Package ‘netSmooth’

May 30, 2024

Type Package
Title Network smoothing for scRNAseq
Version 1.24.0
Description netSmooth is an R package for network smoothing of single cell RNA sequencing data. Using bio networks such as protein-protein interactions as priors for gene co-expression, netsmooth improves cell type identification from noisy, sparse scRNAseq data.
biocViews Network, GraphAndNetwork, SingleCell, RNASeq, GeneExpression, Sequencing, Transcriptomics, Normalization, Preprocessing, Clustering, DimensionReduction
URL https://github.com/BIMSBbioinfo/netSmooth
BugReports https://github.com/BIMSBbioinfo/netSmooth/issues
License GPL-3
Encoding UTF-8
LazyData true
Depends R (>= 3.5), scater (>= 1.15.11), clusterExperiment (>= 2.1.6)
Imports entropy, SummarizedExperiment, SingleCellExperiment, Matrix, cluster, data.table, stats, methods, DelayedArray, HDF5Array (>= 1.15.13)
Suggests knitr, testthat, Rtsne, biomaRt, igraph, STRINGdb, NMI, pheatmap, ggplot2, BiocStyle, rmarkdown, BiocParallel, uwot
VignetteBuilder knitr
RoxygenNote 7.0.2
git_url https://git.bioconductor.org/packages/netSmooth
git_branch RELEASE_3_19
git_last_commit 6323412
git_last_commit_date 2024-04-30
Repository Bioconductor 3.19
Date/Publication 2024-05-29
calc2DEntropy

Calculate entropy in 2D data

Description

Calculate entropy in 2D data

Usage

calc2DEntropy(x, numBins1 = 20, numBins2 = 20)

Arguments

x the 2D data to get entropy from
numBins1 the number of bins along the first dimension to discretize data into
numBins2 the number of bins along the second dimension to discretize data into
clusterExperimentWorkflow

Value

The Shannon entropy in the 2D data x

clusterExperimentWorkflow

Performs clustering workflow using 'clusterExperiment' functions

Description

Performs clustering workflow using 'clusterExperiment' functions

Usage

```r
clusterExperimentWorkflow(
  se,
  dimReduceFlavor = c("pca", "tsne", "dm", "umap"),
  cluster.ks = 5:10,
  cluster.function = "pam",
  nVarDims = c(100, 500, 1000),
  makeConsensusProportion = 0.7,
  makeConsensusMinSize = 4,
  runMergeClusters = TRUE,
  is.counts = TRUE,
  random.seed = 1
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>se</code></td>
<td>SummarizedExperiment object</td>
</tr>
<tr>
<td><code>dimReduceFlavor</code></td>
<td>algorithm for reduced dimension embedding step</td>
</tr>
<tr>
<td><code>cluster.ks</code></td>
<td>range of Ks to cluster over</td>
</tr>
<tr>
<td><code>cluster.function</code></td>
<td>clustering algorithm to use for all clusterings</td>
</tr>
<tr>
<td><code>nVarDims</code></td>
<td>numbers of variable genes to perform clusterings over</td>
</tr>
<tr>
<td><code>makeConsensusProportion</code></td>
<td>proportion of times samples need to be co-clustered for co-clustering step</td>
</tr>
<tr>
<td><code>makeConsensusMinSize</code></td>
<td>minimum cluster size</td>
</tr>
<tr>
<td><code>runMergeClusters</code></td>
<td>logical: merge similar clusters</td>
</tr>
<tr>
<td><code>is.counts</code></td>
<td>logical: is data counts</td>
</tr>
<tr>
<td><code>random.seed</code></td>
<td>passed to clusterExperiment. set to NULL in order to not set a random seed.</td>
</tr>
</tbody>
</table>

Value

cluster assignments
clusterOne

Run one clustering using kmeans or PAM

Description

Run one clustering using kmeans or PAM

Usage

```r
clusterOne(x, algorithm = c("kmeans", "pam"), k = 5)
```

Value

kmeans or PAM cluster assignments

dimReduce

Get lower dimension embedding

Description

Get lower dimension embedding

Usage

```r
dimReduce(
  x,
  flavor = c("pca", "tsne", "umap"),
  k = 2,
  is.counts = TRUE,
  ntop = 500
)
```

Arguments

- `x` gene expression matrix [GENES x SAMPLES]
- `flavor` the algorithm to use to obtain the dimensionality reduction must be in c(‘pca’, ‘tsne’, ‘umap’)
- `k` the number of dimensions in the reduced dimension representation
- `is.counts` logical: is ‘x’ counts data
- `ntop` number of most variable genes to use for dimensionality reduction

Value

reduced dimensionality representation
human.ppi

Human Protein-Protein interaction graph

Description
An adjacency matrix of the 10 percent highest confidence interactions between human proteins on STRINGdb.

Usage
human.ppi

Format
A square matrix where A_ij=1 if gene i interacts with gene j

Details
See the script in `system.file(package="netSmooth", "data-raw", "make_ppi_from_string.R")` for full details of how this object was made.

Source
http://www.string-db.org/

l1NormalizeColumns

Column-normalize a sparse, symmetric matrix (using the l1 norm) so that each column sums to 1.

Description
Column-normalize a sparse, symmetric matrix (using the l1 norm) so that each column sums to 1.

Usage
l1NormalizeColumns(A)

Arguments
A matrix

Value
column-normalized sparse matrix object
\textbf{l1NormalizeRows} \hspace{2cm} \textit{Row-normalize a sparse, symmetric matrix (using the l1 norm) so that each row sums to 1.}

\textbf{Description}
Row-normalize a sparse, symmetric matrix (using the l1 norm) so that each row sums to 1.

\textbf{Usage}
\texttt{l1NormalizeRows(A)}

\textbf{Arguments}
\texttt{A} \hspace{1cm} \texttt{matrix}

\textbf{Value}
row-normalized sparse matrix object

\textbf{mouse.ppi} \hspace{2cm} \textit{Mouse Protein-Protein interaction graph}

\textbf{Description}
An adjacency matrix of the 10 percent highest confidence interactions between mouse proteins on STRINGdb.

\textbf{Usage}
mouse.ppi

\textbf{Format}
A square matrix where A_{ij}=1 if gene i interacts with gene j

\textbf{Details}
See the script in \texttt{system.file(package=\textasciitilde netSmooth\textasciitilde data-raw\textasciitilde make_ppi_from_string.R)} for full details of how this object was made.

\textbf{Source}
http://www.string-db.org/
netSmooth, matrix-method

Perform network smoothing of gene expression or other omics data

Description

Perform network smoothing of gene expression or other omics data

Usage

```r
## S4 method for signature 'matrix'
netSmooth(
x, adjMatrix, alpha = "auto",
normalizeAdjMatrix = c("rows", "columns"),
autoAlphaMethod = c("robustness", "entropy"),
autoAlphaRange = 0.1 * seq_len(9),
autoAlphaDimReduceFlavor = "auto",
is.counts = TRUE,
bpparam = BiocParallel::SerialParam(),
... )

## S4 method for signature 'SummarizedExperiment'
netSmooth(x, ...)

## S4 method for signature 'SingleCellExperiment'
netSmooth(x, ...)

## S4 method for signature 'Matrix'
netSmooth(
x, adjMatrix, alpha = "auto",
normalizeAdjMatrix = c("rows", "columns"),
autoAlphaMethod = c("robustness", "entropy"),
autoAlphaRange = 0.1 * seq_len(9),
autoAlphaDimReduceFlavor = "auto",
is.counts = TRUE,
bpparam = BiocParallel::SerialParam(),
... )

## S4 method for signature 'DelayedMatrix'
netSmooth(
x,
```
adjMatrix,
alpha = "auto",
normalizeAdjMatrix = c("rows", "columns"),
autoAlphaMethod = c("robustness", "entropy"),
autoAlphaRange = 0.1 * (seq_len(9)),
autoAlphaDimReduceFlavor = "auto",
is.counts = TRUE,
bpparam = BiocParallel::SerialParam(),
filepath = NULL,
...
)

Arguments

x matrix or SummarizedExperiment
adjMatrix adjacency matrix of gene network to use
alpha numeric in [0,1] or 'auto'. if 'auto', the optimal value for alpha will be automatically chosen among the values specified in 'autoAlphaRange', using the strategy specified in 'autoAlphaMethod'

normalizeAdjMatrix how to normalize the adjacency matrix possible values are 'rows' (in-degree) and 'columns' (out-degree)

autoAlphaMethod if 'robustness', pick alpha that gives the highest proportion of samples in robust clusters if 'entropy', pick alpha that gives highest Shannon entropy in 2D PCA embedding

autoAlphaRange if 'alpha='optimal'' search these values for the best alpha

autoAlphaDimReduceFlavor algorithm for dimensionality reduction that will be used to pick the optimal value for alpha. Either the 2D embedding to calculate the Shannon entropy for (if 'autoAlphaMethod='entropy''), or the dimensionality reduction algorithm to be used in robust clustering (if 'autoAlphamethod='robustness''

is.counts logical: is the assay count data

bpparam instance of bpparam, for parallel computation with the 'alpha='auto'' option. See the BiocParallel manual.

... arguments passed on to 'robustClusters' if using the robustness criterion for optimizing alpha

filepath String: Path to location where hdf5 output file is supposed to be saved. Will be ignored when regular matrices or SummarizedExperiment are used as input.

Value

network-smoothed gene expression matrix or SummarizedExperiment object
Examples

```r
x <- matrix(rnbinom(12000, size=1, prob = .1), ncol=60)
rownames(x) <- paste0('gene', seq_len(dim(x)[1]))

adj_matrix <- matrix(as.numeric(rnorm(200*200)>.8), ncol=200)
rownames(adj_matrix) <- colnames(adj_matrix) <- paste0('gene', seq_len(dim(x)[1]))
x.smoothed <- netSmooth(x, adj_matrix, alpha=0.5)
```

Description

Pick the dimensionality reduction method for a dataset that gives the 2D embedding with the highest entropy

Usage

```r
## S4 method for signature 'matrix'
pickDimReduction(x, flavors = c("pca", "tsne", "umap"), is.counts = TRUE)

## S4 method for signature 'SummarizedExperiment'
pickDimReduction(x)

## S4 method for signature 'Matrix'
pickDimReduction(x, flavors = c("pca", "tsne", "umap"), is.counts = TRUE)

## S4 method for signature 'DelayedMatrix'
pickDimReduction(x, flavors = c("pca", "tsne", "umap"), is.counts = TRUE)
```

Arguments

- `x`: matrix or SummarizedExperiment object [GENES x SAMPLES]
- `flavors`: list of dimensionality reduction algorithms to try. Currently the options are "pca", "tsne" and "umap"
- `is.counts`: logical: is exprs count data

Value

name of dimensionality reduction method that gives the highest 2d entropy

Examples

```r
x <- matrix(rnbinom(60000, size=1, prob = .1), ncol=100)
pickDimReduction(x)
```
projectFromNetworkRecombine, matrix-method

Combine gene expression from smoothed space (that of the network) with the expression of genes that were not smoothed (not present in network)

Description

Combine gene expression from smoothed space (that of the network) with the expression of genes that were not smoothed (not present in network)

Usage

S4 method for signature 'matrix'
projectFromNetworkRecombine(original_expression, smoothed_expression)

Arguments

original_expression
the non-smoothed expression

smoothed_expression
the smoothed gene expression, in the space of the genes defined by the network

filepath
String: Path to location where hdf5 output file is supposed to be saved. Will be ignored when regular matrices or SummarizedExperiment are used as input.

Value

a matrix in the dimensions of original_expression, where values that are present in smoothed_expression are copied from there.

projectOnNetwork, matrix-method

Project the gene expression matrix onto a lower space of the genes defined in the smoothing network

Description

Project the gene expression matrix onto a lower space of the genes defined in the smoothing network

Usage

S4 method for signature 'matrix'
projectOnNetwork(gene_expression, new_features, missing.value = 0)
randomWalkByIterations

Arguments

- gene_expression
 - gene expression matrix
- new_features
 - the genes in the network, on which to project the gene expression matrix
- missing.value
 - value to assign to genes that are in network, but missing from gene expression matrix

Value

- the gene expression matrix projected onto the gene space defined by new_features

Description

Smooth data on graph by computing iterations

Usage

```r
randomWalkByIterations(
  f0, adjMatrix, alpha,
  normalizeAdjMatrix = c("rows", "columns"),
  tol = 1e-06,
  max.iter = 100
)
```

Arguments

- f0
 - initial data matrix [NxM]
- adjMatrix
 - adjacency matrix of graph to network smooth on will be column-normalized.
- alpha
 - smoothing coefficient (1 - restart probability of random walk)
- tol
 - the tolerance (stopping criterion)
- max.iter
 - the maximum number of iterations before terminating

Value

- network-smoothed gene expression
randomWalkByMatrixInv, matrix-method

Smooth data on graph by computing the closed-form steady state distribution of the random walk with restarts process.

Description

The closed-form solution is given by \(f_{ss} = (1 - \alpha) \cdot (I - \alpha \cdot A)^{-1} \cdot f_0 \) and is computed by matrix inversion in this function.

Usage

```r
## S4 method for signature 'matrix'
randomWalkByMatrixInv(
  f0,
  adjMatrix,
  alpha,
  normalizeAdjMatrix = c("rows", "columns")
)
```

Arguments

- `f0` initial data matrix \([NxM]\)
- `adjMatrix` adjacency matrix of graph to network smooth on will be column-normalized.
- `alpha` smoothing coefficient \((1 - \text{restart probability of random walk})\)

Value

network-smoothed gene expression

randomWalkBySolve, matrix-method

Smooth data on graph by solving the linear equation \((I - \alpha A) \cdot E_{sm} = E \cdot (1-\alpha)\)

Description

Smooth data on graph by solving the linear equation \((I - \alpha A) \cdot E_{sm} = E \cdot (1-\alpha)\)

Usage

```r
## S4 method for signature 'matrix'
randomWalkBySolve(E, A, alpha, normalizeAdjMatrix = c("rows", "columns"))
```
Perform robust clustering on dataset, and calculate the proportion of samples in robust clusters

Usage

```r
## S4 method for signature 'SummarizedExperiment'
robustClusters(x, dimReduceFlavor = "auto", is.counts = TRUE, ...)

## S4 method for signature 'matrix'
robustClusters(x, ...)
```

Arguments

- `x` matrix or SummarizedExperiment object
- `dimReduceFlavor` algorithm for dimensionality reduction step of clustering procedure. May be 'pca', 'tsne', 'dm', 'umap' or 'auto', which uses shannon entropy to pick the algorithm.
- `is.counts` logical: is the data counts
- `...` arguments passed on to `clusterExperimentWorkflow`

Value

`list(clusters, proportion.robust)`

Examples

```r
data("smallscRNAseq")
robustClusters(smallscRNAseq, dimReduceFlavor='pca')
```
scoreSmoothing
Calculate a score for a smoothing result, for picking the best alpha value

Description

Calculate a score for a smoothing result, for picking the best alpha value

Usage

```r
scoreSmoothing(x, method = c("entropy", "robustness"), is.counts = TRUE, ...)
```

Arguments

- **x**: the network-smoothed expression matrix
- **method**: the scoring method. 'entropy' calculates shannon entropy in a 2D PCA of the data. 'robustness' performs robust clustering and reports the proportion of samples in robust clusters.

Value

the score

smallPPI

A small human Protein-Protein interaction graph for use in examples.

Description

Contains a synthetic PPI of human genes.

Usage

```r
smallPPI
```

Format

An object of class matrix with 611 rows and 611 columns.
Description

Contains scRNAseq profiles of human blastomeres.

Usage

smallscRNAseq

Format

SingleCellExperiment

Source

smoothAndRecombine, matrix-method

Perform network smoothing on network when the network genes and the experiment genes aren’t exactly the same.

Description

The gene network might be defined only on a subset of genes that are measured in any experiment. Further, an experiment might not measure all genes that are present in the network. This function projects the experiment data onto the gene space defined by the network prior to smoothing. Then, it projects the smoothed data back into the original dimensions.

Usage

S4 method for signature 'matrix'
smoothAndRecombine(
 gene_expression,
 adj_matrix,
 alpha,
 smoothing.function = randomWalkBySolve,
 normalizeAdjMatrix = c("rows", "columns")
)
smoothAndRecombine.matrix-method

Arguments

- **gene_expression**
 - gene expression data to be smoothed [N_genes x M_samples]
- **adj_matrix**
 - adjacency matrix of network to perform smoothing over. Will be column-normalized. Rownames and colnames should be genes.
- **alpha**
 - network smoothing parameter (1 - restart probability in random walk model)
- **smoothing.function**
 - must be a function that takes in data, adjacency matrix, and alpha. Will be used to perform the actual smoothing.
- **normalizeAdjMatrix**
 - which dimension (rows or columns) should the adjacency matrix be normalized by. rows corresponds to in-degree, columns to out-degree.
- **filepath**
 - String: Path to location where hdf5 output file is supposed to be saved. Will be ignored when regular matrices or SummarizedExperiment are used as input.

Value

matrix with network-smoothed gene expression data. Genes that are not present in smoothing network will retain original values.
Index

* datasets
 - human.ppi, 5
 - mouse.ppi, 6
 - smallPP1, 14
 - smallscRNAseq, 15

* internal
 - calc2DEntropy, 2
 - clusterExperimentWorkflow, 3
 - clusterOne, 4
 - dimReduce, 4
 - l1NormalizeColumns, 5
 - l1NormalizeRows, 6
 - projectFromNetworkRecombine, matrix-method, 10
 - projectOnNetwork, matrix-method, 10
 - randomWalkByIterations, 11
 - randomWalkByMatrixInv, matrix-method, 12
 - randomWalkBySolve, matrix-method, 12
 - scoreSmoothing, 14
 - smoothAndRecombine, matrix-method, 15

 - calc2DEntropy, 2
 - clusterExperimentWorkflow, 3
 - clusterOne, 4
 - dimReduce, 4
 - human.ppi, 5
 - l1NormalizeColumns, 5
 - l1NormalizeRows, 6
 - mouse.ppi, 6
 - netSmooth, matrix-method, 7
 - netSmooth, SingleCellExperiment-method, 7
 - netSmooth, SummarizedExperiment-method, 7
 - netSmooth, Matrix-method, 7
 - netSmooth, DelayedMatrix-method, 7
 - netSmooth, SummarizedExperiment-method, 7
 - netSmooth, Matrix-method, 7
 - pickDimReduction, matrix-method, 9
 - pickDimReduction, DelayedMatrix-method, 9
 - pickDimReduction, Matrix-method, 9
 - projectFromNetworkRecombine, matrix-method, 10
 - projectOnNetwork, matrix-method, 10
 - randomWalkByIterations, 11
 - randomWalkByMatrixInv, matrix-method, 12
 - randomWalkBySolve, matrix-method, 12
 - robustClusters, SummarizedExperiment-method, 13
 - robustClusters, matrix-method, 13
 - robustClusters, SummarizedExperiment-method, 13
 - robustClusters, SummarizedExperiment-method, 13
scoreSmoothing, 14
smallPPI, 14
smallscRNAseq, 15
smoothAndRecombine, matrix-method, 15