Package ‘multiWGCNA’

April 4, 2024

Type Package
Title multiWGCNA
Version 1.0.0
Description An R package for deeping mining gene co-expression networks in multi-trait expression data. Provides functions for analyzing, comparing, and visualizing WGCNA networks across conditions. multiWGCNA was designed to handle the common case where there are multiple biologically meaningful sample traits, such as disease vs wildtype across development or anatomical region.
License GPL-3
Encoding UTF-8
LazyData true
Suggests BiocStyle, doParallel, ExperimentHub, knitr, markdown, rmarkdown, testthat (>= 3.0.0), vegan
VignetteBuilder knitr
RoxygenNote 7.2.3
biocViews Sequencing, RNASeq, GeneExpression, DifferentialExpression, Regression, Clustering
Imports stringr, readr, WGCNA, dplyr, reshape2, data.table, patchwork, scales, igraph, flashClust, ggplot2, dcanr, cowplot, ggrepel, methods, SummarizedExperiment
Depends R (>= 4.3.0), ggalluvial
Config/testthat/edition 3
git_url https://git.bioconductor.org/packages/multiWGCNA
git_branch RELEASE_3_18
git_last_commit cf07247
git_last_commit_date 2023-10-24
Repository Bioconductor 3.18
Date/Publication 2024-04-03
multiWGCNA-package

Description

An R package for deeping mining gene co-expression networks in multi-trait expression data. Provides functions for analyzing, comparing, and visualizing WGCNA networks across conditions. multiWGCNA was designed to handle the common case where there are multiple biologically meaningful sample traits, such as disease vs wildtype across development or anatomical region.
bidirectionalBestMatches

Author(s)

Maintainer: Dario Tommasini <dtommasini0@gmail.com> (ORCID)
Authors:

• Brent Fogel [contributor]

Description

Find all the modules from dataset1 that have a best match to a module in dataset2 if that module in dataset2 is also a best match to the module in dataset1

Usage

```r
bidirectionalBestMatches(comparisonList, plot = TRUE)
```

Arguments

- `comparisonList` a list with an elemnt "overlap", which is a data.frame resulting from a call to `computeOverlapsFromWGCNA`
- `plot` whether to generate a heatmap; default is TRUE

Value

A ggplot object

Examples

```r
library(ExperimentHub)
eh = ExperimentHub()
 eh_query = query(eh, c("multiWGCNAdata"))
astrocyte_networks = eh_query["EH8222"]
comparisonList = list()
comparisonList$overlaps = computeOverlapsFromWGCNA(astrocyte_networks$EAE, astrocyte_networks$WT)
bidirectionalBestMatches(comparisonList)
```
cleanDatExpr

Description

A function that converts a data.frame where row 1 is gene symbols to a numeric matrix where columns are genes and rows are samples for compatibility with most WGCNA functions.

Usage

```r
cleanDatExpr(datExpr, checkGenesSamples = FALSE)
```

Arguments

- `datExpr`: a data.frame were columns are samples and rows are samples and the gene symbols are in the first row
- `checkGenesSamples`: call the WGCNA function checkGenesSamples?

Value

Returns a datExpr with rows as samples and columns as genes

Author(s)

Dario Tommasini

Examples

```r
library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdata"))
astrocyte_se = eh_query[["EH8223"]]
datExpr = data.frame(X = rownames(assays(astrocyte_se)[[1]]), assays(astrocyte_se)[[1]])
cleanDatExpr(datExpr)
```

coexpressionLineGraph

Coexpression Line Graph

Description

Plots a line graph showing the co-expression of selected genes across samples

Usage

```r
coaexpressionLineGraph(datExpr, splitBy = 1, fontSize = 2.15, colors = NULL)
```
computeOverlapsFromWGCNA

Arguments

- `datExpr` a data.frame with genes as rows and samples as columns
- `splitBy` how much to split genes by on line graph
- `fontSize` the font size of the gene labels
- `colors` a vector of colors; default is random colors generated by colors function

Value

- a ggplot object

Author(s)

Dario Tommasini

Examples

library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdata"))
astrocyte_networks = eh_query[["EH8222"]]
datExpr = GetDatExpr(astrocyte_networks[[1]],
 genes = topNGenes(astrocyte_networks$EAE, "EAE_015", 20))
coexpressionLineGraph(datExpr) +
 geom_vline(xintercept = 20.5, linetype='dashed')

computeOverlapsFromWGCNA

Description

Computes overlap between the modules of two objects of class WGCNA

Usage

computeOverlapsFromWGCNA(dataset1, dataset2)

Arguments

- `dataset1` an object of class WGCNA to compare with dataset2
- `dataset2` an object of class WGCNA to compare with dataset1

Value

Returns a data.frame showing the overlap results for modules from dataset1 with dataset2
Author(s)

Dario Tommasini

Examples

```r
call = function (datExpr, sampleTable, conditions1, conditions2, write = FALSE, alphaLevel = 0.05, plot = FALSE, ...) 
```

Description

A high level function that returns all networks possible for a given experimental design

Usage

```r
constructNetworks( 
datExpr, 
sampleTable, 
conditions1, 
conditions2, 
write = FALSE, 
alphaLevel = 0.05, 
plot = FALSE, 
... 
)
```

Arguments

datExpr: either a SummarizedExperiment object or data.frame with genes are rows and samples as columns
sampleTable: data.frame with sample names in first column and sample traits in the second and third column. First column should be called "Sample"
conditions1: first design conditions, ie healthy/disease
conditions2: second design conditions, ie frontal lobe/temporal lobe
write: write results out to files?
alphaLevel: significance value passed to findBestTrait function, default is 0.05
plot: plot modules? Default is false
... Arguments to pass to blockwiseModules function
Value

A list of WGCNA objects, ie level one, two, and three networks.

Author(s)

Dario Tommasini

Examples

```r
library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNadata"))
autism_se = eh_query["EH8219"]
set.seed(1)
autism_se = autism_se[sample(rownames(autism_se), 500),]
sampleTable = colData(autism_se)
conditions1 = unique(sampleTable[,2])
conditions2 = unique(sampleTable[,3])
autism_networks = constructNetworks(autism_se, sampleTable, conditions1[[1]], conditions2[[1]],
  networkType = "signed", TOMType = "unsigned",
  power = 10, minModuleSize = 100, maxBlockSize = 25000,
  reassignThreshold = 0, minKMEtoStay = 0, mergeCutHeight = 0,
  numericLabels = TRUE, pamRespectsDendro = FALSE,
  deepSplit = 4, verbose = 3)
autism_networks["combined"]
```

diffCoexpression
Differential co-expression analysis

Description

Performs a differential co-expression analysis given an expression data.frame and a conditions vector.

Usage

```r
diffCoexpression(
  datExpr,
  conditions,
  geneList = NULL,
  plot = FALSE,
  method = c("pearson", "spearman"),
  removeFreeNodes = TRUE,
  labelSize = 0.5,
  labelDist = 0,
  shape = "circle",
  degreeForSize = FALSE,
```

label = FALSE,
onlyPositive = FALSE,
z.threshold = NULL,
FDR.threshold = 0.05,
nodeSize = 3
)

Arguments

datExpr a data.frame containing expression values
conditions a vector containing conditions for the samples
geneList vector of genes, will use all genes if NULL (default)
plot plot a network?
method either "pearson" or "spearman"
removeFreeNodes remove free nodes from network?
labelSize label size
labelDist distance from labels to nodes
shape shape of nodes
degreeForSize should node size correspond to degree?
label label nodes?
onlyPositive only draw positive correlations?
z.threshold z-score threshold
FDR.threshold FDR threshold
nodeSize size of node

Value

A list including a matrix of z-scores, a matrix of raw p-values, a matrix of adjusted p-values, and a summary data.frame

Author(s)

Dario Tommasini

Examples

library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdata"))
astrocyte_se = eh_query[["EH8223"]]
datExpr = assays(astrocyte_se)[[1]]
diffCoexpression(datExpr, c(rep(1,20), rep(2,16)),
"Cxcl10", "Hspb1", "Timp1", "Slpr3", "Steap4", "Lcn2"))
diffModuleExpression
Differential module expression

Description

Runs (and plots) the differential module expression analysis

Usage

```r
diffModuleExpression(
  WGCNAobject,
  geneList,
  design,
  plotTitle = NULL,
  mode = c("PC1", "Zscore"),
  testColumn = 2,
  refColumn = 3,
  test = c("ANOVA", "PERMANOVA"),
  plot = TRUE
)
```

Arguments

- `WGCNAobject`: WGCNA object
- `geneList`: vector of genes in WGCNAobject
- `design`: the sampleTable
- `plotTitle`: title for the plot
- `mode`: either PC1 or Zscore, default is PC1
- `testColumn`: the column of the sampleTable to be resolved
- `refColumn`: the column of the sampleTable to be used as biological variation
- `test`: statistical test to perform, either "ANOVA" or "PERMANOVA"
- `plot`: generate a plot?

Value

a data.frame with the resulting p-values

Examples

```r
library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdata"))
astrocyte_se = eh_query[["EH8223"]]
sampleTable = colData(astrocyte_se)
astrocyte_networks = eh_query[["EH8222"]]
```
```r
diffModuleExpression(astrocyte_networks[["combined"]],
topNGenes(astrocyte_networks$combined, "combined_013"),
sampleTable,
test = "ANOVA",
plotTitle = "combined_013",
plot = TRUE)
```

drawMultiWGCNAnetwork | Draw multiWGCNA network

Description

Draw a network where nodes are modules and edges represent significant gene overlap. Modules are sorted by levels 1, 2, and 3.

Usage

```r
drawMultiWGCNAnetwork(
  WGCNAlist,
  comparisonList,
  moduleOfInterest,
  design,
  overlapCutoff = 0,
  padjCutoff = 1,
  removeOutliers = TRUE,
  alpha = 1e-50,
  layout = NULL,
  hjust = 0.4,
  vjust = 0.3,
  width = 0.5,
  colors = NULL
)
```

Arguments

- `WGCNAlist`: list of WGCNA objects
- `comparisonList`: the list of overlap comparisons ie from `iterate(myNetworks, overlapComparisons, ...)`
- `moduleOfInterest`: module of interest, ie "combined_001"
- `design`: the `sampleTable` design matrix
- `overlapCutoff`: cutoff to remove module correspondences with less than this number of genes
- `padjCutoff`: cutoff to remove module correspondences above this significance value
- `removeOutliers`: remove outlier modules?
- `alpha`: alpha level of significance
GetDatExpr

Description

Returns the expression data frame a WGCNA object as a data.frame

Usage

GetDatExpr(object, genes = NULL)

Arguments

object An object of class WGCNA
genes a list of genes to subset to; default is NULL
getPreservation

Value
 a data.frame

Author(s)
 Dario Tommasini

Examples

library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdata"))
astrocyte_networks = eh_query[["EH8222"]]
datExpr = GetDatExpr(astrocyte_networks[[1]],
 genes = topNGenes(astrocyte_networks$EAE, "EAE_015", 20))
coexpressionLineGraph(datExpr) +
 geom_vline(xintercept = 20.5, linetype='dashed')

Description
 Performs a network preservation analysis

Usage
 getPreservation(reference, test, nPermutations = 100, write = FALSE)

Arguments
 reference reference network of class WGCNA
 test test network of class WGCNA
 nPermutations number of permutations to perform
 write write to file?

Value
 a data.frame summarizing results of preservation analysis

Author(s)
 Dario Tommasini
iterate

iterate: Iterate function across networks

Description
A high level function that iterates functions across a list of WGCNA objects

Usage
iterate(WGCNAlist, FUN, ...)

Arguments
- **WGCNAlist**: a vector of objects of type WGCNAObject
- **FUN**: function to iterate, either overlapComparisons or preservationComparisons
- **...**: arguments to be passed on to overlapComparisons or preservationComparisons

Value
a comparison list from overlapComparisons or preservationComparisons

Author(s)
Dario Tommasini

Examples
library(ExperimentHub)
eh = ExperimentHub()eh_query = query(eh, c("multiWGCNAdata"))astrocyte_networks = eh_query[["EH8222"]]
results = list()
iterate(astrocyte_networks, overlapComparisons, plot=FALSE)

makeTraitTable

Generate a trait table from a sample table

Description
Generates a WGCNA-compatible trait table from a sampleTable dataframe

Usage
makeTraitTable(inputTable, column, detectNumbers = FALSE)
Arguments

- **inputTable**: the sampleTable data.frame
- **column**: the column from the sampleTable to use as traits
- **detectNumbers**: whether to consider traits with numbers as numerical rather than categorical variables

Value

a data.frame with integer values denoting the categorical sample traits

Examples

```r
sampleTable = data.frame(Sample = c(paste0("EAE", 1:10), paste0("WT", 1:10)),
Disease = c(rep("EAE", 10), rep("WT", 10)),
Region = c(rep(c("Cbl", "Sc"), 5)))
makeTraitTable(sampleTable, 2)
```

moduleComparisonPlot
Module comparison plot

Description

A plotting function that returns a heatmap and barplot for a module

Usage

```r
moduleComparisonPlot(overlapDf, dataset1, dataset2)
```

Arguments

- **overlapDf**: a data.frame resulting from a call to computeOverlapsFromWGCNA
- **dataset1**: an object of class WGCNA to compare with dataset2
- **dataset2**: an object of class WGCNA to compare with dataset1

Value

Returns a ggplot object (flowplot and heatmap) showing the module correspondence between two objects of class WGCNA

Author(s)

Dario Tommasini
Examples

```r
library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdataset"))
astrocyte_networks = eh_query[['EH8222']]
overlapDf = computeOverlapsFromWGCNA(astrocyte_networks$EAE, astrocyte_networks$WT)
moduleComparisonPlot(overlapDf, astrocyte_networks$EAE, astrocyte_networks$WT)
```

`moduleExpressionPlot` *Plots an expression profile for a module*

Description

A plotting function that returns a heatmap and barplot for a module

Usage

```r
moduleExpressionPlot(
  WGCNAobject,
  geneList,
  mode = c("PC1", "averageZscore"),
  legend = FALSE,
  title = NULL,
  clusterGenes = FALSE
)
```

Arguments

- **WGCNAobject**: an object of class WGCNAobject
- **geneList**: a vector of gene names to be extracted from WGCNAobject
- **mode**: use first principal component or averageZscore?
- **legend**: plot legend?
- **title**: title of the plot
- **clusterGenes**: cluster heatmap genes by hierarchical clustering?

Value

- a patchworked ggplot object

Author(s)

Dario Tommasini
Examples

```r
library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdataset"))
astrocyte_networks = eh_query["EH8222"]
moduleExpressionPlot(astrocyte_networks["combined"],
  geneList = topNGenes(astrocyte_networks$combined, "combined_013"))
```

moduleToModuleHeatmap Module to module heatmap

Description

Returns a heatmap where color corresponds to FDR-adjusted overlap (hypergeometric test) and the label corresponds to the number of overlapping genes.

Usage

```r
moduleToModuleHeatmap(
  comparisonDf,
  dataset1 = NULL,
  dataset2 = NULL,
  trait1 = NULL,
  trait2 = NULL,
  list1 = NULL,
  list2 = NULL,
  filterByTrait = FALSE,
  alphaLevel = 0.05
)
```

Arguments

- `comparisonDf` the data.frame output of computeOverlapFromWGCNA
- `dataset1` optional; WGCNA object for dataset 1
- `dataset2` optional; WGCNA object for dataset 2
- `trait1` optional; subset to modules correlated to this trait for dataset 1
- `trait2` optional; subset to modules correlated to this trait for dataset 2
- `list1` optional; subset to this list of modules for dataset 1
- `list2` optional; subset to this list of modules for dataset 2
- `filterByTrait` only plot for modules that correlate with some trait?
- `alphaLevel` the alpha level of significance for module-trait correlation, defaults to 0.05

Value

A ggplot object
name

name: Name of WGCNAobject

Description

Returns the name of a WGCNAobject.

Usage

name(WGCNAobject)

Arguments

WGCNAobject an object of class WGCNA

Value

Returns the name of the WGCNA object, ie "EAE" for astrocyte_networks$EAE.

Examples

library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdata"))
astrocyte_networks = eh_query["EH8222"]
overlapDf = computeOverlapsFromWGCNA(astrocyte_networks$EAE, astrocyte_networks$WT)
moduleToModuleHeatmap(overlapDf)

overlapComparisons

Overlap comparisons

Description

Compares modules between two objects of type WGCNAobjects within a WGCNAobject list given the indices. Recommended to be used in conjunction with the iterate function.
Usage

overlapComparisons(
 comparisonList,
 WGCNAlist,
 first,
 second,
 element,
 plot = TRUE,
 write = FALSE
)

Arguments

comparisonList a list passed by the iterate function
WGCNAlist list of objects of class WGCNA
first index of first WGCNA object
second index of second WGCNA object
element element position in the comparison list (passed by iterate function)
plot generate plots?
write write results to file?

Value

A list, in which the first element is a data.frame showing the overlap results and the second element is a data.frame showing the best matching modules between the two WGCNA objects.

Author(s)

Dario Tommasini

Examples

library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdata"))
astrocyte_networks = eh_query["EH8222"]
results = list()
results$overlaps = iterate(astrocyte_networks, overlapComparisons, plot=FALSE)
performANOVA

Perform ANOVA

Description

Test association between module expression to traits using ANOVA

Usage

```r
performANOVA(datExpr, design, testCondition, refCondition, alphaLevel = 0.05)
```

Arguments

- `datExpr`: expression data.frame
- `design`: the sampleTable
- `testCondition`: test column in sampleTable
- `refCondition`: reference column in sampleTable
- `alphaLevel`: the significance level

Value

A data.frame with p-values for each association

preservationComparisonPlot

Preservation Comparison Scatterplot

Description

A plotting function that draws a scatterplot of preservation scores between two WGCNA objects

Usage

```r
preservationComparisonPlot(
    preservationList, dataset1, dataset2,
    alphaLevel = 0.05, outliers = FALSE
)
```
preservationComparisons

Arguments

- preservationList: a list resulting from a call to preservationComparisons
- dataset1: an object of class WGCNAobject to compare with dataset2
- dataset2: an object of class WGCNAobject to compare with dataset1
- alphaLevel: alpha level of significance, default is 0.05
- outliers: leave outlier modules? By default these are removed

Value

- a ggplot object

Author(s)

- Dario Tommasini

Examples

```r
library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdata"))
astrocyte_networks = eh_query[["EH8222"]]
results = list()
results$preservation=iterate(astrocyte_networks[c("EAE", "WT")],
preservationComparisons,
write=FALSE,
plot=FALSE,
nPermutations=2)
preservationComparisonPlot(results$preservation$EAE_vs_WT,
astrocyte_networks$EAE,
astrocyte_networks$WT)
```

Description

A high level function that performs a preservation comparison between two WGCNAobjects in a WGCNAList, usually supplied by iterate function.
Usage

preservationComparisons(
 comparisonList,
 WGCNAList,
 first,
 second,
 element,
 plot = FALSE,
 write = FALSE,
 alphaLevel = 0.05,
 nPermutations = 100
)

Arguments

comparisonList a list passed by the iterate function
WGCNAList list of objects of type WGCNAobject
first index of first WGCNAobject
second index of second WGCNAobject
element element position in the comparison list (passed by iterate function)
plot generate plots?
write write results to file?
alphaLevel alpha level of significance for module-trait correlation
nPermutations number of permutations, defaults to 100

Value

a list of preservation comparisons results across levels 1, 2, 3

Author(s)

Dario Tommasini

Examples

library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdata"))
astrocyte_networks = eh_query[["EH8222"]]
results = list()
iterate(astrocyte_networks[c("EAE", "WT")],
 preservationComparisons,
 write=FALSE,
 plot=FALSE,
 nPermutations=2)
runDME

Run differential module expression

Description

A wrapper to run diffModuleExpression on all the modules in a network

Usage

runDME(
 WGCNAobject,
 design,
 alphaLevel = 0.05,
 testCondition = NULL,
 refCondition = NULL,
 p.adjust = "fdr",
 plot = FALSE,
 test = c("ANOVA", "PERMANOVA"),
 write = FALSE,
 out = NULL
)

Arguments

WGCNAobject object of class WGCNA with the modules to run DME on
design the sampleTable
alphaLevel level of significance
testCondition the column of the sampleTable to be resolved
refCondition the column of the sampleTable to be used as biological variation
p.adjust adjust for multiple comparisons, argument to pass to p.adjust function
plot generate a plot?
test statistical test to perform, either "ANOVA" or "PERMANOVA"
write write results to a file?
out file name for DME plots, only used if write is TRUE

Value

a data.frame summarizing the results of the analysis

Author(s)

Dario Tommasini
summarizeResults

Examples

library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdat"))
astrocyte_se = eh_query[["EH8223"]]
sampleTable = colData(astrocyte_se)
astrocyte_networks = eh_query[["EH8222"]]
runDME(astrocyte_networks[["combined"]],
 design = sampleTable,
 p.adjust = "fdr",
 refCondition = "Region",
 testCondition = "Disease")

summarizeResults

summarizeResults: Summarize results from a results list object

Description

Prints (or writes) a summary of the results from a results list object

Usage

summarizeResults(
 myNetworks,
 results,
 alphaLevel = 0.05,
 write = FALSE,
 outputFile = "results.txt"
)

Arguments

myNetworks a list of WGCNA objects
results results list
alphaLevel alpha level of significance
write write to file?
outputFile name of output file, defaults to results.txt

Value

prints a summary of results from the multiWGCNA analysis
Description

Returns the top N number of genes of a module. All genes returned if no number is specified. Genes are in order of intramodular connectivity.

Usage

topNGenes(WGCNAobject, module, nGenes = NULL)

Arguments

 WGCNAobject an object of class WGCNA
 module the name of the module in WGCNAobject
 nGenes an integer from 1 to module size; returns all genes if left NULL

Value

 a character vector of the genes/probes in the module

Examples

library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdata"))
astrocyte_networks = eh_query[["EH8222"]]
topNGenes(astrocyte_networks$EAE, "EAE_015", nGenes = 10)

WGCNA-class

Description

The WGCNA class is the main class used in multiWGCNA to store results from a weighted gene co-expression network analysis. These include the original unaltered expression data used as input, connectivity metrics, module assignment, input sample conditions, trait

Value

 NA
WGCNA-class

Slots

datExpr The expression data, connectivity data, and module assignment conditions A data.frame with integer conditions for WGCNA trait A data.frame showing pearson correlation values to traits moduleEigengenes A data.frame of module eigengenes for each module across samples outlierModules A vector of modules classified by our algorithm as being driven by sample outliers
Index

* internal
 - multiWGCNA-package, 2
 - bidirectionalBestMatches, 3
 - cleanDatExpr, 4
 - coexpressionLineGraph, 4
 - computeOverlapsFromWGCNA, 5
 - constructNetworks, 6
 - diffCoexpression, 7
 - diffModuleExpression, 9
 - drawMultiWGCNAnetwork, 10
 - GetDatExpr, 11
 - getPreservation, 12
 - iterate, 13
 - makeTraitTable, 13
 - moduleComparisonPlot, 14
 - moduleExpressionPlot, 15
 - moduleToModuleHeatmap, 16
 - multiWGCNA (multiWGCNA-package), 2
 - multiWGCNA-package, 2
 - name, 17
 - overlapComparisons, 17
 - performANOVA, 19
 - preservationComparisonPlot, 19
 - preservationComparisons, 20
 - runDME, 22
 - summarizeResults, 23
 - topNGenes, 24
 - WGCNA-class, 24