Package ‘multiWGCNA’

February 3, 2024

Type Package
Title multiWGCNA
Version 1.0.0
Description An R package for deeping mining gene co-expression networks in multi-trait expression data. Provides functions for analyzing, comparing, and visualizing WGCNA networks across conditions. multiWGCNA was designed to handle the common case where there are multiple biologically meaningful sample traits, such as disease vs wildtype across development or anatomical region.
License GPL-3
Encoding UTF-8
LazyData true
Suggests BiocStyle, doParallel, ExperimentHub, knitr, markdown, rmarkdown, testthat (>= 3.0.0), vegan
VignetteBuilder knitr
RoxygenNote 7.2.3
biocViews Sequencing, RNASeq, GeneExpression, DifferentialExpression, Regression, Clustering
Imports stringr, readr, WGCNA, dplyr, reshape2, data.table, patchwork, scales, igraph, flashClust, ggplot2, dcanr, cowplot, ggrepel, methods, SummarizedExperiment
Depends R (>= 4.3.0), ggalluvial
Config/testthat/edition 3
git_url https://git.bioconductor.org/packages/multiWGCNA
git_branch RELEASE_3_18
git_last_commit cf07247
git_last_commit_date 2023-10-24
Repository Bioconductor 3.18
Date/Publication 2024-02-02
multiWGCNA-package

Description

An R package for deeping mining gene co-expression networks in multi-trait expression data. Provides functions for analyzing, comparing, and visualizing WGCNA networks across conditions. multiWGCNA was designed to handle the common case where there are multiple biologically meaningful sample traits, such as disease vs wildtype across development or anatomical region.
bidirectionalBestMatches

Author(s)

Maintainer: Dario Tommasini <dtommasini0@gmail.com> (ORCID)

Authors:

- Brent Fogel [contributor]

Description

Find all the modules from dataset1 that have a best match to a module in dataset2 if that module in dataset2 is also a best match to the module in dataset1

Usage

`bidirectionalBestMatches(comparisonList, plot = TRUE)`

Arguments

- `comparisonList`: a list with an elemnt "overlap", which is a data.frame resulting from a call to `computeOverlapsFromWGCNA`
- `plot`: whether to generate a heatmap; default is TRUE

Value

A ggplot object

Author(s)

Dario Tommasini

Examples

```r
library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdata"))
astrocyte_networks = eh_query["EH8222"]
comparisonList = list()
comparisonList$overlaps = computeOverlapsFromWGCNA(astrocyte_networks$EAE, astrocyte_networks$WT)
bidirectionalBestMatches(comparisonList)
```
cleanDatExpr

Description

A function that converts a data.frame where row 1 is gene symbols to a numeric matrix where columns are genes and rows are samples for compatibility with most WGCNA functions.

Usage

cleanDatExpr(datExpr, checkGenesSamples = FALSE)

Arguments

datExpr: a data.frame were columns are samples and rows are samples and the gene symbols are in the first row
checkGenesSamples: call the WGCNA function checkGenesSamples?

Value

Returns a datExpr with rows as samples and columns as genes

Author(s)

Dario Tommasini

Examples

library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdata"))
astrocyte_se = eh_query["EH8223"]
datExpr = data.frame(X = rownames(assays(astrocyte_se)[[1]]), assays(astrocyte_se)[[1]])
cleanDatExpr(datExpr)

coexpressionLineGraph

Description

Plots a line graph showing the co-expression of selected genes across samples

Usage

coexpressionLineGraph(datExpr, splitBy = 1, fontSize = 2.15, colors = NULL)
computeOverlapsFromWGCNA

Description
Computes overlap between the modules of two objects of class WGCNA

Usage
computeOverlapsFromWGCNA(dataset1, dataset2)

Arguments
- dataset1: an object of class WGCNA to compare with dataset2
- dataset2: an object of class WGCNA to compare with dataset1

Value
Returns a data.frame showing the overlap results for modules from dataset1 with dataset2
Author(s)

Dario Tommasini

Examples

```r
library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdata"))
astrocyte_networks = eh_query["EH8222"]
computeOverlapsFromWGCNA(astrocyte_networks$EAE, astrocyte_networks$WT)
```

constructNetworks
constructNetworks: Construct all the weighted gene correlation networks

Description

A high level function that returns all networks possible for a given experimental design

Usage

```r
constructNetworks(
  datExpr,  
  sampleTable,  
  conditions1,  
  conditions2,  
  write = FALSE,  
  alphaLevel = 0.05,  
  plot = FALSE,  
  ...
)
```

Arguments

- `datExpr`: either a `SummarizedExperiment` object or `data.frame` with genes as rows and samples as columns
- `sampleTable`: `data.frame` with sample names in first column and sample traits in the second and third column. First column should be called "Sample"
- `conditions1`: first design conditions, ie healthy/disease
- `conditions2`: second design conditions, ie frontal lobe/temporal lobe
- `write`: write results out to files?
- `alphaLevel`: significance value passed to `findBestTrait` function, default is 0.05
- `plot`: plot modules? Default is false
- `...`: Arguments to pass to `blockwiseModules` function
diffCoexpression

Value

A list of WGCNA objects, i.e., level one, two, and three networks.

Author(s)

Dario Tommasini

Examples

```r
library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdadata"))
autism_se = eh_query[["EH8219"]]
set.seed(1)
autism_se = autism_se[sample(rownames(autism_se), 500),]
sampleTable = colData(autism_se)
conditions1 = unique(sampleTable[,2])
conditions2 = unique(sampleTable[,3])
autism_networks = constructNetworks(autism_se, sampleTable, conditions1[[1]], conditions2[[1]],
   networkType = "signed", TOMType = "unsigned",
   power = 10, minModuleSize = 100, maxBlockSize = 25000,
   reassignThreshold = 0, minKMEtoStay = 0, mergeCutHeight = 0,
   numericLabels = TRUE, pamRespectsDendro = FALSE,
   deepSplit = 4, verbose = 3)
autism_networks[["combined"]]
```

diffCoexpression
Differential co-expression analysis

Description

Performs a differential co-expression analysis given an expression data.frame and a conditions vector.

Usage

```r
diffCoexpression(
   datExpr,
   conditions,
   geneList = NULL,
   plot = FALSE,
   method = c("pearson", "spearman"),
   removeFreeNodes = TRUE,
   labelSize = 0.5,
   labelDist = 0,
   shape = "circle",
   degreeForSize = FALSE,
)```
label = FALSE,
onlyPositive = FALSE,
z.threshold = NULL,
FDR.threshold = 0.05,
nodeSize = 3
)

Arguments

datExpr a data.frame containing expression values
conditions a vector containing conditions for the samples
geneList vector of genes, will use all genes if NULL (default)
plot plot a network?
method either "pearson" or "spearman"
removeFreeNodes remove free nodes from network?
labelSize label size
labelDist distance from labels to nodes
shape shape of nodes
degreeForSize should node size correspond to degree?
label label nodes?
onlyPositive only draw positive correlations?
z.threshold z-score threshold
FDR.threshold FDR threshold
nodeSize size of node

Value
A list including a matrix of z-scores, a matrix of raw p-values, a matrix of adjusted p-values, and a summary data.frame

Author(s)
Dario Tommasini

Examples
library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdata"))
astrocyte_se = eh_query[["EH8223"]]
datExpr = assays(astrocyte_se)[[1]]
diffCoexpression(datExpr, c(rep(1,20), rep(2,16)),
"Cxcl10", "Hspb1", "Timpl", "Slpr3", "Steap4", "Lcn2")
)
diffModuleExpression  Differential module expression

Description

Runs (and plots) the differential module expression analysis

Usage

diffModuleExpression(
  WGCNAobject,
  geneList,
  design,
  plotTitle = NULL,
  mode = c("PC1", "Zscore"),
  testColumn = 2,
  refColumn = 3,
  test = c("ANOVA", "PERMANOVA"),
  plot = TRUE
)

Arguments

- **WGCNAobject**: WGCNA object
- **geneList**: vector of genes in WGCNAobject
- **design**: the sampleTable
- **plotTitle**: title for the plot
- **mode**: either PC1 or Zscore, default is PC1
- **testColumn**: the column of the sampleTable to be resolved
- **refColumn**: the column of the sampleTable to be used as biological variation
- **test**: statistical test to perform, either "ANOVA" or "PERMANOVA"
- **plot**: generate a plot?

Value

a data.frame with the resulting p-values

Examples

library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNADATA"))
astrocyte_se = eh_query[["EH8223"]]
sampleTable = colData(astrocyte_se)
astrocyte_networks = eh_query[["EH8222"]]
diffModuleExpression(astrocyte_networks[["combined"]],
topNGenes(astrocyte_networks$combined, "combined_013"),
sampleTable,
test = "ANOVA",
plotTitle = "combined_013",
plot = TRUE)

---

drawMultiWGCNAnetwork  Draw multiWGCNA network

### Description

Draw a network where nodes are modules and edges represent significant gene overlap. Modules are sorted by levels 1, 2, and 3.

### Usage

```r
drawMultiWGCNAnetwork(
 WGCNAlist,
 comparisonList,
 moduleOfInterest,
 design,
 overlapCutoff = 0,
 padjCutoff = 1,
 removeOutliers = TRUE,
 alpha = 1e-50,
 layout = NULL,
 hjust = 0.4,
 vjust = 0.3,
 width = 0.5,
 colors = NULL
)
```

### Arguments

- **WGCNAlist** list of WGCNA objects
- **comparisonList** the list of overlap comparisons ie from iterate(myNetworks, overlapComparisions, ...)
- **moduleOfInterest** module of interest, ie "combined_001"
- **design** the sampleTable design matrix
- **overlapCutoff** cutoff to remove module correspondences with less than this number of genes
- **padjCutoff** cutoff to remove module correspondences above this significance value
- **removeOutliers** remove outlier modules?
- **alpha** alpha level of significance
GetDatExpr

layout
- layout of network to be passed to plot function of igraph object, defaults to multiWGCNA custom layout

hjust
- horizontal justification of labels

vjust
- vertical justification of labels

width
- width of labels

colors
- colors to use for modules, should be the same length as the number of WGCNA objects in the WGCNAlist. Defaults to random colors for each condition.

Value
- an igraph plot

Author(s)
- Dario Tommasini

Examples

```r
library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdata"))
astrocyte_se = eh_query["EH8223"]
sampleTable = colData(astrocyte_se)
astrocyte_networks = eh_query["EH8222"]
results = list()
results$overlaps = iterate(astrocyte_networks, overlapComparisons, plot=FALSE)
drawMultiWGCNAnetwork(astrocyte_networks,
results$overlaps,
"combined_013",
sampleTable)
```

---

GetDatExpr

Get expression data

Description

Returns the expression data frame a WGCNA object as a data.frame

Usage

GetDatExpr(object, genes = NULL)

Arguments

object
- An object of class WGCNA

genes
- a list of genes to subset to; default is NULL
Value

a data.frame

Author(s)

Dario Tommasini

Examples

library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAd ata"))
astrocyte_networks = eh_query[["EH8222"]]
datExpr = GetDatExpr(astrocyte_networks[[1]],
gen es = topNGenes(astrocyte_networks$EAE, "EAE_015", 20))
coexpressionLineGraph(datExpr) +
geom_vline(xintercept = 20.5, linetype='dashed')

------------------------------------------------------------------------

Description

Performs a network preservation analysis

Usage

getPreservation(reference, test, nPermutations = 100, write = FALSE)

Arguments

<table>
<thead>
<tr>
<th>reference</th>
<th>reference network of class WGCNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>test</td>
<td>test network of class WGCNA</td>
</tr>
<tr>
<td>nPermutations</td>
<td>number of permutations to perform</td>
</tr>
<tr>
<td>write</td>
<td>write to file?</td>
</tr>
</tbody>
</table>

Value

a data.frame summarizing results of preservation analysis

Author(s)

Dario Tommasini
iterate

iterate: Iterate function across networks

Description

A high level function that iterates functions across a list of WGCNA objects

Usage

iterate(WGCNAlist, FUN, ...)

Arguments

- **WGCNAlist**: a vector of objects of type WGCNAobject
- **FUN**: function to iterate, either overlapComparisons or preservationComparisons
- **...**: arguments to be passed on to overlapComparisons or preservationComparisons

Value

a comparison list from overlapComparisons or preservationComparisons

Author(s)

Dario Tommasini

Examples

```r
library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdata"))
astrocyte_networks = eh_query["EH8222"]
results = list()
iterate(astrocyte_networks, overlapComparisons, plot=FALSE)
```

makeTraitTable

Generate a trait table from a sample table

Description

Generates a WGCNA-compatible trait table from a sampleTable dataframe

Usage

makeTraitTable(inputTable, column, detectNumbers = FALSE)
moduleComparisonPlot

Arguments

inputTable  the sampleTable data.frame
column  the column from the sampleTable to use as traits
detectNumbers  whether to consider traits with numbers as numerical rather than categorical variables

Value

a data.frame with integer values denoting the categorical sample traits

Examples

```r
sampleTable = data.frame(Sample = c(paste0("EAE", 1:10), paste0("WT", 1:10)),
 Disease = c(rep("EAE", 10), rep("WT", 10)),
 Region = c(rep("Cbl", "Sc"), 5))
makeTraitTable(sampleTable, 2)
```

moduleComparisonPlot  Module comparison plot

Description

A plotting function that returns a heatmap and barplot for a module

Usage

```r
moduleComparisonPlot(overlapDf, dataset1, dataset2)
```

Arguments

overlapDf  a data.frame resulting from a call to computeOverlapsFromWGCNA
dataset1  an object of class WGCNA to compare with dataset2
dataset2  an object of class WGCNA to compare with dataset1

Value

Returns a ggplot object (flowplot and heatmap) showing the module correspondence between two objects of class WGCNA

Author(s)

Dario Tommasini
Examples

```r
library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdada"))
astrocyte_networks = eh_query[["EH8222"]]
overlapDf = computeOverlapsFromWGCNA(astrocyte_networks$EAE, astrocyte_networks$WT)
moduleComparisonPlot(overlapDf, astrocyte_networks$EAE, astrocyte_networks$WT)
```

---

**moduleExpressionPlot**  
*Plots an expression profile for a module*

**Description**

A plotting function that returns a heatmap and barplot for a module

**Usage**

```r
moduleExpressionPlot(
 WGCNAobject,
 geneList,
 mode = c("PC1", "averageZscore"),
 legend = FALSE,
 title = NULL,
 clusterGenes = FALSE
)
```

**Arguments**

- **WGCNAobject**: an object of class WGCNAobject
- **geneList**: a vector of gene names to be extracted from WGCNAobject
- **mode**: use first principal component or averageZscore?
- **legend**: plot legend?
- **title**: title of the plot
- **clusterGenes**: cluster heatmap genes by hierarchical clustering?

**Value**

a patchworked ggplot object

**Author(s)**

Dario Tommasini
Examples

library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdatna"))
astrocyte_networks = eh_query["EH8222"]
moduleExpressionPlot(astrocyte_networks["combined"],
    geneList = topNGenes(astrocyte_networks$combined, "combined_013"))

moduleToModuleHeatmap  Module to module heatmap

Description

Returns a heatmap where color corresponds to FDR-adjusted overlap (hypergeometric test) and the label corresponds to the number of overlapping genes

Usage

moduleToModuleHeatmap(
    comparisonDf,
    dataset1 = NULL,
    dataset2 = NULL,
    trait1 = NULL,
    trait2 = NULL,
    list1 = NULL,
    list2 = NULL,
    filterByTrait = FALSE,
    alphaLevel = 0.05
)

Arguments

comparisonDf  the data.frame output of computeOverlapFromWGCNA
dataset1 optional; WGCNA object for dataset 1
dataset2 optional; WGCNA object for dataset 2
trait1 optional; subset to modules correlated to this trait for dataset 1
trait2 optional; subset to modules correlated to this trait for dataset 2
list1 subset to this list of modules for dataset 1
list2 subset to this list of modules for dataset 2
filterByTrait only plot for modules that correlate with some trait?
alphaLevel the alpha level of significance for module-trait correlation, defaults to 0.05

Value

A ggplot object
Examples

```r
library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNadata"))
astrocyte_networks = eh_query["EH8222"]
overlapDf = computeOverlapsFromWGCNA(astrocyte_networks$EAE, astrocyte_networks$WT)
moduleToModuleHeatmap(overlapDf)
```

---

**name**

**name: Name of WGCNAobject**

---

**Description**

Returns the name of a WGCNAobject.

**Usage**

```r
name(WGCNAobject)
```

**Arguments**

- `WGCNAobject`  
  an object of class WGCNA

**Value**

Returns the name of the WGCNA object, ie "EAE" for astrocyte_networks$EAE.

**Examples**

```r
library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNadata"))
astrocyte_networks = eh_query["EH8222"]
name(astrocyte_networks$EAE)
```

---

**overlapComparisons**

*Overlap comparisons*

---

**Description**

Compares modules between two objects of type WGCNAobjects within a WGCNAobject list given the indices. Recommended to be used in conjunction with the iterate function.
overlapComparisons

Usage

overlapComparisons(
  comparisonList,
  WGCNalist,
  first,
  second,
  element,
  plot = TRUE,
  write = FALSE
)

Arguments

comparisonList  a list passed by the iterate function
WGCNalist      list of objects of class WGCNA
first           index of first WGCNA object
second          index of second WGCNA object
element         element position in the comparison list (passed by iterate function)
plot            generate plots?
write           write results to file?

Value

A list, in which the first element is a data.frame showing the overlap results and the second element is a data.frame showing the best matching modules between the two WGCNA objects.

Author(s)

Dario Tommasini

Examples

library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdata"))
astrocyte_networks = eh_query["EH8222"]
results = list()
results$overlaps = iterate(astrocyte_networks, overlapComparisons, plot=FALSE)
performANOVA

Description

Test association between module expression to traits using ANOVA

Usage

performANOVA(datExpr, design, testCondition, refCondition, alphaLevel = 0.05)

Arguments

datExpr expression data.frame
design the sampleTable
testCondition test column in sampleTable
refCondition reference column in sampleTable
alphaLevel the significance level

Value

a data.frame with p-values for each association

preservationComparisonPlot

Description

A plotting function that draws a scatterplot of preservation scores between two WGCNA objects

Usage

preservationComparisonPlot(
    preservationList,
    dataset1,
    dataset2,
    alphaLevel = 0.05,
    outliers = FALSE
)
preservationComparisons

Arguments

- `preservationList`: a list resulting from a call to preservationComparisons
- `dataset1`: an object of class WGCNAobject to compare with `dataset2`
- `dataset2`: an object of class WGCNAobject to compare with `dataset1`
- `alphaLevel`: alpha level of significance, default is 0.05
- `outliers`: leave outlier modules? By default these are removed

Value

- a ggplot object

Author(s)

Dario Tommasini

Examples

```r
library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdata"))
astrocyte_networks = eh_query[["EH8222"]]
results = list()
results$preservation=iterate(astrocyte_networks[c("EAE", "WT")],
preservationComparisons,
write=FALSE,
plot=FALSE,
nPermutations=2)
preservationComparisonPlot(results$preservation$EAE_vs_WT,
astrocyte_networks$EAE,
astrocyte_networks$WT)
```

Description

A high level function that performs a preservation comparison between two WGCNAobjects in a WGCNAlist, usually supplied by iterate function
preservationComparisons

Usage

    preservationComparisons(
        comparisonList,
        WGCNAlist,
        first,
        second,
        element,
        plot = FALSE,
        write = FALSE,
        alphaLevel = 0.05,
        nPermutations = 100
    )

Arguments

    comparisonList  a list passed by the iterate function
    WGCNAlist       list of objects of type WGCNAobject
    first           index of first WGCNAobject
    second          index of second WGCNAobject
    element         element position in the comparison list (passed by iterate function)
    plot            generate plots?
    write           write results to file?
    alphaLevel      alpha level of significance for module-trait correlation
    nPermutations   number of permutations, defaults to 100

Value

    a list of preservation comparisons results across levels 1, 2, 3

Author(s)

    Dario Tommasini

Examples

    library(ExperimentHub)
    eh = ExperimentHub()
    eh_query = query(eh, c("multiWGCNAdata"))
    astrocyte_networks = eh_query[["EH8222"]]
    results = list()
    iterate(astrocyte_networks[c("EAE", "WT")],
        preservationComparisons,
        write=FALSE,
        plot=FALSE,
        nPermutations=2)
runDME

Run differential module expression

Description

A wrapper to run diffModuleExpression on all the modules in a network

Usage

runDME(
  WGCNAobject,
  design,
  alphaLevel = 0.05,
  testCondition = NULL,
  refCondition = NULL,
  p.adjust = "fdr",
  plot = FALSE,
  test = c("ANOVA", "PERMANOVA"),
  write = FALSE,
  out = NULL
)

Arguments

WGCNAobject object of class WGCNA with the modules to run DME on
design the sampleTable
alphaLevel level of significance
testCondition the column of the sampleTable to be resolved
refCondition the column of the sampleTable to be used as biological variation
p.adjust adjust for multiple comparisons, argument to pass to p.adjust function
plot generate a plot?
test statistical test to perform, either "ANOVA" or "PERMANOVA"
write write results to a file?
out file name for DME plots, only used if write is TRUE

Value

a data.frame summarizing the results of the analysis

Author(s)

Dario Tommasini
summarizeResults

**Examples**

```r
library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdata"))
astrocyte_se = eh_query[["EH8223"]]
sampleTable = colData(astrocyte_se)
astrocyte_networks = eh_query[["EH8222"]]
runDME(astrocyte_networks[["combined"]],
design = sampleTable,
p.adjust = "fdr",
refCondition = "Region",
testCondition = "Disease")
```

**summarizeResults**: Summarize results from a results list object

**Description**

Prints (or writes) a summary of the results from a results list object

**Usage**

```r
summarizeResults(
 myNetworks, # a list of WGCNA objects
 results, # results list
 alphaLevel = 0.05, # alpha level of significance
 write = FALSE, # write to file?
 outputFile = "results.txt" # name of output file, defaults to results.txt
)
```

**Arguments**

- `myNetworks`: a list of WGCNA objects
- `results`: results list
- `alphaLevel`: alpha level of significance
- `write`: write to file?
- `outputFile`: name of output file, defaults to results.txt

**Value**

prints a summary of results from the multiWGCNA analysis
topNGenes  topNGenes: Top N genes of a module

Description

Returns the top N number of genes of a module. All genes returned if no number is specified. Genes are in order of intramodular connectivity.

Usage

topNGenes(WGCNAobject, module, nGenes = NULL)

Arguments

WGCNAobject  an object of class WGCNA
module       the name of the module in WGCNAobject
nGenes       an integer from 1 to module size; returns all genes if left NULL

Value

a character vector of the genes/probes in the module

Examples

library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdataset"))
astrocyte_networks = eh_query[['EH8222']]
topNGenes(astrocyte_networks$EAE, "EAE_015", nGenes = 10)

WGCNA-class  The WGCNA Class

Description

The WGCNA class is the main class used in multiWGCNA to store results from a weighted gene co-expression network analysis. These include the original unaltered expression data used as input, connectivity metrics, module assignment, input sample conditions, trait

Value

NA
**Slots**

- `datExpr` The expression data, connectivity data, and module assignment
- `conditions` A data.frame with integer conditions for WGCNA
- `trait` A data.frame showing pearson correlation values to traits
- `moduleEigengenes` A data.frame of module eigengenes for each module across samples
- `outlierModules` A vector of modules classified by our algorithm as being driven by sample outliers
Index

* internal
  multiWGCNA-package, 2
bidirectionalBestMatches, 3
cleanDatExpr, 4
coopressionLineGraph, 4
computeOverlapsFromWGCNA, 5
constructNetworks, 6
diffCoexpression, 7
diffModuleExpression, 9
drawMultiWGCNAnetwork, 10
GetDatExpr, 11
getPreservation, 12
iterate, 13
makeTraitTable, 13
moduleComparisonPlot, 14
moduleExpressionPlot, 15
moduleToModuleHeatmap, 16
multiWGCNA (multiWGCNA-package), 2
multiWGCNA-package, 2
name, 17
overlapComparisons, 17
performANOVA, 19
preservationComparisonPlot, 19
preservationComparisons, 20
runDME, 22
summarizeResults, 23
topNGenes, 24
WGCNA-class, 24