = vac18$sample)
Y = data.frame(stimul = vac18$stimulation)

# multilevel sPLS-DA model
res.1level <- splsda(X, Y = Y, ncomp = 3, multilevel = design, keepX = c(30, 137, 123))

# set up colors for plotIndiv
col.stim <- c("darkblue", "purple", "green4","red3")
plotIndiv(res.1level, ind.names = Y, col.per.group = col.stim)

## Third example: two-factor analysis with sPLS-DA, selecting a subset of variables
## as in the paper Liquet et al.
#--------------------------------------------------------------
data(vac18.simulated) # simulated data
X <- vac18.simulated$genes
design <- data.frame(sample = vac18.simulated$sample)
Y = data.frame( stimu = vac18.simulated$stimulation,
time = vac18.simulated$time)
res.2level <- splsda(X, Y = Y, ncomp = 2, multilevel = design, keepX = c(200, 200))

plotIndiv(res.2level, group = Y$stimu, ind.names = vac18.simulated$time, legend = TRUE, style = 'lattice')

## Fourth example: with more than two classes
#--------------------------------------------------------------
data(liver.toxicity)
X <- as.matrix(liver.toxicity$gene)
# Y will be transformed as a factor in the function,
# but we set it as a factor to set up the colors.
Y <- as.factor(liver.toxicity$treatment[, 4])
splsda.liver <- splsda(X, Y = Y, ncomp = 2, keepX = c(20, 20))

# individual name is set to the treatment
plotIndiv(splsda.liver, ind.names = Y, ellipse = TRUE, legend = TRUE)

## Fifth example: 16S data with multilevel decomposition and log ratio transformation
#--------------------------------------------------------------
srbct.16S = splsda(
  X = diverse.16S$data.TSS, # TSS normalised data
  Y = diverse.16S$ bodysite,
  multilevel = diverse.16S$ sample, # multilevel decomposition
  ncomp = 2,
  keepX = c(10, 150),
  logratio = 'CLR') # CLR log ratio transformation

plotIndiv(splsda.16S, ind.names = FALSE, pch = 16, ellipse = TRUE, legend = TRUE)
#OTUs selected at the family level
diverse.16S$taxonomy[selectVar(splsda.16S, comp = 1)$name,'Family']

## End(Not run)

---

**srbct**  
*Small version of the small round blue cell tumors of childhood data*

**Description**

This data set from Khan *et al.*, (2001) gives the expression measure of 2308 genes measured on 63 samples.

**Usage**

```r
data(srbct)
```

**Format**

A list containing the following components:

- **list("gene")** data frame with 63 rows and 2308 columns. The expression measure of 2308 genes for the 63 subjects.
- **list("class")** A class vector containing the class tumour of each case (4 classes in total).
- **list("gene.name")** data frame with 2308 rows and 2 columns containing further information on the genes.

**Value**

none

**Source**


**References**

Description

This data set contains the expression of a random subset of 400 genes in 125 samples from 4 independent studies and 3 cell types.

Usage

data(stemcells)

Format

A list containing the following components:

- `list("gene")` data matrix with 125 rows and 400 columns. Each row represents an experimental sample, and each column a single gene.
- `list("celltype")` a factor indicating the cell type of each sample.
- `list("study")` a factor indicating the study from which the sample was extracted.

Details

This data set contains the expression of a random subset of 400 genes in 125 samples from 4 independent studies and 3 cell types. Those studies can be combined and analysed using the MINT procedure.

Value

none

References

study_split divides a data matrix in a list of matrices defined by a factor

Description

study_split divides a data matrix in a list of matrices defined by a study input.

Usage

study_split(data, study)

Arguments

data numeric matrix of predictors
study grouping factor indicating which samples are from the same study

Value

study_split simply returns a list of the same length as the number of levels of study that contains sub-matrices of data.

Author(s)

Florian Rohart, AI J Abadi

See Also

mint.pls, mint.spls, mint.plsda, mint.splsda.

Examples

data(stemcells)
data = stemcells$gene
exp = stemcells$study

data.list = study_split(data, exp)

names(data.list)
lapply(data.list, dim)
table(exp)
summary

Summary Methods for CCA and PLS objects

Description

Produce summary methods for class "rcc", "pls" and "spls".

Usage

## S3 method for class 'mixo_pls'
summary(
  object,
  what = c("all", "communalities", "redundancy", "VIP"),
  digits = 4,
  keep.var = FALSE,
  ...  
)

## S3 method for class 'mixo_spls'
summary(
  object,
  what = c("all", "communalities", "redundancy", "VIP"),
  digits = 4,
  keep.var = FALSE,
  ...  
)

## S3 method for class 'rcc'
summary(
  object,
  what = c("all", "communalities", "redundancy"),
  cutoff = NULL,
  digits = 4,
  ...  
)

## S3 method for class 'pca'
summary(object, ...)

Arguments

object object of class inherited from "rcc", "pls" or "spls".

what character string or vector. Should be a subset of c("all", "summarised", "communalities", "redundancy", "VIP"). "VIP" is only available for (s)PLS. See Details.

digits integer, the number of significant digits to use when printing. Defaults to 4.
keep.var Logical. If TRUE only the variables with loadings not zero (as selected by spls) are showed. Defaults to FALSE.

cutoff real between 0 and 1. Variables with all correlations components below this cut-off in absolute value are not showed (see Details).

Details

The information in the rcc, pls or spls object is summarised, it includes: the dimensions of X and Y data, the number of variates considered, the canonical correlations (if object of class "rcc") and the (s)PLS algorithm used (if object of class "pls" or "spls") and the number of variables selected on each of the sPLS components (if x of class "spls").

"communalities" in what gives Communalities Analysis. "redundancy" display Redundancy Analysis. "VIP" gives the Variable Importance in the Projection (VIP) coefficients fit by pls or spls. If what is "all", all are given.

For class "rcc", when a value to cutoff is specified, the correlations between each variable and the equiangular vector between X- and Y-variates are computed. Variables with at least one correlation componente bigger than cutoff are showed. The defaults is cutoff=NULL all the variables are given.

Value

The function summary returns a list with components:

ncomp the number of components in the model.
cor the canonical correlations.
cutoff the cutoff used.
keep.var list containing the name of the variables selected.
mode the algorithm used in pls or spls.
Cm list containing the communalities.
Rd list containing the redundancy.
VIP matrix of VIP coefficients.
what subset of c("all","communalities","redundancy","VIP").
digits the number of significant digits to use when printing.
method method used: rcc, pls or spls.

Author(s)
Sébastien Déjean, Ignacio González, Kim-Anh Lê Cao, Al J Abadi

See Also

rcc, pls, spls, vip.
## Examples

```r
summary for objects of class 'rcc'
data(nutrimouse)
X <- nutrimouse$lipid
Y <- nutrimouse$gene
nutri.res <- rcc(X, Y, ncomp = 3, lambda1 = 0.064, lambda2 = 0.008)
more <- summary(nutri.res, cutoff = 0.65)

Not run:
summary for objects of class 'pls'
data(linnerud)
X <- linnerud$exercise
Y <- linnerud$physiological
linn.pls <- pls(X, Y)
more <- summary(linn.pls)

summary for objects of class 'spls'
data(liver.toxicity)
X <- liver.toxicity$gene
Y <- liver.toxicity$clinic
toxicity.spls <- spls(X, Y, ncomp = 3, keepX = c(50, 50, 50),
keepY = c(10, 10, 10))
more <- summary(toxicity.spls, what = "redundancy", keep.var = TRUE)
```

## End(Not run)

---

`tune`  

Wrapper function to tune pls-derived methods.

### Description

This function uses repeated cross-validation to tune hyperparameters such as the number of features to select and possibly the number of components to extract.

### Usage

```r
tune(
 method = c("spls", "splsda", "mint.splsda", "rcc", "pca", "spca"),
 X,
 Y,
 multilevel = NULL,
 ncomp,
 study,
 test.keepX = c(5, 10, 15),
 test.keepY = NULL,
 already.tested.X,
 already.tested.Y,
)```

mode = c("regression", "canonical", "invariant", "classic"),
nrepeat = 1,
grid1 = seq(0.001, 1, length = 5),
grid2 = seq(0.001, 1, length = 5),
validation = "Mfold",
folds = 10,
dist = "max.dist",
measure = ifelse(method == "spls", "cor", "BER"),
auc = FALSE,
progressBar = FALSE,
near.zero.var = FALSE,
logratio = c("none", "CLR"),
center = TRUE,
scale = TRUE,
max.iter = 100,
tol = 1e-09,
light.output = TRUE,
BPPARAM = SerialParam()
)

Arguments

method
This parameter is used to pass all other argument to the suitable function. method
has to be one of the following: "spls", "splsda", "mint.splsda", "rcc", "pca",
"spca" or "pls".

X
numeric matrix of predictors. NAs are allowed.

Y
Either a factor or a class vector for the discrete outcome, or a numeric vector or
matrix of continuous responses (for multi-response models).

multilevel
Design matrix for multilevel analysis (for repeated measurements) that indicates
the repeated measures on each individual, i.e. the individuals ID. See Details.

ncomp
the number of components to include in the model.

study
grouping factor indicating which samples are from the same study

test.keepX
numeric vector for the different number of variables to test from the X data set

test.keepY
If method = 'spls', numeric vector for the different number of variables to test
from the Y data set

already.tested.X
Optional, if ncomp > 1 A numeric vector indicating the number of variables to
select from the X data set on the firsts components.

already.tested.Y
if method = 'spls' and if(ncomp > 1) numeric vector indicating the number
of variables to select from the Y data set on the first components

mode
character string. What type of algorithm to use, (partially) matching one of
"regression", "canonical", "invariant" or "classic". See Details.

nrepeat
Number of times the Cross-Validation process is repeated.
grid1, grid2 vector numeric defining the values of lambda1 and lambda2 at which cross-validation score should be computed. Defaults to grid1=grid2=seq(0.001, 1, length=5).

validation character. What kind of (internal) validation to use, matching one of "Mfold" or "loo" (see below). Default is "Mfold".

folds the folds in the Mfold cross-validation. See Details.

dist distance metric to estimate the classification error rate, should be a subset of "centroids.dist", "mahalanobis.dist" or "max.dist" (see Details).

measure The tuning measure used for different methods. See details.

auc if TRUE calculate the Area Under the Curve (AUC) performance of the model.

progressBar by default set to TRUE to output the progress bar of the computation.

near.zero.var Logical, see the internal nearZeroVar function (should be set to TRUE in particular for data with many zero values). Default value is FALSE

logratio one of ('none','CLR'). Default to 'none'

center a logical value indicating whether the variables should be shifted to be zero centered. Alternately, a vector of length equal the number of columns of X can be supplied. The value is passed to scale.

scale a logical value indicating whether the variables should be scaled to have unit variance before the analysis takes place. The default is FALSE for consistency with prcomp function, but in general scaling is advisable. Alternatively, a vector of length equal the number of columns of X can be supplied. The value is passed to scale.

max.iter Integer, the maximum number of iterations.

tol Numeric, convergence tolerance criteria.

light.output if set to FALSE, the prediction/classification of each sample for each of test.keepX and each comp is returned.

BPPARAM A BiocParallelParam object indicating the type of parallelisation. See examples.

Details

See the help file corresponding to the corresponding method, e.g. tune.splsda for further details. Note that only the arguments used in the tune function corresponding to method are passed on.

More details about the prediction distances in ?predict and the supplemental material of the mixOmics article (Rohart et al. 2017). More details about the PLS modes are in ?pls.

Value

Depending on the type of analysis performed and the input arguments, a list that may contain:

error.rate returns the prediction error for each test.keepX on each component, averaged across all repeats and subsampling folds. Standard deviation is also output. All error rates are also available as a list.

choice.keepX returns the number of variables selected (optimal keepX) on each component.
choice.ncomp For supervised models; returns the optimal number of components for the model for each prediction distance using one-sided t-tests that test for a significant difference in the mean error rate (gain in prediction) when components are added to the model. See more details in Rohart et al 2017 Suppl. For more than one block, an optimal ncomp is returned for each prediction framework.

error.rate.class returns the error rate for each level of Y and for each component computed with the optimal keepX predict Prediction values for each sample, each test.keepX, each comp and each repeat. Only if light.output=FALSE class Predicted class for each sample, each test.keepX, each comp and each repeat. Only if light.output=FALSE auc AUC mean and standard deviation if the number of categories in Y is greater than 2, see details above. Only if auc = TRUE cor.value only if multilevel analysis with 2 factors: correlation between latent variables.

Author(s)
Florian Rohart, Francois Bartolo, Kim-Anh Lê Cao, Al J Abadi

References
mixOmics article:
MINT:
Chavent, Marie and Patouille, Brigitte (2003). Calcul des coefficients de regression et du PRESS en regression PLS1. Modulad n, 30 1-11. (this is the formula we use to calculate the Q2 in perf.pls and perf.spls)
sparse PLS regression mode:
One-sided t-tests (suppl material):

See Also

Examples

```r
## sPLS-DA
data(breast.tumors)
X <- breast.tumors$gene.exp
Y <- as.factor(breast.tumors$sample$treatment)
tune <- tune(method = "splsda", X, Y, ncomp=1, nrepeat=10, logratio="none", test.keepX = c(5, 10, 15), folds=10, dist="max.dist", progressBar = TRUE
plot(tune)

## Not run:
## mint.splsda
data(stemcells)
data = stemcells$gene
type.id = stemcells$celltype
exp = stemcells$study
out = tune(method="mint.splsda", X=data,Y=type.id, ncomp=2, study=exp, test.keepX=seq(1,10,1))
out$choice.keepX
plot(out)
## End(Not run)
```

tune.block.splsda
Tuning function for block.splsda method (N-integration with sparse Discriminant Analysis)

Description

Computes M-fold or Leave-One-Out Cross-Validation scores based on a user-input grid to determine the optimal parsity parameters values for method block.splsda.
Usage

tune.block.splsda(
 X,
 Y,
 indY,
 ncomp = 2,
 test.keepX,
 already.tested.X,
 validation = "Mfold",
 folds = 10,
 dist = "max.dist",
 measure = "BER",
 weighted = TRUE,
 progressBar = FALSE,
 tol = 1e-06,
 max.iter = 100,
 near.zero.var = FALSE,
 nrepeat = 1,
 design,
 scheme = "horst",
 scale = TRUE,
 init = "svd",
 light.output = TRUE,
 signif.threshold = 0.01,
 BPPARAM = SerialParam(),
 ...
)

Arguments

X A named list of data sets (called 'blocks') measured on the same samples. Data in the list should be arranged in matrices, samples x variables, with samples order matching in all data sets.

Y a factor or a class vector for the discrete outcome.

indY To supply if Y is missing, indicates the position of the matrix response in the list X.

ncomp the number of components to include in the model. Default to 2. Applies to all blocks.

test.keepX A named list with the same length and names as X (without the outcome Y, if it is provided in X and designated using indY). Each entry of this list is a numeric vector for the different keepX values to test for that specific block.

already.tested.X Optional, if ncomp > 1 A named list of numeric vectors each of length n_tested indicating the number of variables to select from the X data set on the first n_tested components.

validation character. What kind of (internal) validation to use, matching one of "Mfold" or "loo" (see below). Default is "Mfold".
tune.block.splsda

folds

The folds in the Mfold cross-validation. See Details.

dist

distance metric to estimate the classification error rate, should be a subset of "centroids.dist", "mahalanobis.dist" or "max.dist" (see Details).

measure

The tuning measure used for different methods. See details.

weighted

tune using either the performance of the Majority vote or the Weighted vote.

progressBar

by default set to TRUE to output the progress bar of the computation.

tol

Positive numeric used as convergence criteria/tolerance during the iterative process. Default to $1e^{-06}$.

max.iter

Integer, the maximum number of iterations. Default to 100.

near.zero.var

Logical, see the internal nearZeroVar function (should be set to FALSE in particular for data with many zero values). Setting this argument to FALSE (when appropriate) will speed up the computations. Default value is FALSE.

nrepeat

Number of times the Cross-Validation process is repeated.

design

numeric matrix of size (number of blocks in X) x (number of blocks in X) with values between 0 and 1. Each value indicates the strength of the relationship to be modelled between two blocks; a value of 0 indicates no relationship, 1 is the maximum value. Alternatively, one of c(‘null’, ‘full’) indicating a disconnected or fully connected design, respectively, or a numeric between 0 and 1 which will designate all off-diagonal elements of a fully connected design (see examples in block.splsda). If Y is provided instead of indY, the design matrix is changed to include relationships to Y.

scheme

Either "horst", "factorial" or "centroid". Default = centroid, see reference.

scale

Logical. If scale = TRUE, each block is standardized to zero means and unit variances (default: TRUE)

init

Mode of initialization use in the algorithm, either by Singular Value Decomposition of the product of each block of X with Y (‘svd’) or each block independently (‘svd.single’). Default = svd.single

light.output

if set to FALSE, the prediction/classification of each sample for each of test.keepX and each comp is returned.

signif.threshold

numeric between 0 and 1 indicating the significance threshold required for improvement in error rate of the components. Default to 0.01.

BPPARAM

A BiocParallelParam object indicating the type of parallelisation. See examples. Optional arguments:

 • seed Integer. Seed number for reproducible parallel code. Default is NULL. run in parallel when repeating the cross-validation, which is usually the most computationally intensive process. If there is excess CPU, the cross-validation is also parallelised on *nix-based OS which support mclapply.

Details

This tuning function should be used to tune the keepX parameters in the block.splsda function (N-integration with sparse Discriminant Analysis).
M-fold or LOO cross-validation is performed with stratified subsampling where all classes are represented in each fold.

If `validation = "Mfold"`, M-fold cross-validation is performed. The number of folds to generate is to be specified in the argument `folds`.

If `validation = "loo"`, leave-one-out cross-validation is performed. By default `folds` is set to the number of unique individuals.

All combination of `test.keepX` values are tested. A message informs how many will be fitted on each component for a given `test.keepX`.

More details about the prediction distances in `?predict` and the supplemental material of the `mixOmics` article (Rohart et al. 2017). Details about the PLS modes are in `?pls`.

BER is appropriate in case of an unbalanced number of samples per class as it calculates the average proportion of wrongly classified samples in each class, weighted by the number of samples in each class. BER is less biased towards majority classes during the performance assessment.

Value

A list that contains:

- `error.rate` returns the prediction error for each `test.keepX` on each component, averaged across all repeats and subsampling folds. Standard deviation is also output. All error rates are also available as a list.
- `choice.keepX` returns the number of variables selected (optimal `keepX`) on each component, for each block.
- `choice.ncomp` returns the optimal number of components for the model fitted with `choice.keepX`.
- `error.rate.class` returns the error rate for each level of `Y` and for each component computed with the optimal `keepX`.
- `predict` Prediction values for each sample, each `test.keepX`, each comp and each repeat. Only if `light.output=FALSE`
- `class` Predicted class for each sample, each `test.keepX`, each comp and each repeat. Only if `light.output=FALSE`
- `cor.value` compute the correlation between latent variables for two-factor sPLS-DA analysis.

Author(s)

Florian Rohart, Amrit Singh, Kim-Anh Lê Cao, AL J Abadi

References

Method:

mixOmics article:

See Also

Examples

```r
## Not run:
data("breast.TCGA")
# this is the X data as a list of mRNA and miRNA; the Y data set is a single data set of proteins
data = list(mrna = breast.TCGA$data.train$mrna, mirna = breast.TCGA$data.train$mirna,
            protein = breast.TCGA$data.train$protein)
# set up a full design where every block is connected
# could also consider other weights, see our mixOmics manuscript
design = matrix(1, ncol = length(data), nrow = length(data),
dimnames = list(names(data), names(data)))
diag(design) = 0
design
# set number of component per data set
ncomp = 3

# Tuning the first two components
# ------------
## Not run:
# definition of the keepX value to be tested for each block mRNA miRNA and protein
# names of test.keepX must match the names of 'data'
test.keepX = list(mrna = c(10, 30), mirna = c(15, 25), protein = c(4, 8))

# the following may take some time to run, so we subset the data first.
# Note that for thorough tuning, nrepeat should be >= 3 so that significance of
# the model improvement can be measured
## ---- subset by 3rd of samples
set.seed(100)
subset <- mixOmics:::stratified.subsampling(breast.TCGA$data.train$subtype, folds = 3)[[1]][[1]]
data <- lapply(data, function(omic) omic[subset,])
Y <- breast.TCGA$data.train$subtype[subset]
## ---- run
## setup cluster - use SnowParam() on Widnows
BPPARAM <- BiocParallel::MulticoreParam(workers = parallel::detectCores()-1)
tune <- tune.block.splsda(
  X = data,
  Y = Y,
  ncomp = ncomp,
  test.keepX = test.keepX,
  design = design,
  nrepeat = 2,
  BPPARAM = BPPARAM)
plot(tune)
tune$choice.ncomp
tune$choice.keepX

# Now tuning a new component given previous tuned keepX
```
already.tested.X = tune$choice.keepX
tune = tune.block.splsda(X = data, Y = Y,
 ncomp = 4, test.keepX = test.keepX, design = design,
 already.tested.X = already.tested.X,
 BPPARAM = BPPARAM)

tune$choice.keepX

End(Not run)

tune.mint.splsda

Estimate the parameters of mint.splsda method

Description

Computes Leave-One-Group-Out-Cross-Validation (LOGOCV) scores on a user-input grid to determine optimal values for the sparsity parameters in mint.splsda.

Usage

```r
tune.mint.splsda(
  X,
  Y,
  ncomp = 1,
  study,
  test.keepX = c(5, 10, 15),
  already.tested.X,
  dist = c("max.dist", "centroids.dist", "mahalanobis.dist"),
  measure = c("BER", "overall"),
  auc = FALSE,
  progressBar = FALSE,
  scale = TRUE,
  tol = 1e-06,
  max.iter = 100,
  near.zero.var = FALSE,
  light.output = TRUE,
  signif.threshold = 0.01
)
```

Arguments

- **X**: numeric matrix of predictors. *NAs* are allowed.
- **Y**: Outcome. Numeric vector or matrix of responses (for multi-response models)
- **ncomp**: Number of components to include in the model (see Details). Default to 1
- **study**: grouping factor indicating which samples are from the same study
- **test.keepX**: numeric vector for the different number of variables to test from the *X* data set
already.tested.X

if ncomp > 1 Numeric vector indicating the number of variables to select from the X data set on the firsts components

dist

only applies to an object inheriting from "plsda" or "splsda" to evaluate the classification performance of the model. Should be a subset of "max.dist", "centroids.dist", "mahalanobis.dist". Default is "all". See predict.

measure

Two misclassification measure are available: overall misclassification error overall or the Balanced Error Rate BER

auc

if TRUE calculate the Area Under the Curve (AUC) performance of the model.

progressBar

by default set to TRUE to output the progress bar of the computation.

scale

Logical. If scale = TRUE, each block is standardized to zero means and unit variances (default: TRUE)

tol

Convergence stopping value.

max.iter

integer, the maximum number of iterations.

near.zero.var

Logical, see the internal nearZeroVar function (should be set to TRUE in particular for data with many zero values). Default value is FALSE

light.output

if set to FALSE, the prediction/classification of each sample for each of test.keepX and each comp is returned.

signif.threshold

numeric between 0 and 1 indicating the significance threshold required for improvement in error rate of the components. Default to 0.01.

Details

This function performs a Leave-One-Group-Out-Cross-Validation (LOGOCV), where each of study is left out once. It returns a list of variables of X that were selected on each of the ncomp components. Then, a mint.splsda can be performed with keepX set as the output choice.keepX.

All component 1 : ncomp are tuned, except the first ones for which a already.tested.X is provided. See examples below.

The function outputs the optimal number of components that achieve the best performance based on the overall error rate or BER. The assessment is data-driven and similar to the process detailed in (Rohart et al., 2016), where one-sided t-tests assess whether there is a gain in performance when adding a component to the model. Our experience has shown that in most case, the optimal number of components is the number of categories in Y - 1, but it is worth tuning a few extra components to check (see our website and case studies for more details).

BER is appropriate in case of an unbalanced number of samples per class as it calculates the average proportion of wrongly classified samples in each class, weighted by the number of samples in each class. BER is less biased towards majority classes during the performance assessment.

More details about the prediction distances in ?predict and the supplemental material of the mixOmics article (Rohart et al. 2017).

Value

The returned value is a list with components:
error.rate returns the prediction error for each test.keepX on each component, averaged across all repeats and subsampling folds. Standard deviation is also output. All error rates are also available as a list.

choice.keepX returns the number of variables selected (optimal keepX) on each component.

choice.ncomp returns the optimal number of components for the model fitted with choice.keepX

error.rate.class returns the error rate for each level of Y and for each component computed with the optimal keepX

predict Prediction values for each sample, each test.keepX and each comp.

class Predicted class for each sample, each test.keepX and each comp.

Author(s)
Florian Rohart, Al J Abadi

References

mixOmics article:

See Also

Examples
```r
data(stemcells)
data = stemcells$gene
type.id = stemcells$celltype
exp = stemcells$study

res = mint.splsda(X=data,Y=type.id,ncomp=3,keepX=c(10,5,15),study=exp)
out = tune.mint.splsda(X=data,Y=type.id,ncomp=2,near.zero.var=FALSE,
study=exp,test.keepX=seq(1,10,1))

out$choice.ncomp
out$choice.keepX

## Not run:
out = tune.mint.splsda(X=data,Y=type.id,ncomp=2,near.zero.var=FALSE,
study=exp,test.keepX=seq(1,10,1))
out$choice.keepX

## only tune component 2 and keeping 10 genes on comp1```
tune.pca

Tune the number of principal components in PCA

Description

tune.pca can be used to quickly visualise the proportion of explained variance for a large number of principal components in PCA.

Usage

tune.pca(
  X,
  ncomp = NULL,
  center = TRUE,
  scale = FALSE,
  max.iter = 500,
  tol = 1e-09,
  logratio = c("none", "CLR", "ILR"),
  V = NULL,
  multilevel = NULL
)

Arguments

X numeric matrix of predictors. NAs are allowed.
ncomp integer, the number of components to initially analyse in tune.pca to choose a final ncomp for pca. If NULL, function sets ncomp = min(nrow(X), ncol(X))
center a logical value indicating whether the variables should be shifted to be zero centered. Alternately, a vector of length equal the number of columns of X can be supplied. The value is passed to scale.
scale a logical value indicating whether the variables should be scaled to have unit variance before the analysis takes place. The default is FALSE for consistency with prcomp function, but in general scaling is advisable. Alternatively, a vector of length equal the number of columns of X can be supplied. The value is passed to scale.
max.iter Integer, the maximum number of iterations.
tol Numeric, convergence tolerance criteria.
logratio one of ("none","CLR","ILR"). Default to 'none'
V Matrix used in the logratio transformation id provided.
multilevel Design matrix for multilevel analysis (for repeated measurements).
Details

The calculation is done either by a singular value decomposition of the (possibly centered and
scaled) data matrix, if the data is complete or by using the NIPALS algorithm if there is data missing.
Unlike princomp, the print method for these objects prints the results in a nice format and the plot
method produces a bar plot of the percentage of variance explained by the principal components
(PCs).

When using NIPALS (missing values), we make the assumption that the first (\text{min}(\text{ncol}(X),
\text{nrow}(X))) principal components will account for 100 \% of the explained variance.

Note that scale= TRUE cannot be used if there are zero or constant (for center = TRUE)
variables.

Components are omitted if their standard deviations are less than or equal to comp.tol times the
standard deviation of the first component. With the default null setting, no components are omitted.
Other settings for comp.tol could be comp.tol = \text{sqrt}(\text{.Machine}$\text{double}\_\text{eps})$, which would
omit essentially constant components, or comp.tol = 0.

logratio transform and multilevel analysis are performed sequentially as internal pre-processing
step, through \text{logratio\_transfo} and \text{withinVariation} respectively.

Value

tune.pca returns a list with class "tune.pca" containing the following components:

\begin{itemize}
  \item sdev \hspace{1cm} the square root of the eigenvalues of the covariance/correlation matrix, though
        the calculation is actually done with the singular values of the data matrix.
  \item propexpl_var \hspace{1cm} The proportion of explained variance accounted for by each principal compo-
                nent.
  \item cum.var \hspace{1cm} the cumulative proportion of explained variance accounted for by the sequen-
                tial accumulation of principal components is calculated using the sum of the
                proportion of explained variance
\end{itemize}

Author(s)

Ignacio González, Leigh Coonan, Kim-Anh Le Cao, Fangzhou Yao, Florian Rohart, Al J Abadi

See Also

\text{nipals}, \text{biplot}, \text{plotIndiv}, \text{plotVar} and http://www.mixOmics.org for more details.

Examples

data(liver.toxicity)
tune <- tune.pca(liver.toxicity$gene, center = TRUE, scale = TRUE)
tune
plot(tune)
tune.rcc  

Estimate the parameters of regularization for Regularized CCA

Description

Computes leave-one-out or M-fold cross-validation scores on a two-dimensional grid to determine optimal values for the parameters of regularization in rcc.

Usage

tune.rcc(
  X,
  Y,
  grid1 = seq(0.001, 1, length = 5),
  grid2 = seq(0.001, 1, length = 5),
  validation = c("loo", "Mfold"),
  folds = 10,
  plot = TRUE
)

Arguments

X  numeric matrix or data frame \((n \times p)\), the observations on the \(X\) variables. NAs are allowed.

Y  numeric matrix or data frame \((n \times q)\), the observations on the \(Y\) variables. NAs are allowed.

grid1, grid2 vector numeric defining the values of \(\lambda_1\) and \(\lambda_2\) at which cross-validation score should be computed. Defaults to grid1=grid2=seq(0.001, 1, length=5).

validation character string. What kind of (internal) cross-validation method to use, (partially) matching one of "loo" (leave-one-out) or "Mfold" (M-folds). See Details.

folds positive integer. Number of folds to use if validation="Mfold". Defaults to folds=10.

plot logical argument indicating whether a image map should be plotted by calling the imgCV function.

Details

If validation="Mfold", M-fold cross-validation is performed by calling Mfold. When folds is given, the elements of folds should be integer vectors specifying the indices of the validation sample and the argument \(M\) is ignored. Otherwise, the folds are generated. The number of cross-validation folds is specified with the argument \(M\).

If validation="loo", leave-one-out cross-validation is performed by calling the loo function. In this case the arguments folds and \(M\) are ignored.
tune.spca

The estimation of the missing values can be performed by the reconstitution of the data matrix using the nipals function. Otherwise, missing values are handled by casewise deletion in the rcc function.

Value

The returned value is a list with components:

  - opt.lambda1,
  - opt.lambda2 value of the parameters of regularization on which the cross-validation method reached it optimal.
  - opt.score the optimal cross-validation score reached on the grid.
  - grid1, grid2 original vectors grid1 and grid2.
  - mat matrix containing the cross-validation score computed on the grid.

Author(s)

Sébastien Déjean, Ignacio González, Kim-Anh Lê Cao, Al J Abadi

See Also


Examples

data(nutrimouse)
X <- nutrimouse$lipid
Y <- nutrimouse$gene

## this can take some seconds

tune.rcc(X, Y, validation = "Mfold")
Usage

tune.spca(
  X,
  ncomp = 2,
  nrepeat = 1,
  folds,
  test.keepX,
  center = TRUE,
  scale = TRUE,
  BPPARAM = SerialParam()
)

Arguments

X  a numeric matrix (or data frame) which provides the data for the sparse principal components analysis. It should not contain missing values.

ncomp  Integer, if data is complete ncomp decides the number of components and associated eigenvalues to display from the pcasvd algorithm and if the data has missing values, ncomp gives the number of components to keep to perform the reconstitution of the data using the NIPALS algorithm. If NULL, function sets ncomp = min(nrow(X),ncol(X))

nrepeat  Number of times the Cross-Validation process is repeated.

folds  Number of folds in 'Mfold' cross-validation. See details.

test.keepX  numeric vector for the different number of variables to test from the X data set

center  (Default=TRUE) Logical, whether the variables should be shifted to be zero centered. Only set to FALSE if data have already been centered. Alternatively, a vector of length equal the number of columns of X can be supplied. The value is passed to scale. If the data contain missing values, columns should be centered for reliable results.

scale  (Default=TRUE) Logical indicating whether the variables should be scaled to have unit variance before the analysis takes place.

BPPARAM  A BiocParallelParam object indicating the type of parallelisation. See examples.

Details

Essentially, for the first component, and for a grid of the number of variables to select (keepX), a number of repeats and folds, data are split to train and test and the extracted components are compared against those from a spca model with all the data to ascertain the optimal keepX. In order to keep at least 3 samples in each test set for reliable scaling of the test data for comparison, folds must be <= floor(nrow(X)/3)

The number of selected variables for the following components will then be sequentially optimised. If the number of observations are small (e.g. < 30), it is recommended to use Leave-One-Out Cross-Validation which can be achieved by setting folds = nrow(X).
### Value

A `tune.spca` object containing:

- **call**  The function call
- **choice.keepX**  The selected number of components on each component
- **cor.comp**  The correlations between the components from the cross-validated studies and those from the study which used all of the data in training.

### Examples

```r
data("nutrimouse")
set.seed(42)
nrepeat <- 5
tune.spca.res <- tune.spca(
 X = nutrimouse$lipid,
 ncomp = 2,
 nrepeat = nrepeat,
 folds = 3,
 test.keepX = seq(5, 15, 5)
)
tune.spca.res
plot(tune.spca.res)
```

## Not run:

## parallel processing using BiocParallel on repeats with more workers (cpus)
## You can use BiocParallel::MulticoreParam() on non_Windows machines
## for faster computation
BPPARAM <- BiocParallel::SnowParam(workers = max(parallel::detectCores()-1, 2))
tune.spca.res <- tune.spca(
  X = nutrimouse$lipid,
  ncomp = 2,
  nrepeat = nrepeat,
  folds = 3,
  test.keepX = seq(5, 15, 5),
  BPPARAM = BPPARAM
)
plot(tune.spca.res)

## End(Not run)

---

**tune.spls**

Tuning functions for sPLS and PLS functions

### Description

This function uses repeated cross-validation to tune hyperparameters such as the number of features to select and possibly the number of components to extract.
Usage

tune.spls(
  X,
  Y,
  test.keepX = NULL,
  test.keepY = NULL,
  ncomp,
  validation = c("Mfold", "loo"),
  nrepeat = 1,
  folds,
  mode = c("regression", "canonical", "classic"),
  measure = NULL,
  BPPARAM = SerialParam(),
  progressBar = FALSE,
  limQ2 = 0.0975,
  ...
)

Arguments

X  numeric matrix of predictors with the rows as individual observations. missing values (NAs) are allowed.
Y  numeric matrix of response(s) with the rows as individual observations matching X. missing values (NAs) are allowed.

X  numeric vector for the different number of variables to test from the X data set.
Y  numeric vector for the different number of variables to test from the Y data set. Default to ncol(Y).
ncomp  Positive Integer. The number of components to include in the model. Default to 2.
validation  character. What kind of (internal) validation to use, matching one of "Mfold" or "loo" (Leave-One-out). Default is "Mfold".
nrepeat  Positive integer. Number of times the Cross-Validation process should be repeated. nrepeat > 2 is required for robust tuning. See details.
folds  Positive Integer, The folds in the Mfold cross-validation.
mode  Character string indicating the type of PLS algorithm to use. One of "regression", "canonical", "invariant" or "classic". See Details.
measure  The tuning measure to use. See details.
BPPARAM  A BiocParallelParam object indicating the type of parallelisation. See examples in ?tune.spca.
progressBar  Logical. If TRUE a progress bar is shown as the computation completes. Default to FALSE.
limQ2  Q2 threshold for recommending optimal ncomp.
...  Optional parameters passed to spls
Value
A list that contains:

- **cor.pred**: The correlation of predicted vs actual components from X (t) and Y (u) for each component.
- **RSS.pred**: The Residual Sum of Squares of predicted vs actual components from X (t) and Y (u) for each component.
- **choice.keepX**: returns the number of variables selected for X (optimal keepX) on each component.
- **choice.keepY**: returns the number of variables selected for Y (optimal keepY) on each component.
- **choice.ncomp**: returns the optimal number of components for the model fitted with $choice.keepX$ and $choice.keepY$.
- **call**: The functional call including the parameters used.

folds
During a cross-validation (CV), data are randomly split into $M$ subgroups (folds). $M-1$ subgroups are then used to train submodels which would be used to predict prediction accuracy statistics for the held-out (test) data. All subgroups are used as the test data exactly once. If validation = "loo", leave-one-out CV is used where each group consists of exactly one sample and hence $M == N$ where $N$ is the number of samples.

nrepeat
The cross-validation process is repeated $nrepeat$ times and the accuracy measures are averaged across repeats. If validation = "loo", the process does not need to be repeated as there is only one way to split N samples into N groups and hence nrepeat is forced to be 1.

measure
- **For PLS2**: Two measures of accuracy are available: Correlation (cor, used as default), as well as the Residual Sum of Squares (RSS). For cor, the parameters which would maximise the correlation between the predicted and the actual components are chosen. The RSS measure tries to predict the held-out data by matrix reconstruction and seeks to minimise the error between actual and predicted values. For mode=’canonical’, the X matrix is used to calculate the RSS, while for others modes the Y matrix is used. This measure gives more weight to any large errors and is thus sensitive to outliers. It also intrinsically selects less number of features on the Y block compared to measure=’cor’.
- **For PLS1**: Four measures of accuracy are available: Mean Absolute Error (MAE), Mean Square Error (MSE, used as default), Bias and R2. Both MAE and MSE average the model prediction error. MAE measures the average magnitude of the errors without considering their direction. It is the average over the fold test samples of the absolute differences between the Y predictions and the actual Y observations. The MSE also measures the average magnitude of the error. Since the errors are squared before they are averaged, the MSE tends to give a relatively high weight to large errors. The Bias is the average of the differences between the Y predictions and the actual Y observations and the R2 is the correlation between the predictions and the observations.
Optimisation Process

The optimisation process is data-driven and similar to the process detailed in (Rohart et al., 2016), where one-sided t-tests assess whether there is a gain in performance when incrementing the number of features or components in the model. However, it will assess all the provided grid through pairwise comparisons as the performance criteria do not always change linearly with respect to the added number of features or components.

See also \(\texttt{?perf}\) for more details.

Author(s)

Kim-Anh Lê Cao, Al J Abadi, Benoit Gautier, Francois Bartolo, Florian Rohart,

References

mixOmics article:


Chavent, Marie and Patouille, Brigitte (2003). Calcul des coefficients de regression et du PRESS en regression PLS1. Modulad n, 30 1-11. (this is the formula we use to calculate the Q2 in perf.pls and perf.spls)


sparse PLS regression mode:

One-sided t-tests (suppl material):

See Also

\texttt{splsda, predict.splsda} and http://www.mixOmics.org for more details.

Examples

```r
Not run:
data(liver.toxicity)
X <- liver.toxicity$gene
Y <- liver.toxicity$clinic
```
set.seed(42)
tune.res = tune.spls( X, Y, ncomp = 3, 
    test.keepX = c(5, 10, 15),
    test.keepY = c(3, 6, 8), measure = "cor",
    folds = 5, nrepeat = 3, progressBar = TRUE)
tune.res$choice.ncomp

tune.res$choice.keepX

tune.res$choice.keepY

# plot the results
plot(tune.res)

## End(Not run)

---

tune.splsda Tuning functions for sPLS-DA method

Description

Computes M-fold or Leave-One-Out Cross-Validation scores on a user-input grid to determine optimal values for the sparsity parameters in splsda.

Usage
tune.splsda(
    X, 
    Y, 
    ncomp = 1,
    test.keepX = c(5, 10, 15),
    already.tested.X, 
    validation = "Mfold", 
    folds = 10, 
    dist = "max.dist", 
    measure = "BER", 
    scale = TRUE, 
    auc = FALSE, 
    progressBar = FALSE, 
    tol = 1e-06, 
    max.iter = 100, 
    near.zero.var = FALSE, 
    nrepeat = 1, 
    logratio = c("none", "CLR"), 
    multilevel = NULL, 
    light.output = TRUE, 
    signif.threshold = 0.01, 
    cpus = 1
)
Arguments

X numeric matrix of predictors. NAs are allowed.
Y if(method = 'spls') numeric vector or matrix of continuous responses (for multi-response models) NAs are allowed.
ncomp the number of components to include in the model.
test.keepX numeric vector for the different number of variables to test from the X data set already.tested.X Optional, if ncomp > 1 A numeric vector indicating the number of variables to select from the X data set on the firsts components.
validation character. What kind of (internal) validation to use, matching one of "Mfold" or "loo" (short for 'leave-one-out'). Default is "Mfold".
folds the folds in the Mfold cross-validation. See Details.
dist distance metric to use for splsda to estimate the classification error rate, should be a subset of "centroids.dist", "mahalanobis.dist" or "max.dist" (see Details).
measure Three misclassification measure are available: overall misclassification error overall, the Balanced Error Rate BER or the Area Under the Curve AUC
scale Logical. If scale = TRUE, each block is standardized to zero means and unit variances (default: TRUE)
auc if TRUE calculate the Area Under the Curve (AUC) performance of the model based on the optimisation measure measure.
progressBar by default set to TRUE to output the progress bar of the computation.
tol Convergence stopping value.
max.iter integer, the maximum number of iterations.
near.zero.var Logical, see the internal nearZeroVar function (should be set to TRUE in particular for data with many zero values). Default value is FALSE
nrepeat Number of times the Cross-Validation process is repeated.
logratio one of ('none','CLR'). Default to 'none'
multilevel Design matrix for multilevel analysis (for repeated measurements) that indicates the repeated measures on each individual, i.e. the individuals ID. See Details.
light.output if set to FALSE, the prediction/classification of each sample for each of test.keepX and each comp is returned.
signif.threshold numeric between 0 and 1 indicating the significance threshold required for improvement in error rate of the components. Default to 0.01.
cpus Number of cpus to use when running the code in parallel.

Details

This tuning function should be used to tune the parameters in the splsda function (number of components and number of variables in keepX to select).
For a sPLS-DA, M-fold or LOO cross-validation is performed with stratified subsampling where all
classes are represented in each fold.

If validation = "loo", leave-one-out cross-validation is performed. By default folds is set to the
number of unique individuals.

The function outputs the optimal number of components that achieve the best performance based
on the overall error rate or BER. The assessment is data-driven and similar to the process detailed
in (Rohart et al., 2016), where one-sided t-tests assess whether there is a gain in performance when
adding a component to the model. Our experience has shown that in most case, the optimal number
of components is the number of categories in Y - 1, but it is worth tuning a few extra components to
check (see our website and case studies for more details).

For sPLS-DA multilevel one-factor analysis, M-fold or LOO cross-validation is performed where
all repeated measurements of one sample are in the same fold. Note that logratio transform and the
multilevel analysis are performed internally and independently on the training and test set.

For a sPLS-DA multilevel two-factor analysis, the correlation between components from the within-
subject variation of X and the cond matrix is computed on the whole data set. The reason why we
cannot obtain a cross-validation error rate as for the spls-DA one-factor analysis is because of the
difficulty to decompose and predict the within matrices within each fold.

For a sPLS two-factor analysis a sPLS canonical mode is run, and the correlation between compo-
nents from the within-subject variation of X and Y is computed on the whole data set.

If validation = "Mfold", M-fold cross-validation is performed. How many folds to generate is
selected by specifying the number of folds in folds.

If auc = TRUE and there are more than 2 categories in Y, the Area Under the Curve is averaged using
one-vs-all comparison. Note however that the AUC criteria may not be particularly insightful as
the prediction threshold we use in sPLS-DA differs from an AUC threshold (sPLS-DA relies on
prediction distances for predictions, see ?predict.splsda for more details) and the supplemental
material of the mixOmics article (Rohart et al. 2017). If you want the AUC criterion to be insightful,
you should use measure==AUC as this will output the number of variable that maximises the AUC;
in this case there is no prediction threshold from sPLS-DA (dist is not used). If measure==AUC,
we do not output SD as this measure can be a mean (over nrepeat) of means (over the categories).

BER is appropriate in case of an unbalanced number of samples per class as it calculates the average
proportion of wrongly classified samples in each class, weighted by the number of samples in each
class. BER is less biased towards majority classes during the performance assessment.

More details about the prediction distances in ?predict and the supplemental material of the
mixOmics article (Rohart et al. 2017).

Value

Depending on the type of analysis performed, a list that contains:

error.rate returns the prediction error for each test.keepX on each component, averaged
across all repeats and subsampling folds. Standard deviation is also output. All
error rates are also available as a list.

choice.keepX returns the number of variables selected (optimal keepX) on each component.

choice.ncomp returns the optimal number of components for the model fitted with $choice.keepX
error.rate.class

returns the error rate for each level of Y and for each component computed with the optimal keepX

predict  
Prediction values for each sample, each test.keepX, each comp and each repeat. Only if light.output=FALSE

class  
Predicted class for each sample, each test.keepX, each comp and each repeat. Only if light.output=FALSE

auc  
AUC mean and standard deviation if the number of categories in Y is greater than 2, see details above. Only if auc = TRUE

cor.value  
only if multilevel analysis with 2 factors: correlation between latent variables.

Author(s)

Kim-Anh Lê Cao, Benoit Gautier, Francois Bartolo, Florian Rohart, Al J Abadi

References

mixOmics article:


See Also


Examples

## First example: analysis with sPLS-DA

data(breast.tumors)
X = breast.tumors$gene.exp
Y = as.factor(breast.tumors$sample$treatment)
tune = tune.splsda(X, Y, ncomp = 1, nrepeat = 10, logratio = "none",
test.keepX = c(5, 10, 15), folds = 10, dist = "max.dist",
progressBar = TRUE)

## Not run:
# 5 components, optimising 'keepX' and 'ncomp'
tune = tune.splsda(X, Y, ncomp = 5, test.keepX = c(5, 10, 15),
folds = 10, dist = "max.dist", nrepeat = 5, progressBar = FALSE)

tune$choice.ncomp

tune$choice.keepX

plot(tune)

## only tune component 3 and 4
# keeping 5 and 10 variables on the first two components respectively

tune = tune.splsda(X = X, Y = Y, ncomp = 4, already.tested.X = c(5,10),
test.keepX = seq(1,10,2), progressBar = TRUE)

## Second example: multilevel one-factor analysis with sPLS-DA

data(vac18)
X = vac18$genes
Y = vac18$stimulation
# sample indicates the repeated measurements
design = data.frame(sample = vac18$sample)

tune = tune.splsda(X, Y = Y, ncomp = 3, nrepeat = 10, logratio = "none",
test.keepX = c(5,50,100),folds = 10, dist = "max.dist", multilevel = design)

## End(Not run)

---

tune.splslevel

### Description

For a multilevel spls analysis, the tuning criterion is based on the maximisation of the correlation between the components from both data sets

### Usage

```r
tune.splslevel(
 X,
 Y,
 multilevel,
 ncomp = NULL,
 mode = "regression",
 test.keepX = rep(ncol(X), ncomp),
 test.keepY = rep(ncol(Y), ncomp),
 already.tested.X = NULL,
 already.tested.Y = NULL
)
```

### Arguments

- **X**: numeric matrix of predictors. NAs are allowed.
- **Y**: if(method = 'spls') numeric vector or matrix of continuous responses (for multi-response models) NAs are allowed.
- **multilevel**: Design matrix for multilevel analysis (for repeated measurements) that indicates the repeated measures on each individual, i.e. the individuals ID. See Details.
- **ncomp**: the number of components to include in the model.
- **mode**: character string. What type of algorithm to use, (partially) matching one of "regression", "canonical", "invariant" or "classic".
test.keepX numeric vector for the different number of variables to test from the X data set

test.keepY numeric vector for the different number of variables to test from the Y data set

already.tested.X Optional, if ncomp > 1 A numeric vector indicating the number of variables to select from the X data set on the firsts components.

already.tested.Y Optional, if ncomp > 1 A numeric vector indicating the number of variables to select from the Y data set on the firsts components.

Details

For a multilevel spls analysis, the tuning criterion is based on the maximisation of the correlation between the components from both data sets

Value

cor.value correlation between latent variables

Author(s)

Kim-Anh Lê Cao, Benoit Gautier, Francois Bartolo, Florian Rohart, Al J Abadi

References


See Also


Examples

data(liver.toxicity)
# note: we made up those data, pretending they are repeated measurements
repeat.indiv <- c(1, 2, 1, 2, 1, 2, 1, 2, 3, 3, 4, 3, 4, 3, 4, 4, 5, 6, 5, 5,
6, 6, 7, 7, 8, 6, 7, 8, 8, 9, 10, 9, 10, 11, 9, 9,
10, 11, 12, 12, 10, 11, 11, 12, 11, 13, 13, 14, 13, 14, 13, 14,
13, 14, 15, 16, 15, 16, 15, 16, 16)
summary(as.factor(repeat.indiv)) # 16 rats, 4 measurements each

# this is a spls (unsupervised analysis) so no need to mention any factor in design
# we only perform a one level variation split
design <- data.frame(sample = repeat.indiv)

tune.splslevel(X = liver.toxicity$gene,
Y=liver.toxicity$clinic,
multilevel = design,
test.keepX = c(5,10,15),
test.keepY = c(1,2,5),
ncomp = 1)
unmap

**Dummy matrix for an outcome factor**

**Description**

Converts a class or group vector or factor into a matrix of indicator variables.

**Usage**

```r
unmap(classification, groups = NULL, noise = NULL)
```

**Arguments**

- `classification`: A numeric or character vector or factor. Typically the distinct entries of this vector would represent a classification of observations in a data set.
- `groups`: A numeric or character vector indicating the groups from which `classification` is drawn. If not supplied, the default is to assumed to be the unique entries of `classification`.
- `noise`: A single numeric or character value used to indicate the value of `groups` corresponding to noise.

**Value**

An \( n \times K \) matrix of \((0,1)\) indicator variables, where \( n \) is the length of samples and \( K \) the number of classes in the outcome.

If a `noise` value of symbol is designated, the corresponding indicator variables are relocated to the last column of the matrix.

**Note:** - you can remap an unmap vector using the function `map` from the package `mclust`. - this function should be used to unmap an outcome vector as in the non-supervised methods of mixOmics. For other supervised analyses such as (s)PLS-DA, (s)gccaDA this function is used internally.

**Author(s)**

Ignacio Gonzalez, Kim-Anh Le Cao, Pierre Monget, AL J Abadi

**References**


Examples

```r
data(nutrimouse)
Y = unmap(nutrimouse$diet)
Y
data = list(gene = nutrimouse$gene, lipid = nutrimouse$lipid, Y = Y)
data could then used as an input in wrapper.rgcca, which is not, technically,
a supervised method, see ??wrapper.rgcca
```

---

**Vaccine study Data**

Description

The data come from a trial evaluating a vaccine based on HIV-1 lipopeptides in HIV-negative volunteers. The vaccine (HIV-1 LIPO-5 ANRS vaccine) contains five HIV-1 amino acid sequences coding for Gag, Pol and Nef proteins. This data set contains the expression measure of a subset of 1000 genes from purified in vitro stimulated Peripheral Blood Mononuclear Cells from 42 repeated samples (12 unique vaccinated participants) 14 weeks after vaccination, 6 hours after in vitro stimulation by either (1) all the peptides included in the vaccine (LIPO-5), or (2) the Gag peptides included in the vaccine (GAG+) or (3) the Gag peptides not included in the vaccine (GAG-) or (4) without any stimulation (NS).

Usage

`data(vac18)`

Format

A list containing the following components:

- `list("gene")` data frame with 42 rows and 1000 columns. The expression measure of 1000 genes for the 42 samples (PBMC cells from 12 unique subjects).
- `list("stimulation")` is a factor of 42 elements indicating the type of in vitro simulation for each sample.
- `list("sample")` is a vector of 42 elements indicating the unique subjects (for example the value `1` correspond to the first patient PBMC cells). Note that the design of this study is unbalanced.
- `list("tab.prob.gene")` is a data frame with 1000 rows and 2 columns, indicating the Illumina probe ID and the gene name of the annotated genes.

Details

This is a subset of the original study for illustrative purposes.

Value

`none`
References

Description
Simulated data based on the vac18 study to illustrate the use of the multilevel analysis for one and two-factor analysis with sPLS-DA. This data set contains the expression simulated of 500 genes.

Usage
data(vac18.simulated)

Format
A list containing the following components:

- list("genes") data frame with 48 rows and 500 columns. The simulated expression of 500 genes for 48 subjects.
- list("sample") a vector indicating the repeated measurements on each unique subject. See Details.
- list("stimulation") a factor indicating the stimulation condition on each sample.
- list("time") a factor indicating the time condition on each sample.

Details
In this cross-over design, repeated measurements are performed 12 experiments units (or unique subjects) for each of the 4 stimulations.

The simulation study was based on a mixed effects model (see reference for details). Ten clusters of 100 genes were generated. Amongst those, 4 clusters of genes discriminate the 4 stimulations (denoted LIPO5, GAG+, GAG- and NS) as follows: 2 gene clusters discriminate (LIPO5, GAG+) versus (GAG-, NS) 2 gene clusters discriminate LIPO5 versus GAG+, while GAG+ and NS have the same effect 2 gene clusters discriminate GAG- versus NS, while LIPO5 and GAG+ have the same effect the 4 remaining clusters represent noisy signal (no stimulation effect) Only a subset of those genes are presented here (to save memory space).

Value
none
References


---

**vip**

*Variable Importance in the Projection (VIP)*

**Description**

The function *vip* computes the influence on the $Y$-responses of every predictor $X$ in the model.

**Usage**

`vip(object)`

**Arguments**

- `object`: object of class inheriting from "pls", "plsda", "spls" or "splsda".

**Details**

Variable importance in projection (VIP) coefficients reflect the relative importance of each $X$ variable for each $X$ variate in the prediction model. VIP coefficients thus represent the importance of each $X$ variable in fitting both the $X$- and $Y$-variates, since the $Y$-variates are predicted from the $X$-variates.

VIP allows to classify the $X$-variables according to their explanatory power of $Y$. Predictors with large VIP, larger than 1, are the most relevant for explaining $Y$.

**Value**

`vip` produces a matrix of VIP coefficients for each $X$ variable (rows) on each variate component (columns).

**Author(s)**

Sébastien Déjean, Ignacio Gonzalez, Florian Rohart, Al J Abadi

**References**


**See Also**

`pls`, `spls`, `summary`. 
Examples

```r
data(linnerud)
X <- linnerud$exercise
Y <- linnerud$physiological
linn.pls <- pls(X, Y)

linn.vip <- vip(linn.pls)

barplot(linn.vip,
beside = TRUE, col = c("lightblue", "mistyrose", "lightcyan"),
ylim = c(0, 1.7), legend = rownames(linn.vip),
main = "Variable Importance in the Projection", font.main = 4)
```

withinVariation

Within matrix decomposition for repeated measurements (cross-over design)

Description

This function is internally called by `pca`, `pls`, `spls`, `plsd` and `splsda` functions for cross-over design data, but can be called independently prior to any kind of multivariate analyses.

Usage

```r
withinVariation(X, design)
```

Arguments

- `X` numeric matrix of predictors. NAs are allowed.
- `design` a numeric matrix or data frame. The first column indicates the repeated measures on each individual, i.e. the individuals ID. The 2nd and 3rd columns are to split the variation for a 2 level factor.

Details

`withinVariation` function decomposes the Within variation in the `X` data set. The resulting `Xw` matrix is then input in the `multilevel` function.

One or two-factor analyses are available.

Value

`withinVariation` simply returns the `Xw` within matrix, which can be input in the other multivariate approaches already implemented in mixOmics (i.e. `spls` or `splsda`, see `multilevel`, but also `pca` or `ipca`).

Author(s)

Benoit Liquet, Kim-Anh Lê Cao, Benoit Gautier, Ignacio González, Florian Rohart, AL J Abadi
References

On multilevel analysis:


See Also

`spls`, `splsda`, `plotIndiv`, `plotVar`, `cim`, `network`.

Examples

```r
Example: one-factor analysis matrix decomposition
#--
data(vac18)
X <- vac18$genes
in design we only need to mention the repeated measurements to split the one level variation
design <- data.frame(sample = vac18$sample)

Xw <- withinVariation(X = X, design = design)
multilevel PCA
res.pca.1level <- pca(Xw, ncomp = 3)

compare a normal PCA with a multilevel PCA for repeated measurements.
note: PCA makes the assumptions that all samples are independent,
so this analysis is flawed and you should use a multilevel PCA instead
res.pca <- pca(X, ncomp = 3)

col.stim <- c("darkblue", "purple", "green4", "red3")

col.stim <- col.stim[as.numeric(vac18$stimulation)]

plotIndiv comparing both PCA and PCA multilevel
plotIndiv(res.pca, ind.names = vac18$stimulation, group = col.stim)
title(main = "PCA")
plotIndiv(res.pca.1level, ind.names = vac18$stimulation, group = col.stim)
title(main = "PCA multilevel")
```

wrapper.rgcca

`mixOmics` wrapper for Regularised Generalised Canonical Correlation Analysis (`rgcca`)

Description

Wrapper function to perform Regularized Generalised Canonical Correlation Analysis (rGCCA), a generalised approach for the integration of multiple datasets. For more details, see the `help(rgcca)` from the `RGCCA` package.
Usage

wrapper.rgcca(
    X,
    design = 1 - diag(length(X)),
    tau = rep(1, length(X)),
    ncomp = 1,
    keepX,
    scheme = "horst",
    scale = TRUE,
    init = "svd.single",
    tol = .Machine$double.eps,
    max.iter = 1000,
    near.zero.var = FALSE,
    all.outputs = TRUE
)

Arguments

X an list of data sets (called 'blocks') matching on the same samples. Data in the
list should be arranged in samples x variables. NAs are not allowed.

design numeric matrix of size (number of blocks in X) x (number of blocks in X) with
values between 0 and 1. Each value indicates the strength of the relationship
to be modelled between two blocks using sGCCA; a value of 0 indicates no
relationship, 1 is the maximum value. If Y is provided instead of indY, the
design matrix is changed to include relationships to Y.

tau numeric vector of length the number of blocks in X. Each regularization param-
eter will be applied on each block and takes the value between 0 and 1. If tau = "optimal" the shrinkage parameters are estimated for each
block and each dimension using the Schafer and Strimmer (2005) analytical for-
mla.
ncomp the number of components to include in the model. Default to 1.

keepX A vector of same length as X. Each entry keepX[i] is the number of X[[i]]-var-
iables kept in the model.
scheme Either "horst", "factorial" or "centroid" (Default: "horst").
scale Logical. If scale = TRUE, each block is standardized to zero means and unit
variances (default: TRUE)
init Mode of initialization use in the algorithm, either by Singular Value Decom-
position of the product of each block of X with Y ("svd") or each block indepen-
dently ("svd.single"). Default to "svd.single".
tol Convergence stopping value.
max.iter integer, the maximum number of iterations.
near.zero.var Logical, see the internal nearZeroVar function (should be set to TRUE in par-
ticular for data with many zero values). Setting this argument to FALSE (when
appropriate) will speed up the computations. Default value is FALSE.
all.outputs Logical. Computation can be faster when some specific (and non-essential) out-
puts are not calculated. Default = TRUE.
Details

This wrapper function performs rGCCA (see RGCCA) with 1, \ldots, ncomp components on each block data set. A supervised or unsupervised model can be run. For a supervised model, the unmap function should be used as an input data set. More details can be found on the package RGCCA.

Value

wrapper.rgcca returns an object of class "rgcca", a list that contains the following components:

- **data**: the input data set (as a list).
- **design**: the input design.
- **variates**: the sgcca components.
- **loadings**: the loadings for each block data set (outer wieght vector).
- **loadings.star**: the loadings, standardised.
- **tau**: the input tau parameter.
- **scheme**: the input scheme.
- **ncomp**: the number of components included in the model for each block.
- **crit**: the convergence criterion.
- **AVE**: Indicators of model quality based on the Average Variance Explained (AVE): AVE(for one block), AVE(outer model), AVE(inner model).
- **names**: list containing the names to be used for individuals and variables.

More details can be found in the references.

Author(s)

Arthur Tenenhaus, Vincent Guillemot, Kim-Anh Lê Cao, Florian Rohart, Benoit Gautier

References


See Also

wrapper.rgcca, plotIndiv, plotVar, wrapper.sgcca and http://www.mixOmics.org for more details.
Examples

data(nutrimouse)
# need to unmap the Y factor diet
Y = unmap(nutrimouse$diet)
data = list(gene = nutrimouse$gene, lipid = nutrimouse$lipid, Y = Y)
# with this design, gene expression and lipids are connected to the diet factor
# design = matrix(c(0,0,1,
# 1,1,0), ncol = 3, nrow = 3, byrow = TRUE)

# with this design, gene expression and lipids are connected to the diet factor
# and gene expression and lipids are also connected
design = matrix(c(0,1,1,
1,0,1,
1,1,0), ncol = 3, nrow = 3, byrow = TRUE)
#note: the tau parameter is the regularization parameter
wrap.result.rgcca = wrapper.rgcca(X = data, design = design, tau = c(1, 1, 0),
ncomp = 2,
scheme = "centroid")
#wrap.result.rgcca

wrapper.sgcca

mixOmics wrapper for Sparse Generalised Canonical Correlation Analysis (sgcca)

Description

Wrapper function to perform Sparse Generalised Canonical Correlation Analysis (sGCCA), a generalised approach for the integration of multiple datasets. For more details, see the help(sgcca) from the RGCCA package.

Usage

wrapper.sgcca(
  X,
  design = 1 - diag(length(X)),
  penalty = NULL,
  ncomp = 1,
  keepX,
  scheme = "horst",
  mode = "canonical",
  scale = TRUE,
  init = "svd.single",
  tol = .Machine$double.eps,
  max.iter = 1000,
  near.zero.var = FALSE,
  all.outputs = TRUE
)


**Arguments**

- **X**
  a list of data sets (called 'blocks') matching on the same samples. Data in
  the list should be arranged in samples x variables. NAs are not allowed.

- **design**
  numeric matrix of size (number of blocks in X) x (number of blocks in X) with
  values between 0 and 1. Each value indicates the strength of the relationship
  to be modeled between two blocks using sGCCA; a value of 0 indicates no
  relationship, 1 is the maximum value. If Y is provided instead of indY, the
  design matrix is changed to include relationships to Y.

- **penalty**
  numeric vector of length the number of blocks in X. Each penalty parameter will
  be applied on each block and takes the value between 0 (no variable selected)
  and 1 (all variables included).

- **ncomp**
  the number of components to include in the model. Default to 1.

- **keepX**
  A vector of same length as X. Each entry keepX[i] is the number of X[i]-
  variables kept in the model.

- **scheme**
  Either "horst", "factorial" or "centroid" (Default: "horst").

- **mode**
  character string. What type of algorithm to use, (partially) matching one of
  "regression", "canonical", "invariant" or "classic". See Details.

- **scale**
  Logical. If scale = TRUE, each block is standardized to zero means and unit
  variances (default: TRUE)

- **init**
  Mode of initialization use in the algorithm, either by Singular Value Decompos-
  ition of the product of each block of X with Y ("svd") or each block indepen-
  dently ("svd.single"). Default to "svd.single".

- **tol**
  Convergence stopping value.

- **max.iter**
  integer, the maximum number of iterations.

- **near.zero.var**
  Logical, see the internal nearZeroVar function (should be set to TRUE in par-
  ticular for data with many zero values). Setting this argument to FALSE (when
  appropriate) will speed up the computations. Default value is FALSE

- **all.outputs**
  Logical. Computation can be faster when some specific (and non-essential) out-
  puts are not calculated. Default = TRUE.

**Details**

This wrapper function performs sGCCA (see RGCCA) with 1, ..., ncomp components on each
block data set. A supervised or unsupervised model can be run. For a supervised model, the unmap
function should be used as an input data set. More details can be found on the package RGCCA.

Note that this function is the same as block.spls with different default arguments.

More details about the PLS modes in ?pls.

**Value**

wrapper.sgccca returns an object of class "sgcca", a list that contains the following components:

- **data**
  the input data set (as a list).

- **design**
  the input design.
The `wrapper.sgcca` function is designed to perform Regularized Generalized Canonical Correlation Analysis (rGCCA). It takes several arguments:

- `variates`: the sgcca components.
- `loadings`: the loadings for each block data set (outer wieght vector).
- `loadings.star`: the laodings, standardised.
- `penalty`: the input penalty parameter.
- `scheme`: the input schme.
- `ncomp`: the number of components included in the model for each block.
- `crit`: the convergence criterion.
- `AVE`: Indicators of model quality based on the Average Variance Explained (AVE): AVE(for one block), AVE(outer model), AVE(inner model).
- `names`: list containing the names to be used for individuals and variables.

More details can be found in the references.

Author(s)

Arthur Tenenhaus, Vincent Guillemot, Kim-Anh Lê Cao, Florian Rohart, Benoit Gautier, Al J Abadi

References


See Also

`wrapper.sgcca`, `plotIndiv`, `plotVar`, `wrapper.rgcca` and [http://www.mixOmics.org](http://www.mixOmics.org) for more details.

Examples

data(nutrimouse)
  # need to unmap the Y factor diet if you pretend this is not a classification pb.
  # see also the function block.splsda for discriminant analysis where you dont
  # need to unmap Y.
  Y = unmap(nutrimouse$diet)
  data = list(gene = nutrimouse$gene, lipid = nutrimouse$lipid, Y = Y)
  # with this design, gene expression and lipids are connected to the diet factor
  # design = matrix(c(0,0,1,
  #        0,0,1,
  #        1,1,0), ncol = 3, nrow = 3, byrow = TRUE)
  # with this design, gene expression and lipids are connected to the diet factor
  # and gene expression and lipids are also connected
  design = matrix(c(0,1,1,
                    1,0,1,
                    1,1,0), ncol = 3, nrow = 3, byrow = TRUE)
#note: the penalty parameters will need to be tuned
wrap.result.sgcca = wrapper.sgcca(X = data, design = design, penalty = c(.3,.5, 1),
ncomp = 2,
scheme = "centroid")
wrap.result.sgcca
#did the algo converge?
wrap.result.sgcca$crit # yes

yeast

Yeast metabolomic study

Description

Two Saccharomyces Cerevisiae strains were compared under two different environmental conditions, 37 metabolites expression are measured.

Usage

data(yeast)

Format

A list containing the following components:

list("data") data matrix with 55 rows and 37 columns. Each row represents an experimental sample, and each column a single metabolite.

list("strain") a factor containing the type of strain (MT or WT).

list("condition") a factor containing the type of environmental condition (AER or ANA).

list("strain.condition") a crossed factor between strain and condition.

Details

In this study, two Saccharomyces cerevisiae strains were used - wild-type (WT) and mutant (MT), and were carried out in batch cultures under two different environmental conditions, aerobic (AER) and anaerobic (ANA) in standard mineral media with glucose as the sole carbon source. After normalization and pre processing, the metabolomic data results in 37 metabolites and 55 samples which include 13 MT-AER, 14 MT-ANA, 15 WT-AER and 13 WT-ANA samples.

Value

none

References

Index

* algebra
  ipca, 58
  mat.rank, 66
  nipals, 106
  pca, 108
  sipca, 191
  spca, 193
  tune.pca, 222
* cluster
  cim, 33
  cimDiablo, 41
  unmap, 237
* color
  colors, 48
* datasets
  breast.TCGA, 31
  breast.tumors, 32
  diverse.16S, 50
  Koren.16S, 61
  linnerud, 62
  liver.toxicity, 63
  multidrug, 98
  nutrimouse, 107
  srbct, 205
  stemcells, 206
  vac18, 238
  vac18.simulated, 239
  yeast, 248
* dplot
  image.tune.rcc, 54
  imgCor, 55
  mixOmics, 94
  network, 101
  plotArrow, 132
  plotIndiv, 138
  plotVar, 165
  tune.mint.splsda, 219
  tune.rcc, 224
* graphs
  cim, 33
  cimDiablo, 41
  network, 101
* hplot
  cim, 33
  cimDiablo, 41
  image.tune.rcc, 54
  mixOmics, 94
  network, 101
  plot.perf, 122
  plot.perf.pls, 125
  plot.rcc, 127
  plot.tune, 128
  plotArrow, 132
  plotIndiv, 138
  plotVar, 165
* iplot
  cim, 33
  cimDiablo, 41
  network, 101
* multivariate
  auroc, 5
  block.pls, 16
  block.plsda, 19
  block.spls, 23
  block.splsda, 26
  cim, 33
  cimDiablo, 41
  circosPlot, 43
  explained_variance, 51
  imgCor, 55
  mint.block.pls, 67
  mint.block.plsda, 70
  mint.block.spls, 73
  mint.block.splsda, 77
  mint.pca, 80
  mint.pls, 82
  mint.plsda, 85
  mint.spls, 87
mint.splsda, 91
mixOmics, 94
network, 101
nipals, 106
perf, 112
plot.perf, 122
plot.perf.pls, 125
plot.rcc, 127
plot.tune, 128
plotDiablo, 136
pls, 170
plsd, 174
predict, 177
print, 182
rcc, 186
spls, 196
splsda, 201
study_split, 207
summary, 208
tune, 210
tune.block.splsda, 214
tune.mint.splsda, 219
tune.rcc, 224
tune.spls, 227
tune.splsda, 231
tune.splslevel, 235
vip, 240
withinVariation, 241
* utilities
  nearZeroVar, 100

arrows, 134
auroc, 5, 116, 119

background.predict, 10, 146–148, 180
barplot, 127, 159
BiocParallelParam, 212, 216, 226, 228
biplot, 12, 111, 223
block.pls, 16, 22, 25, 97, 160, 180
block.plsd, 19, 19, 30, 97, 160, 176, 180
block.spls, 19, 23, 30, 97, 160, 165, 180, 246
block.splsd, 22, 25, 26, 46, 97, 137, 160, 165, 180, 203, 218
breast.TCGA, 31
breast.tumors, 32
cim, 33, 42, 43, 52, 105, 167, 188, 199, 203, 242
cimDiablo, 41
circosPlot, 43
color GreenRed, 105
color.GreenRed(colors), 48
color.jet, 34, 41, 57, 105
color.jet(colors), 48

* regression
  auroc, 5
  block.pls, 16
  block.plsd, 19
  block.spls, 23
  block.splsd, 26
circosPlot, 43
deprecated, 51
mint.block.pls, 67
mint.block.plsd, 70
mint.block.spls, 73
mint.block.splsd, 77
mint.pca, 80
mint.pls, 82
mint.plsd, 85
mint.spls, 87
mint.splsd, 91
perf, 112
plot.perf, 122
plot.perf.pls, 125
plot.tune, 128
plotDiablo, 136
pls, 170
plsd, 174
predict, 177
print, 182
spls, 196
splsd, 201
study_split, 207
summary, 208
tune, 210
tune.block.splsd, 214
tune.pls, 227
tune.plsd, 231
tune.splsd, 235
vip, 240
withinVariation, 241

* utilities
  nearZeroVar, 100

arrows, 134
auroc, 5, 116, 119

background.predict, 10, 146–148, 180
barplot, 127, 159
BiocParallelParam, 212, 216, 226, 228
biplot, 12, 111, 223
block.pls, 16, 22, 25, 97, 160, 180
block.plsd, 19, 19, 30, 97, 160, 176, 180
block.spls, 19, 23, 30, 97, 160, 165, 180, 246
block.splsd, 22, 25, 26, 46, 97, 137, 160, 165, 180, 203, 218
breast.TCGA, 31
breast.tumors, 32
cim, 33, 42, 43, 52, 105, 167, 188, 199, 203, 242
cimDiablo, 41
circosPlot, 43
color GreenRed, 105
color.GreenRed(colors), 48
color.jet, 34, 41, 57, 105
color.jet(colors), 48
INDEX

color.mixo (colors), 48
color.spectral, 105
color.spectral (colors), 48
colorRamp, 49
colors, 48, 49
cor, 57
dist, 34
diverse.16S, 50
eigen, 107
estim.regul, 51
estimate.lambda, 187
explained.variance, 51
get.BER (get.confusion_matrix), 53
get.confusion_matrix, 53
gray, 49
hclust, 34, 37, 43
heat.colors, 49, 54
heatmap, 37, 43
hsv, 49
image, 35, 55, 57
image.estim.regul (estim.regul), 51
image.tune.rcc, 51, 54, 225
imgCor, 55
impute.nipals, 18, 21, 28, 51, 57, 58, 72, 78, 92, 107, 173, 198
ipca, 58, 193
Koren, 165, 61
layout, 36
linnerud, 62
liver.toxicity, 63
logratio-transformations, 64
logratio.transfo, 110, 173, 175, 195, 199, 202, 223
logratio.transfo (logratio-transformations), 64
map, 65
mat.rank, 66
mint.block.pls, 67, 76, 79, 97, 160, 180
mint.block.plsda, 70, 73, 76, 77, 97, 160, 180
mint.block.splsda, 70, 73, 76, 77, 97, 160, 180
mint.block.spls, 70, 73, 76, 77, 97
mint.pca, 80
mint.pls, 82, 87, 90, 93, 97, 160, 180, 207
mint.plsda, 82, 84, 85, 90, 93, 97, 160, 180, 207
mint.spls, 82, 84, 85, 90, 93, 97, 160, 180, 207, 220, 221
mint.splsda, 82, 84, 87, 97, 160, 180, 207
mixOmics, 94
mixOmics-package, 4
multidrug, 98
nearZeroVar, 17, 21, 24, 28, 68, 71, 75, 78, 83, 85, 88, 91, 95, 100, 171, 175, 197, 202, 212, 216, 220, 232, 243, 246
network, 37, 43, 52, 101, 167, 188, 199, 203, 242
nipals, 57, 58, 67, 106, 106, 109, 111, 119, 223
nutrimouse, 107
order.dendrogram, 36, 42
palette, 49
par, 35, 42, 56, 127, 166, 167
pca, 58, 60, 65, 108, 193, 195
pcatune (estim.regul), 51
perf, 8, 19, 22, 25, 30, 70, 73, 76, 79, 82, 84, 87, 90, 93, 112, 124–127, 173, 176, 199, 203
plot.pca, 122
plot.perf, 119, 122
plot.perf.pls, 125
plot.perf.spls.mthd (plot.perf.pls), 125
plot.rcc, 127, 188
plot.sgcca (plotDiablo), 136
plot.tune, 128
plot.tune.rcc (image.tune.rcc), 54
plotArrow, 19, 22, 25, 30, 132
plotDiablo, 136
plotIndiv, 11, 19, 22, 25, 30, 52, 60, 70, 73, 76, 79, 81–84, 86, 87, 89, 90, 92, 93, 111, 138, 173, 176, 188, 193, 199, 203, 223, 242, 244, 247
plotLoadings, 19, 22, 25, 30, 81, 83, 86, 89, 92, 152, 165
plotMarkers, 164
plotVar, 19, 22, 25, 30, 37, 43, 52, 60, 70, 73, 76, 79, 81–84, 86, 87, 89, 90, 92, 93, 105, 111, 165, 173, 176, 188, 193, 199, 203, 223, 242, 244, 247
pls, 65, 97, 101, 125, 127, 160, 170, 180, 185, 199, 209, 240
plsda, 65, 97, 101, 125, 127, 147, 160, 174, 180
points, 14, 127, 129, 134, 146, 148, 166
polygon, 11
prcomp, 107, 111
predict, 10, 11, 19, 22, 25, 30, 54, 70, 73, 76, 79, 82, 84, 87, 90, 93, 115, 119, 173, 176, 177, 199, 203, 220
predict.splsda, 230, 234, 236
prcomp, 107, 110, 223
print, 182
rainbow, 34, 41, 49, 54
rcc, 185, 186, 187, 209
scale, 35, 59, 109, 192, 194, 212, 222, 226
select.var (selectVar), 189
selectVar, 19, 22, 25, 30, 189
sipca, 60, 191
spca, 193
spls, 52, 65, 70, 73, 76, 79, 82, 84, 87, 90, 93, 97, 101, 125, 127, 160, 173, 180, 185, 196, 203, 209, 228, 240, 242
splsda, 52, 65, 97, 101, 125, 127, 147, 160, 176, 180, 201, 230, 234, 236, 242
srbc, 205
stemcells, 206
study_split, 207
summary, 70, 73, 76, 79, 82, 84, 87, 90, 93, 173, 176, 188, 199, 203, 208, 240
svd, 107
terrain.colors, 34, 41, 49, 54
text, 134, 148
theme, 14
topo.colors, 34, 41, 49, 54
tune, 8, 210
tune.block.splsda, 130, 214
tune.mint.splsda, 130, 214, 219
tune.pca, 51, 214, 222
tune.rcc, 51, 55, 187, 188, 214, 224
tune.spca, 130, 225
tune.spls, 227
tune.splsda, 130, 214, 231
tune.splslevel, 214, 235
unmap, 66, 237, 244, 246
vac18, 238
vac18.simulated, 239
vip, 185, 209, 240
withinVariation, 110, 173, 175, 195, 199, 202, 223, 241
wrapper.rgcc, 242, 244, 247
wrapper.sgcc, 244, 245, 247
wrapper.sgccda (block.splsda), 26
yeast, 248