Package ‘multiWGCNA’

May 11, 2024

Type Package
Title multiWGCNA
Version 1.2.0
Description An R package for deeping mining gene co-expression networks in multi-trait expression data. Provides functions for analyzing, comparing, and visualizing WGCNA networks across conditions. multiWGCNA was designed to handle the common case where there are multiple biologically meaningful sample traits, such as disease vs wildtype across development or anatomical region.
License GPL-3
Encoding UTF-8
LazyData true
Suggests BiocStyle, doParallel, ExperimentHub, knitr, markdown, rmarkdown, testthat (>= 3.0.0), vegan
VignetteBuilder knitr
RoxygenNote 7.2.3
biocViews Sequencing, RNASeq, GeneExpression, DifferentialExpression, Regression, Clustering
Imports stringr, readr, WGCNA, dplyr, reshape2, data.table, patchwork, scales, igraph, flashClust, ggplot2, dcanr, cowplot, ggrepel, methods, SummarizedExperiment
Depends R (>= 4.3.0), ggalluvial
Config/testthat/edition 3
git_url https://git.bioconductor.org/packages/multiWGCNA
git_branch RELEASE_3_19
git_last_commit 05efc0a
git_last_commit_date 2024-04-30
Repository Bioconductor 3.19
Date/Publication 2024-05-10
multiWGCNA-package

Author Dario Tommasini [aut, cre] (<https://orcid.org/0000-0002-1214-6547>),
 Brent Fogel [aut, ctb]

Maintainer Dario Tommasini <dtommasini@gmail.com>

Contents

multiWGCNA-package .. 2
bidirectionalBestMatches ... 3
cleanDatExpr ... 4
coeexpressionLineGraph ... 4
computeOverlapsFromWGCNA .. 5
constructNetworks ... 6
diffCoexpression .. 7
diffModuleExpression ... 9
drawMultiWGCNAnetwork ... 10
GetDatExpr .. 11
getPreservation ... 12
iterate ... 13
makeTraitTable .. 13
moduleComparisonPlot ... 14
moduleExpressionPlot ... 15
moduleToModuleHeatmap ... 16
name ... 17
overlapComparisons .. 17
performANOVA ... 19
permutationTestResults ... 19
preservationComparisonPlot .. 20
preservationComparisons .. 21
PreservationPermutationTest .. 22
PreservationScoreDistribution 23
runDME ... 24
summarizeResults .. 25
topNGenes .. 26
WGCNA-class .. 27

Index ... 28

Description

An R package for deeping mining gene co-expression networks in multi-trait expression data. Provides functions for analyzing, comparing, and visualizing WGCNA networks across conditions. multiWGCNA was designed to handle the common case where there are multiple biologically meaningful sample traits, such as disease vs wildtype across development or anatomical region.
bidirectionalBestMatches

Author(s)

Maintainer: Dario Tommasini <dtommasini0@gmail.com> (ORCID)

Authors:

- Brent Fogel [contributor]

Description

Find all the modules from dataset1 that have a best match to a module in dataset2 if that module in dataset2 is also a best match to the module in dataset1.

Usage

```r
bidirectionalBestMatches(comparisonList, plot = TRUE)
```

Arguments

- `comparisonList` a list with an element "overlap", which is a data.frame resulting from a call to `computeOverlapsFromWGCNA`
- `plot` whether to generate a heatmap; default is TRUE

Value

A ggplot object

Author(s)

Dario Tommasini

Examples

```r
library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdata"))
astrocyte_networks = eh_query[["EH8222"]]
comparisonList = list()
comparisonList$overlaps = computeOverlapsFromWGCNA(astrocyte_networks$EAE, astrocyte_networks$WT)
bidirectionalBestMatches(comparisonList)
```
cleanDatExpr

Description
A function that converts a data.frame where row 1 is gene symbols to a numeric matrix where columns are genes and rows are samples for compatibility with most WGCNA functions.

Usage
```
cleanDatExpr(datExpr, checkGenesSamples = FALSE)
```

Arguments
- `datExpr`: a data.frame were columns are samples and rows are samples and the gene symbols are in the first row
- `checkGenesSamples`: call the WGCNA function checkGenesSamples?

Value
Returns a datExpr with rows as samples and columns as genes

Author(s)
Dario Tommasini

Examples
```
library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdata"))
astrocyte_se = eh_query[['EH8223']]
datExpr = data.frame(X = rownames(assays(astrocyte_se)[[1]]), assays(astrocyte_se)[[1]])
cleanDatExpr(datExpr)
```

coaexpressionLineGraph Coexpression Line Graph

Description
Plots a line graph showing the co-expression of selected genes across samples

Usage
```
coexpressionLineGraph(datExpr, splitBy = 1, fontSize = 2.15, colors = NULL)
```
computeOverlapsFromWGCNA

Arguments

datExpr a data.frame with genes as rows and samples as columns
splitBy how much to split genes by on line graph
fontSize the font size of the gene labels
colors a vector of colors; default is random colors generated by colors function

Value

a ggplot object

Author(s)

Dario Tommasini

Examples

library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdataset"))
astrocyte_networks = eh_query[["EH8222"]]
datExpr = GetDatExpr(astrocyte_networks[[1]],
 genes = topNGenes(astrocyte_networks$EAE, "EAE_015", 20))
coexpressionLineGraph(datExpr) +
 geom_vline(xintercept = 20.5, linetype='dashed')

computeOverlapsFromWGCNA

describeOverlapsFromWGCNA

Description

Computes overlap between the modules of two objects of class WGCNA

Usage

computeOverlapsFromWGCNA(dataset1, dataset2)

Arguments

dataset1 an object of class WGCNA to compare with dataset2
dataset2 an object of class WGCNA to compare with dataset1

Value

Returns a data.frame showing the overlap results for modules from dataset1 with dataset2
constructNetworks

Author(s)

Dario Tommasini

Examples

```r
class('library')(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdata"))
astrocyte_networks = eh_query[['EH8222']]
computeOverlapsFromWGCNA(astrocyte_networks$EAE, astrocyte_networks$WT)
```

Description

A high level function that returns all networks possible for a given experimental design

Usage

```r
constructNetworks(
  datExpr,
  sampleTable,
  conditions1,
  conditions2,
  write = FALSE,
  alphaLevel = 0.05,
  plot = FALSE,
  ...
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>datExpr</td>
<td>either a SummarizedExperiment object or data.frame with genes are rows and</td>
</tr>
<tr>
<td></td>
<td>samples as columns</td>
</tr>
<tr>
<td>sampleTable</td>
<td>data.frame with sample names in first column and sample traits in the second</td>
</tr>
<tr>
<td></td>
<td>and third column. First column should be called "Sample"</td>
</tr>
<tr>
<td>conditions1</td>
<td>first design conditions, ie healthy/disease</td>
</tr>
<tr>
<td>conditions2</td>
<td>second design conditions, ie frontal lobe/temporal lobe</td>
</tr>
<tr>
<td>write</td>
<td>write results out to files?</td>
</tr>
<tr>
<td>alphaLevel</td>
<td>significance value passed to findBestTrait function, default is 0.05</td>
</tr>
<tr>
<td>plot</td>
<td>plot modules? Default is false</td>
</tr>
<tr>
<td>...</td>
<td>Arguments to pass to blockwiseModules function</td>
</tr>
</tbody>
</table>
Value

A list of WGCNA objects, i.e., level one, two, and three networks.

Author(s)

Dario Tommasini

Examples

```r
library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdataset"))
autism_se = eh_query[["EH8219"]]
set.seed(1)
autism_se = autism_se[sample(rownames(autism_se), 500),]
sampleTable = colData(autism_se)
conditions1 = unique(sampleTable[,2])
conditions2 = unique(sampleTable[,3])
autism_networks = constructNetworks(autism_se, sampleTable, conditions1[[1]], conditions2[[1]],
networkType = "signed", TOMType = "unsigned",
power = 10, minModuleSize = 100, maxBlockSize = 25000,
reassignThreshold = 0, minKMEtoStay = 0, mergeCutHeight = 0,
numericLabels = TRUE, pamRespectsDendro = FALSE,
depthSplit = 4, verbose = 3)
autism_networks[["combined"]]
```

diffCoexpression
Differential co-expression analysis

Description

Performs a differential co-expression analysis given an expression data.frame and a conditions vector.

Usage

```r
diffCoexpression(
  datExpr,
  conditions,
  geneList = NULL,
  plot = FALSE,
  method = c("pearson", "spearman"),
  removeFreeNodes = TRUE,
  labelSize = 0.5,
  labelDist = 0,
  shape = "circle",
  degreeForSize = FALSE,
)```

label = FALSE,
onlyPositive = FALSE,
z.threshold = NULL,
FDR.threshold = 0.05,
nodeSize = 3
)

Arguments

datExpr  a data.frame containing expression values
conditions a vector containing conditions for the samples
geneList vector of genes, will use all genes if NULL (default)
plot plot a network?
method either "pearson" or "spearman"
removeFreeNodes remove free nodes from network?
labelSize label size
labelDist distance from labels to nodes
shape shape of nodes
degreeForSize should node size correspond to degree?
label label nodes?
onlyPositive only draw positive correlations?
z.threshold z-score threshold
FDR.threshold FDR threshold
nodeSize size of node

Value

A list including a matrix of z-scores, a matrix of raw p-values, a matrix of adjusted p-values, and a summary data.frame

Author(s)

Dario Tommasini

Examples

library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdata"))
astrocyte_se = eh_query[["EH8223"]]
datExpr = assays(astrocyte_se)[[1]]
diffCoexpression(datExpr, c(rep(1,20), rep(2,16)),
"Cxcl10", "Hspb1", "Timp1", "S1pr3", "Stearp4", "Lcn2"))
**diffModuleExpression**  
* Differential module expression

**Description**

Runs (and plots) the differential module expression analysis

**Usage**

```r
diffModuleExpression(
 WGCNAobject,
 geneList,
 design,
 plotTitle = NULL,
 mode = c("PC1", "Zscore"),
 testColumn = 2,
 refColumn = 3,
 test = c("ANOVA", "PERMANOVA"),
 plot = TRUE
)
```

**Arguments**

- `WGCNAobject`  
  WGCNA object

- `geneList`  
  vector of genes in WGCNAobject

- `design`  
  the sampleTable

- `plotTitle`  
  title for the plot

- `mode`  
  either PC1 or Zscore, default is PC1

- `testColumn`  
  the column of the sampleTable to be resolved

- `refColumn`  
  the column of the sampleTable to be used as biological variation

- `test`  
  statistical test to perform, either "ANOVA" or "PERMANOVA"

- `plot`  
  generate a plot?

**Value**

a data.frame with the resulting p-values

**Examples**

```r
library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdata"))
astrocyte_se = eh_query[["EH8223"]]
sampleTable = colData(astrocyte_se)
astrocyte_networks = eh_query[["EH8222"]]
```
drawMultiWGCNAnetwork

Draw a network where nodes are modules and edges represent significant gene overlap. Modules are sorted by levels 1, 2, and 3.

Usage

drawMultiWGCNAnetwork(
  WGCNAlist,
  comparisonList,
  moduleOfInterest,
  design,
  overlapCutoff = 0,
  padjCutoff = 1,
  removeOutliers = TRUE,
  alpha = 1e-50,
  layout = NULL,
  hjust = 0.4,
  vjust = 0.3,
  width = 0.5,
  colors = NULL
)

Arguments

WGCNAlist list of WGCNA objects
comparisonList the list of overlap comparisons ie from iterate(myNetworks, overlapCompar-
isons, ...)
moduleOfInterest module of interest, ie "combined_001"
design the sampleTable design matrix
overlapCutoff cutoff to remove module correspondences with less than this number of genes
padjCutoff cutoff to remove module correspondences above this significance value
removeOutliers remove outlier modules?
alpha alpha level of significance
### GetDatExpr

Returns the expression data frame a WGCNA object as a data.frame

#### Description

Returns the expression data frame a WGCNA object as a data.frame

#### Usage

\[ \text{GetDatExpr(object, genes = NULL)} \]

#### Arguments

- **object**: An object of class WGCNA
- **genes**: a list of genes to subset to; default is NULL
getPreservation

Value

a data.frame

Author(s)

Dario Tommasini

Examples

library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdata"))
astrocyte_networks = eh_query[["EH8222"]]
datExpr = GetDatExpr(astrocyte_networks[[1]],
genesis = topNGenes(astrocyte_networks$EAE, "EAE_015", 20))
coexpressionLineGraph(datExpr) +
geom_vline(xintercept = 20.5, linetype='dashed')

getPreservation

description

Performs a network preservation analysis

Usage

getPreservation(reference, test, nPermutations = 100, write = FALSE)

Arguments

reference reference network of class WGCNA
test test network of class WGCNA
nPermutations number of permutations to perform; at least 50 permutations
write write to file?

Value

a data.frame summarizing results of preservation analysis

Author(s)

Dario Tommasini
iterate

iterate: Iterate function across networks

Description

A high level function that iterates functions across a list of WGCNA objects

Usage

iterate(WGCNAlist, FUN, ...)

Arguments

- **WGCNAlist**: a vector of objects of type WGCNAobject
- **FUN**: function to iterate, either overlapComparisons or preservationComparisons
- **...**: arguments to be passed on to overlapComparisons or preservationComparisons

Value

a comparison list from overlapComparisons or preservationComparisons

Author(s)

Dario Tommasini

Examples

```r
library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdata"))
astrocyte_networks = eh_query[["EH8222"]]
results = list()
iterate(astrocyte_networks, overlapComparisons, plot=FALSE)
```
moduleComparisonPlot

Arguments

inputTable  the sampleTable data.frame

column      the column from the sampleTable to use as traits

detectNumbers whether to consider traits with numbers as numerical rather than categorical variables

Value

a data.frame with integer values denoting the categorical sample traits

Examples

sampleTable = data.frame(Sample = c(paste0("EAE", 1:10), paste0("WT", 1:10)),
                        Disease = c(rep("EAE", 10), rep("WT", 10)),
                        Region = c(rep(c("Cbl", "Sc"), 5)))
makeTraitTable(sampleTable, 2)

moduleComparisonPlot  Module comparison plot

Description

A plotting function that returns a heatmap and barplot for a module

Usage

moduleComparisonPlot(overlapDf, dataset1, dataset2)

Arguments

overlapDf  a data.frame resulting from a call to computeOverlapsFromWGCNA

dataset1   an object of class WGCNA to compare with dataset2

dataset2   an object of class WGCNA to compare with dataset1

Value

Returns a ggplot object (flowplot and heatmap) showing the module correspondence between two objects of class WGCNA

Author(s)

Dario Tommasini
moduleExpressionPlot

Examples

```r
library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdata"))
astrocyte_networks = eh_query[["EH8222"]]
overlapDf = computeOverlapsFromWGCNA(astrocyte_networks$EAE, astrocyte_networks$WT)
moduleComparisonPlot(overlapDf, astrocyte_networks$EAE, astrocyte_networks$WT)
```

---

moduleExpressionPlot  *Plots an expression profile for a module*

Description

A plotting function that returns a heatmap and barplot for a module

Usage

```r
moduleExpressionPlot(
 WGCNAobject,
 geneList,
 mode = c("PC1", "averageZscore"),
 legend = FALSE,
 title = NULL,
 clusterGenes = FALSE
)
```

Arguments

- `WGCNAobject`: an object of class WGCNAobject
- `geneList`: a vector of gene names to be extracted from WGCNAobject
- `mode`: use first principal component or averageZscore?
- `legend`: plot legend?
- `title`: title of the plot
- `clusterGenes`: cluster heatmap genes by hierarchical clustering?

Value

a patchworked ggplot object

Author(s)

Dario Tommasini
Examples

```r
library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdata"))
astrocyte_networks = eh_query[["EH8222"]]
moduleExpressionPlot(astrocyte_networks[["combined"]],
genelist = topNGenes(astrocyte_networks$combined, "combined_013"))
```

moduleToModuleHeatmap  Module to module heatmap

Description

Returns a heatmap where color corresponds to FDR-adjusted overlap (hypergeometric test) and the label corresponds to the number of overlapping genes.

Usage

```r
moduleToModuleHeatmap(
 comparisonDf,
 dataset1 = NULL,
 dataset2 = NULL,
 trait1 = NULL,
 trait2 = NULL,
 list1 = NULL,
 list2 = NULL,
 filterByTrait = FALSE,
 alphaLevel = 0.05
)
```

Arguments

- `comparisonDf`: the data.frame output of computeOverlapFromWGCNA
- `dataset1`: optional; WGCNA object for dataset 1
- `dataset2`: optional; WGCNA object for dataset 2
- `trait1`: optional; subset to modules correlated to this trait for dataset 1
- `trait2`: optional; subset to modules correlated to this trait for dataset 2
- `list1`: subset to this list of modules for dataset 1
- `list2`: subset to this list of modules for dataset 2
- `filterByTrait`: only plot for modules that correlate with some trait?
- `alphaLevel`: the alpha level of significance for module-trait correlation, defaults to 0.05

Value

A ggplot object
Examples

```r
library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdata"))
astrocyte_networks = eh_query[["EH8222"]]
overlapDf = computeOverlapsFromWGCNA(astrocyte_networks$EAE, astrocyte_networks$WT)
moduleToModuleHeatmap(overlapDf)
```

---

**name**

**name: Name of WGCNAobject**

---

**Description**

- Returns the name of a WGCNA object.

**Usage**

```r
name(WGCNAobject)
```

**Arguments**

- **WGCNAobject**: an object of class WGCNA

**Value**

- Returns the name of the WGCNA object, i.e., "EAE" for `astrocyte_networks$EAE`.

**Examples**

```r
library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdata"))
astrocyte_networks = eh_query[["EH8222"]]
name(astrocyte_networks$EAE)
```

---

**overlapComparisons**

**Overlap comparisons**

---

**Description**

- Compares modules between two objects of type WGCNA objects within a WGCNA object list given the indices. Recommended to be used in conjunction with the `iterate` function.
Usage

overlapComparisons(
    comparisonList,
    WGCNAlist,
    first,
    second,
    element,
    plot = TRUE,
    write = FALSE
)

Arguments

comparisonList a list passed by the iterate function
WGCNAlist list of objects of class WGCNA
first index of first WGCNA object
second index of second WGCNA object
element element position in the comparison list (passed by iterate function)
plot generate plots?
write write results to file?

Value

A list, in which the first element is a data.frame showing the overlap results and the second element is a data.frame showing the best matching modules between the two WGCNA objects.

Author(s)

Dario Tommasini

Examples

library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdata"))
astrocyte_networks = eh_query[["EH8222"]]
results = list()
results$overlaps = iterate(astrocyte_networks, overlapComparisons, plot=FALSE)
**performANOVA**  
*Perform ANOVA*

---

**Description**

Test association between module expression to traits using ANOVA

**Usage**

`performANOVA(datExpr, design, testCondition, refCondition, alphaLevel = 0.05)`

**Arguments**

- `datExpr`: expression data.frame
- `design`: the sampleTable
- `testCondition`: test column in sampleTable
- `refCondition`: reference column in sampleTable
- `alphaLevel`: the significance level

**Value**

a data.frame with p-values for each association

---

**permutationTestResults**  
*Permutation test results*

---

**Description**

The results of running the PreservationPermutationTest in the astrocyte vignette. This is provided since this function is quite slow. Please see the astrocyte vignette for more details.

**Usage**

`data(permutationTestResults)`

**Format**

A list of data.frames containing preservation results for each permutation
preservationComparisonPlot

Preservation Comparison Scatterplot

Description

A plotting function that draws a scatterplot of preservation scores between two WGCNA objects

Usage

preservationComparisonPlot(
  preservationList,  
  dataset1, 
  dataset2, 
  alphaLevel = 0.05, 
  outliers = FALSE 
)

Arguments

  preservationList
    a list resulting from a call to preservationComparisons
  dataset1
    an object of class WGCNAobject to compare with dataset2
  dataset2
    an object of class WGCNAobject to compare with dataset1
  alphaLevel
    alpha level of significance, default is 0.05
  outliers
    leave outlier modules? By default these are removed

Value

  a ggplot object

Author(s)

  Dario Tommasini

Examples

library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdata"))
astrocyte_networks = eh_query[["EH8222"]]
results = list()
results$preservation=iterate(astrocyte_networks[c("EAE", "WT")],
  preservationComparisons, 
  write=FALSE, 
  plot=FALSE, 
nPermutations=2)

preservationComparisons

preservationComparisonPlot(results$preservation$EAE_vs_WT, astrocyte_networks$EAE, astrocyte_networks$WT)

preservationComparisons

Preservation comparisons

Description
A high level function that performs a perservation comparison between two WGCNA objects in a WGCNA list, usually supplied by iterate function

Usage
preservationComparisons(
  comparisonList,  # a list passed by the iterate function
  WGCNAlist,      # list of objects of type WGCNA object
  first,          # index of first WGCNA object
  second,         # index of second WGCNA object
  element,        # element position in the comparison list (passed by iterate function)
  plot = FALSE,   # generate plots?
  write = FALSE,  # write results to file?
  alphaLevel = 0.05,  # alpha level of significance for module-trait correlation
  nPermutations = 100  # number of permutations, defaults to 100
)

Arguments
comparisonList a list passed by the iterate function
WGCNAlist list of objects of type WGCNA object
first index of first WGCNA object
second index of second WGCNA object
element element position in the comparison list (passed by iterate function)
plot generate plots?
write write results to file?
alphaLevel alpha level of significance for module-trait correlation
nPermutations number of permutations, defaults to 100

Value
a list of preservation comparisons results across levels 1, 2, 3
Author(s)

Dario Tommasini

Examples

```r
library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdata"))
astrocyte_networks = eh_query[["EH8222"]]
results = list()
iterate(astrocyte_networks[c("EAE", "WT")],
 preservationComparisons,
 write=FALSE,
 plot=FALSE,
 nPermutations=2)
```

Description

Performs a permutation test to determine if a null distribution of expected preservation scores for modules in this dataset if the labels were randomly assigned. Please look at the astrocyte vignette for more info.

Usage

```r
PreservationPermutationTest(
 referenceDatExpr,
 design,
 constructNetworksIn,
 testPreservationIn,
 nPermutations = 100,
 nPresPermutations = 100,
 ...
)
```

Arguments

- `referenceDatExpr` the combined datExpr
- `design` the sampleTable
- `constructNetworksIn` the condition to use for network construction, e.g. for the astrocyte data, this is "EAE"
testPreservationIn
the condition to use for testing preservation, e.g. for the astrocyte data, this was "WT"

nPermutations
the number of permutations to perform for permutation test

nPresPermutations
the number of permutations to perform in modulePreservation function

... arguments to pass to blockwiseModules function for network construction (should be the same as used for constructing the original network)

Value
A list of data.frames with preservation results for each permutation

Author(s)
Dario Tommasini

Examples
```r
Not run:
library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdata"))
astrocyte_networks = eh_query[["EH8222"]]
astrocyte_se = eh_query[["EH8223"]]
sampleTable = colData(astrocyte_se)
results = list()
results$permutation.test = PreservationPermutationTest(astrocyte_networks$combined$datExpr[sample(17000,3000),], sampleTable,
 constructNetworksIn = "EAE", # Construct networks using EAE samples
testPreservationIn = "WT", # Test preservation of disease samples in WT samples
nPermutations = 10, # Number of permutations for permutation test
nPresPermutations = 10, # Number of permutations for modulePreservation function
networkType = "signed", TOMType = "unsigned",
power = 12, minModuleSize = 100, maxBlockSize = 25000,
reassignThreshold = 0, minKMEtoStay = 0, mergeCutHeight = 0,
numericLabels = TRUE, pamRespectsDendro = FALSE,
deepSplit = 4, verbose = 3)

End(Not run)
```

Description
Extracts the preservation score distribution from the results of PreservationPermutationTest.
Usage

PreservationScoreDistribution(preservationData, moduleOfInterestSize)

Arguments

preservationData
the results from PreservationPermutationTest

moduleOfInterestSize
the number of genes in your module of interest

Value

A data.frame with Z-summary preservation scores of the module from each permutation and the corresponding module size

Author(s)

Dario Tommasini

Examples

# Remove outlier modules
permutationTestResultsFiltered = lapply(permutationTestResults, function(x) x[!x$is.outlier.module,])

# Find preservation score distribution for a given module size
scores.summary = PreservationScoreDistribution(permutationTestResultsFiltered, moduleOfInterestSize = 303)

runDME

Run differential module expression

Description

A wrapper to run diffModuleExpression on all the modules in a network

Usage

runDME(
    WGCNAobject,
    design,
    alphaLevel = 0.05,
    testCondition = NULL,
    refCondition = NULL,
    p.adjust = "fdr",
    plot = FALSE,
    test = c("ANOVA", "PERMANOVA"),
    write = FALSE,
    out = NULL
)

summarizeResults

Arguments

- **WGCNAobject**: object of class WGCNA with the modules to run DME on
- **design**: the sampleTable
- **alphaLevel**: level of significance
- **testCondition**: the column of the sampleTable to be resolved
- **refCondition**: the column of the sampleTable to be used as biological variation
- **p.adjust**: adjust for multiple comparisons, argument to pass to p.adjust function
- **plot**: generate a plot?
- **test**: statistical test to perform, either "ANOVA" or "PERMANOVA"
- **write**: write results to a file?
- **out**: file name for DME plots, only used if write is TRUE

Value

a data.frame summarizing the results of the analysis

Author(s)

Dario Tommasini

Examples

```r
library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdata"))
astrocyte_se = eh_query[["EH8223"]]
sampleTable = colData(astrocyte_se)
astrocyte_networks = eh_query[["EH8222"]]
runDME(astrocyte_networks[["combined"]],
 design = sampleTable,
 p.adjust = "fdr",
 refCondition = "Region",
 testCondition = "Disease")
```

---

summarizeResults: Summarize results from a results list object

Description

Prints (or writes) a summary of the results from a results list object.
Usage

```r
summarizeResults(
 myNetworks,
 results,
 alphaLevel = 0.05,
 write = FALSE,
 outputFile = "results.txt"
)
```

Arguments

- `myNetworks`: a list of WGCNA objects
- `results`: results list
- `alphaLevel`: alpha level of significance
- `write`: write to file?
- `outputFile`: name of output file, defaults to results.txt

Value

prints a summary of results from the multiWGCNA analysis

description

Returns the top N number of genes of a module. All genes returned if no number is specified. Genes are in order of intramodular connectivity.

Usage

```r
topNGenes(WGCNAobject, module, nGenes = NULL)
```

Arguments

- `WGCNAobject`: an object of class WGCNA
- `module`: the name of the module in WGCNA object
- `nGenes`: an integer from 1 to module size; returns all genes if left NULL

Value

a character vector of the genes/probes in the module
Examples

```r
library(ExperimentHub)
eh = ExperimentHub()
eh_query = query(eh, c("multiWGCNAdata"))
astrocyte_networks = eh_query[["EH8222"]]
topNGenes(astrocyte_networks$EAE, "EAE_015", nGenes = 10)
```

**WGCNA-class**  
*The WGCNA Class*

**Description**

The WGCNA class is the main class used in multiWGCNA to store results from a weighted gene co-expression network analysis. These include the original unaltered expression data used as input, connectivity metrics, module assignment, input sample conditions, trait

**Value**

NA

**Slots**

datExpr  The expression data, connectivity data, and module assignment
conditions  A data.frame with integer conditions for WGCNA
trait  A data.frame showing pearson correlation values to traits
moduleEigengenes  A data.frame of module eigengenes for each module across samples
outlierModules  A vector of modules classified by our algorithm as being driven by sample outliers
## Index

* **datasets**
  - permutationTestResults, 19

* **internal**
  - multiWGCNA-package, 2

bidirectionalBestMatches, 3

cleanDatExpr, 4
doexpressionLineGraph, 4
computeOverlapsFromWGCNA, 5
constructNetworks, 6

diffCoexpression, 7
diffModuleExpression, 9
drawMultiWGCNAnetwork, 10

GetDatExpr, 11
getPreservation, 12

iterate, 13

makeTraitTable, 13
moduleComparisonPlot, 14
moduleExpressionPlot, 15
moduleToModuleHeatmap, 16
multiWGCNA (multiWGCNA-package), 2

name, 17

overlapComparisons, 17

performANOVA, 19
permutationTestResults, 19
preservationComparisonPlot, 20
preservationComparisons, 21
PreservationPermutationTest, 22
PreservationScoreDistribution, 23

runDME, 24

summarizeResults, 25

topNGenes, 26

WGCNA-class, 27

WGCNA (multiWGCNA-package), 2