Package ‘netSmooth’

May 17, 2024

Type Package

Title Network smoothing for scRNAseq

Version 1.24.0

Description netSmooth is an R package for network smoothing of single cell RNA sequencing data. Using bio networks such as protein-protein interactions as priors for gene co-expression, netsmooth improves cell type identification from noisy, sparse scRNAseq data.

biocViews Network, GraphAndNetwork, SingleCell, RNASeq, GeneExpression, Sequencing, Transcriptomics, Normalization, Preprocessing, Clustering, DimensionReduction

URL https://github.com/BIMSBbioinfo/netSmooth

BugReports https://github.com/BIMSBbioinfo/netSmooth/issues

License GPL-3

Encoding UTF-8

LazyData true

Depends R (>= 3.5), scater (>= 1.15.11), clusterExperiment (>= 2.1.6)

Imports entropy, SummarizedExperiment, SingleCellExperiment, Matrix, cluster, data.table, stats, methods, DelayedArray, HDF5Array (>= 1.15.13)

Suggests knitr, testthat, Rtsne, biomaRt, igraph, STRINGdb, NMI, pheatmap, ggplot2, BiocStyle, rmarkdown, BiocParallel, uwot

VignetteBuilder knitr

RoxygenNote 7.0.2

git_url https://git.bioconductor.org/packages/netSmooth

git_branch RELEASE_3_19

git_last_commit 6323412

git_last_commit_date 2024-04-30

Repository Bioconductor 3.19

Date/Publication 2024-05-16
Author Jonathan Ronen [aut, cre],
 Altuna Akalin [aut]
Maintainer Jonathan Ronen <yablee@gmail.com>

Contents

calc2DEntropy .. 2
clusterExperimentWorkflow 3
clusterOne .. 4
dimReduce .. 4
human.ppi .. 5
l1NormalizeColumns 5
l1NormalizeRows 6
mouse.ppi .. 6
netSmooth.matrix-method 7
pickDimReduction.matrix-method 9
projectFromNetworkRecombine.matrix-method 10
projectOnNetwork.matrix-method 10
randomWalkByIterations 11
randomWalkByMatrixInv.matrix-method 12
randomWalkBySolve.matrix-method 12
robustClusters.SummarizedExperiment-method 13
scoreSmoothing 14
smallPPI ... 14
smallscRNAseq 15
smoothAndRecombine.matrix-method 15

Index 17

calc2DEntropy

Calculate entropy in 2D data

Description

Calculate entropy in 2D data

Usage

calc2DEntropy(x, numBins1 = 20, numBins2 = 20)

Arguments

x the 2D data to get entropy from
numBins1 the number of bins along the first dimension to discretize data into
numBins2 the number of bins along the second dimension to discretize data into
Value
The Shannon entropy in the 2D data x

clusterExperimentWorkflow

Performs clustering workflow using 'clusterExperiment' functions

Description
Performs clustering workflow using 'clusterExperiment' functions

Usage

```r
clusterExperimentWorkflow(
  se,
  dimReduceFlavor = c("pca", "tsne", "dm", "umap"),
  cluster.ks = 5:10,
  cluster.function = "pam",
  nVarDims = c(100, 500, 1000),
  makeConsensusProportion = 0.7,
  makeConsensusMinSize = 4,
  runMergeClusters = TRUE,
  is.counts = TRUE,
  random.seed = 1
)
```

Arguments

- **se** SummarizedExperiment object
- **dimReduceFlavor** algorithm for reduced dimension embedding step
- **cluster.ks** range of Ks to cluster over
- **cluster.function** clustering algorithm to use for all clusterings
- **nVarDims** numbers of variable genes to perform clusterings over
- **makeConsensusProportion** proportion of times samples need to be co-clustered for co-clustering step
- **makeConsensusMinSize** minimum cluster size
- **runMergeClusters** logical: merge similar clusters
- **is.counts** logical: is data counts
- **random.seed** passed to clusterExperiment. set to NULL in order to not set a random seed.

Value

cluster assignments
clusterOne
Run one clustering using kmeans o PAM

Description
Run one clustering using kmeans o PAM

Usage
clusterOne(x, algorithm = c("kmeans", "pam"), k = 5)

Value
kmeans or PAM cluster assignments

dimReduce
Get lower dimension embedding

Description
Get lower dimension embedding

Usage
dimReduce(
 x,
 flavor = c("pca", "tsne", "umap"),
 k = 2,
 is.counts = TRUE,
 ntop = 500
)

Arguments

 x
 flavor
 k
 is.counts
 ntop

Value
reduced dimensionality representation
human.ppi

Human Protein-Protein interaction graph

Description
An adjacency matrix of the 10 percent highest confidence interactions between human proteins on STRINGdb.

Usage
human.ppi

Format
A square matrix where A_ij=1 if gene i interacts with gene j

Details
See the script in `system.file(package="netSmooth", "data-raw", "make_ppi_from_string.R")` for full details of how this object was made.

Source
http://www.string-db.org/

l1NormalizeColumns
Column-normalize a sparse, symmetric matrix (using the l1 norm) so that each column sums to 1.

Description
Column-normalize a sparse, symmetric matrix (using the l1 norm) so that each column sums to 1.

Usage
l1NormalizeColumns(A)

Arguments
A
matrix

Value
column-normalized sparse matrix object
Description

Row-normalize a sparse, symmetric matrix (using the l1 norm) so that each row sums to 1.

Usage

```r
l1NormalizeRows(A)
```

Arguments

- `A` matrix

Value

row-normalized sparse matrix object

mouse.ppi
Mouse Protein-Protein interaction graph

Description

An adjacency matrix of the 10 percent highest confidence interactions between mouse proteins on STRINGdb.

Usage

```r
mouse.ppi
```

Format

A square matrix where A_ij=1 if gene i interacts with gene j

Details

See the script in `system.file(package="netSmooth", "data-raw", "make_ppi_from_string.R")` for full details of how this object was made.

Source

http://www.string-db.org/
Perform network smoothing of gene expression or other omics data

Usage

```r
## S4 method for signature 'matrix'
netSmooth(
x, 
adjMatrix, 
alpha = "auto", 
normalizeAdjMatrix = c("rows", "columns"), 
autoAlphaMethod = c("robustness", "entropy"), 
autoAlphaRange = 0.1 * (seq_len(9)), 
autoAlphaDimReduceFlavor = "auto", 
is.counts = TRUE, 
bpparam = BiocParallel::SerialParam(), 
...
)

## S4 method for signature 'SummarizedExperiment'
netSmooth(x, ...)

## S4 method for signature 'SingleCellExperiment'
netSmooth(x, ...)

## S4 method for signature 'Matrix'
netSmooth(
x, 
adjMatrix, 
alpha = "auto", 
normalizeAdjMatrix = c("rows", "columns"), 
autoAlphaMethod = c("robustness", "entropy"), 
autoAlphaRange = 0.1 * (seq_len(9)), 
autoAlphaDimReduceFlavor = "auto", 
is.counts = TRUE, 
bpparam = BiocParallel::SerialParam(), 
...
)

## S4 method for signature 'DelayedMatrix'
netSmooth(
x,
```
adjMatrix,
alpha = "auto",
normalizeAdjMatrix = c("rows", "columns"),
autoAlphaMethod = c("robustness", "entropy"),
autoAlphaRange = 0.1 * (seq_len(9)),
autoAlphaDimReduceFlavor = "auto",
is.counts = TRUE,
bpparam = BiocParallel::SerialParam(),
filepath = NULL,
...
)

Arguments

x matrix or SummarizedExperiment

adjMatrix adjacency matrix of gene network to use

alpha numeric in [0,1] or 'auto'. if 'auto', the optimal value for alpha will be automatically chosen among the values specified in 'autoAlphaRange', using the strategy specified in 'autoAlphaMethod'

normalizeAdjMatrix how to normalize the adjacency matrix possible values are 'rows' (in-degree) and 'columns' (out-degree)

autoAlphaMethod if 'robustness', pick alpha that gives the highest proportion of samples in robust clusters if 'entropy', pick alpha that gives highest Shannon entropy in 2D PCA embedding

autoAlphaRange if 'alpha='optimal'', search these values for the best alpha

autoAlphaDimReduceFlavor algorithm for dimensionality reduction that will be used to pick the optimal value for alpha. Either the 2D embedding to calculate the Shannon entropy for (if 'autoAlphaMethod='entropy''), or the dimensionality reduction algorithm to be used in robust clustering (if 'autoAlphaMethod='robustness'')

is.counts logical: is the assay count data

bpparam instance of bpparam, for parallel computation with the 'alpha='auto' option. See the BiocParallel manual.

... arguments passed on to 'robustClusters' if using the robustness criterion for optimizing alpha

filepath String: Path to location where hdf5 output file is supposed to be saved. Will be ignored when regular matrices or SummarizedExperiment are used as input.

Value

network-smoothed gene expression matrix or SummarizedExperiment object
Examples

```r
x <- matrix(rnbinom(12000, size=1, prob = .1), ncol=60)
rownames(x) <- paste0('gene', seq_len(dim(x)[1]))

adj_matrix <- matrix(as.numeric(rnorm(200*200)>.8), ncol=200)
rownames(adj_matrix) <- colnames(adj_matrix) <- paste0('gene', seq_len(dim(x)[1]))
x.smoothed <- netSmooth(x, adj_matrix, alpha=0.5)
```

Description

Pick the dimensionality reduction method for a dataset that gives the 2D embedding with the highest entropy

Usage

```r
## S4 method for signature 'matrix'
pickDimReduction(x, flavors = c("pca", "tsne", "umap"), is.counts = TRUE)

## S4 method for signature 'SummarizedExperiment'
pickDimReduction(x)

## S4 method for signature 'Matrix'
pickDimReduction(x, flavors = c("pca", "tsne", "umap"), is.counts = TRUE)

## S4 method for signature 'DelayedMatrix'
pickDimReduction(x, flavors = c("pca", "tsne", "umap"), is.counts = TRUE)
```

Arguments

- **x**: matrix or SummarizedExperiment object [GENES x SAMPLES]
- **flavors**: list of dimensionality reduction algorithms to try. Currently the options are "pca", "tsne" and "umap"
- **is.counts**: logical: is exprs count data

Value

name of dimensionality reduction method that gives the highest 2d entropy

Examples

```r
x <- matrix(rnbinom(60000, size=1, prob = .1), ncol=100)
pickDimReduction(x)
```
projectFromNetworkRecombine, matrix-method

Combine gene expression from smoothed space (that of the network) with the expression of genes that were not smoothed (not present in network)

Description

Combine gene expression from smoothed space (that of the network) with the expression of genes that were not smoothed (not present in network)

Usage

```r
## S4 method for signature 'matrix'
projectFromNetworkRecombine(original_expression, smoothed_expression)
```

Arguments

- `original_expression`: the non-smoothed expression
- `smoothed_expression`: the smoothed gene expression, in the space of the genes defined by the network
- `filepath`: String: Path to location where hdf5 output file is supposed to be saved. Will be ignored when regular matrices or SummarizedExperiment are used as input.

Value

A matrix in the dimensions of `original_expression`, where values that are present in `smoothed_expression` are copied from there.

projectOnNetwork, matrix-method

Project the gene expression matrix onto a lower space of the genes defined in the smoothing network

Description

Project the gene expression matrix onto a lower space of the genes defined in the smoothing network

Usage

```r
## S4 method for signature 'matrix'
projectOnNetwork(gene_expression, new_features, missing.value = 0)
```
randomWalkByIterations

Arguments

gene_expression gene expression matrix
new_features the genes in the network, on which to project the gene expression matrix
missing.value value to assign to genes that are in network, but missing from gene expression matrix

Value

the gene expression matrix projected onto the gene space defined by new_features

Description

Smooth data on graph by computing iterations

Usage

randomWalkByIterations(
 f0, adjMatrix, alpha,
 normalizeAdjMatrix = c("rows", "columns"), tol = 1e-06,
 max.iter = 100
)

Arguments

f0 initial data matrix [NxM]
adjMatrix adjacency matrix of graph to network smooth on will be column-normalized.
alpha smoothing coefficient (1 - restart probability of random walk)
tol the tolerance (stopping criterion)
max.iter the maximum number of iterations before terminating

Value

network-smoothed gene expression
randomWalkByMatrixInv, matrix-method

Smooth data on graph by computing the closed-form steady state distribution of the random walk with restarts process.

Description

The closed-form solution is given by \(f_{ss} = (1 - \alpha) \times (I - \alpha \times A)^{-1} \times f_0 \) and is computed by matrix inversion in this function.

Usage

```r
## S4 method for signature 'matrix'
randomWalkByMatrixInv(
f0,
adjMatrix,
alpha,
normalizeAdjMatrix = c("rows", "columns")
)
```

Arguments

- `f0`: initial data matrix [N x M]
- `adjMatrix`: adjacency matrix of graph to network smooth on will be column-normalized.
- `alpha`: smoothing coefficient (1 - restart probability of random walk)

Value

network-smoothed gene expression

randomWalkBySolve, matrix-method

Smooth data on graph by solving the linear equation \((I - \alpha \times A) \times E_{sm} = E \times (1 - \alpha)\)

Description

Smooth data on graph by solving the linear equation \((I - \alpha \times A) \times E_{sm} = E \times (1 - \alpha)\)

Usage

```r
## S4 method for signature 'matrix'
randomWalkBySolve(E, A, alpha, normalizeAdjMatrix = c("rows", "columns"))
```
Arguments

- **E**: initial data matrix [NxM]
- **A**: adjacency matrix of graph to network smooth on will be column-normalized.
- **alpha**: smoothing coefficient (1 - restart probability of random walk)

Value

network-smoothed gene expression

Description

Perform robust clustering on dataset, and calculate the proportion of samples in robust clusters

Usage

```r
## S4 method for signature 'SummarizedExperiment'
robustClusters(x, dimReduceFlavor = "auto", is.counts = TRUE, ...)

## S4 method for signature 'matrix'
robustClusters(x, ...)
```

Arguments

- **x**: matrix or SummarizedExperiment object
- **dimReduceFlavor**: algorithm for dimensionality reduction step of clustering procedure. May be 'pca', 'tsne', 'dm', 'umap' or 'auto', which uses shannon entropy to pick the algorithm.
- **is.counts**: logical: is the data counts
- **...**: arguments passed on to 'clusterExperimentWorkflow'

Value

list(clusters, proportion.robust)

Examples

```r
data("smallscRNAseq")
robustClusters(smallscRNAseq, dimReduceFlavor='pca')
```
scoreSmoothing

Calculate a score for a smoothing result, for picking the best alpha value

Description

Calculate a score for a smoothing result, for picking the best alpha value

Usage

scoreSmoothing(x, method = c("entropy", "robustness"), is.counts = TRUE, ...)

Arguments

x the network-smoothed expression matrix
method the scoring method. 'entropy' calculates shannon entropy in a 2D PCA of the data. 'robustness' performs robust clustering and reports the proportion of samples in robust clusters

Value

the score

smallPPI

A small human Protein-Protein interaction graph for use in examples.

Description

Contains a synthetic PPI of human genes.

Usage

smallPPI

Format

An object of class matrix with 611 rows and 611 columns.
smallscRNAseq

A small single cell RNA-seq dataset for use in examples.

Description

Contains scRNAseq profiles of human blastomeres.

Usage

smallscRNAseq

Format

SingleCellExperiment

Source

smoothAndRecombine, matrix-method

Perform network smoothing on network when the network genes and the experiment genes aren’t exactly the same.

Description

The gene network might be defined only on a subset of genes that are measured in any experiment. Further, an experiment might not measure all genes that are present in the network. This function projects the experiment data onto the gene space defined by the network prior to smoothing. Then, it projects the smoothed data back into the original dimensions.

Usage

S4 method for signature 'matrix'
smoothAndRecombine(
 gene_expression,
 adj_matrix,
 alpha,
 smoothing.function = randomWalkBySolve,
 normalizeAdjMatrix = c("rows", "columns")
)
Arguments

gene_expression
 gene expression data to be smoothed [N_genes x M_samples]

adj_matrix
 adjacency matrix of network to perform smoothing over. Will be column-normalized. Rownames and colnames should be genes.

alpha
 network smoothing parameter (1 - restart probability in random walk model.

smoothing.function
 must be a function that takes in data, adjacency matrix, and alpha. Will be used to perform the actual smoothing.

normalizeAdjMatrix
 which dimension (rows or columns) should the adjacency matrix be normalized by. rows corresponds to in-degree, columns to out-degree.

filepath
 String: Path to location where hdf5 output file is supposed to be saved. Will be ignored when regular matrices or SummarizedExperiment are used as input.

Value

matrix with network-smoothed gene expression data. Genes that are not present in smoothing network will retain original values.
Index

* datasets
 human.ppi, 5
 mouse.ppi, 6
 smallPPI, 14
 smallscRNAseq, 15

* internal
 calc2DEntropy, 2
 clusterExperimentWorkflow, 3
 clusterOne, 4
 dimReduce, 4
 l1NormalizeColumns, 5
 l1NormalizeRows, 6
 projectFromNetworkRecombine, matrix-method, 10
 projectOnNetwork, matrix-method, 10
 randomWalkByIterations, 11
 randomWalkByMatrixInv, matrix-method, 12
 randomWalkBySolve, matrix-method, 12
 scoreSmoothing, 14
 smoothAndRecombine, matrix-method, 15

 calc2DEntropy, 2
 clusterExperimentWorkflow, 3
 clusterOne, 4
 dimReduce, 4
 human.ppi, 5
 l1NormalizeColumns, 5
 l1NormalizeRows, 6
 mouse.ppi, 6
 netSmooth, matrix-method, 7
 netSmooth, DelayedMatrix-method
 (netSmooth, matrix-method), 7
 netSmooth, Matrix-method
 (netSmooth, matrix-method), 7
 netSmooth, SingleCellExperiment-method
 (netSmooth, matrix-method), 7
 netSmooth, SummarizedExperiment-method
 (netSmooth, matrix-method), 7
 pickDimReduction
 (pickDimReduction, matrix-method), 9
 pickDimReduction, DelayedMatrix-method
 (pickDimReduction, matrix-method), 9
 pickDimReduction, Matrix-method
 (pickDimReduction, matrix-method), 9
 pickDimReduction, matrix-method, 9
 pickDimReduction, SummarizedExperiment-method
 (pickDimReduction, matrix-method), 9
 projectFromNetworkRecombine, matrix-method, 10
 projectOnNetwork
 (projectOnNetwork, matrix-method), 10
 projectOnNetwork, matrix-method, 10
 randomWalkByIterations, 11
 randomWalkByMatrixInv, matrix-method, 12
 randomWalkBySolve, matrix-method, 12
 robustClusters
 (robustClusters, SummarizedExperiment-method), 13
 robustClusters, matrix-method
 (robustClusters, SummarizedExperiment-method), 13
 robustClusters, SummarizedExperiment-method, 13
scoreSmoothing, 14
smallPPI, 14
smallscRNAseq, 15
smoothAndRecombine, matrix-method, 15