Package ‘orthogene’

March 12, 2024

Type Package
Title Interspecies gene mapping
Version 1.8.0

Description `orthogene` is an R package for easy mapping of orthologous genes across hundreds of species. It pulls up-to-date gene ortholog mappings across **700+ organisms**.
It also provides various utility functions to aggregate/expand common objects (e.g. data.frames, gene expression matrices, lists) using **1:1**, **many:1**, **1:many** or **many:many** gene mappings, both within- and between-species.

URL https://github.com/neurogenomics/orthogene

BugReports https://github.com/neurogenomics/orthogene/issues

License GPL-3

Depends R (>= 4.1)

VignetteBuilder knitr

biocViews Genetics, ComparativeGenomics, Preprocessing, Phylogenetics, Transcriptomics, GeneExpression

Imports dplyr, methods, stats, utils, Matrix, jsonlite, homologene, gprofiler2, babelgene, data.table, parallel, ggplot2, ggpubr, patchwork, DelayedArray, grr, repmis, ggtree, tools

Suggests rworkflows, remotes, knitr, BiocStyle, markdown, testthat (>= 3.0.0), piggyback, magick, GenomeInfoDbData, ape, phytools, rphylopic (>= 1.0.0), TreeTools, ggimage, OmaDB

RoxygenNote 7.2.3

Encoding UTF-8

Config/testthat/edition 3

Config/rcmdcheck/_R_CHECK_FORCE_SUGGESTS_ false

git_url https://git.bioconductor.org/packages/orthogene
git_branch RELEASE_3_18
git_last_commit 3af5900
R topics documented:

- orthogene-package
- add_synonyms
- aggregate_mapped_genes
- aggregate_rows
- aggregate_rows_monocle3
- all_genes
- all_genes_babelgene
- all_species
- check_gene_df_type
- convert_orthologs
- create_background
- dMcast
- earthworm2human_map
- exp_mouse
- exp_mouse_enst
- format_species
- get_orgdb_genomeinfodbdata
- get_silhouettes
- ggtree_plot
- gprofiler_namespace
- gprofiler_orgs
- infer_species
- infer_species_plot
- invert_dictionary
- many2many_rows
- map_genome
- map_genes
- map_genes_planosphere
- map_orthologs
- map_orthologs_babelgene
- map_orthologs_custom
- map_orthologs_gprofiler
- map_orthologs_homologene
- map_species
- message_parallel
- plot_benchmark_bar
- plot_benchmark_scatter
- plot_orthotree
- prepare_tree
orthogene-package

Description

orthogene is an R package for easy mapping of orthologous genes across hundreds of species.

Details

It pulls up-to-date interspecies gene ortholog mappings across 700+ organisms. It also provides various utility functions to map common objects (e.g. data.frames, gene expression matrices, lists) onto 1:1 gene orthologs from any other species.

Author(s)

Maintainer: Brian Schilder <brian_schilder@alumni.brown.edu> (ORCID)

Source

- GitHub: Source code and Issues submission.
- Author Site: orthogene was created by Brian M. Schilder.

See Also

Useful links:

- https://github.com/neurogenomics/orthogene
- Report bugs at https://github.com/neurogenomics/orthogene/issues
add_synonyms
Add gene synonyms

Description
Add gene synonyms back into gene_map data.frame.

Usage
```r
add_synonyms(gene_map, syn_map)
```

Details
gene_map is the output of `convert_orthologs`.

Value
gene_map data.frame

taggregate_mapped_genes

Aggregate/expand a gene matrix by gene mappings

Description
Aggregate/expand a gene matrix (gene_df) using a gene mapping data.frame (gene_map). Importantly, mappings can be performed across a variety of scenarios that can occur during within-species and between-species gene mapping:
- 1 gene : 1 gene
- many genes : 1 gene
- 1 gene : many genes
- many genes : many genes

For more details on how aggregation/expansion is performed, please see: `many2many_rows`.

Usage
```r
aggregate_mapped_genes(
    gene_df,  
gene_map = NULL,  
input_col = "input_gene",  
output_col = "ortholog_gene",  
input_species = "human",  
output_species = input_species,
```
aggregate_mapped_genes

method = c("gprofiler", "homologene", "babelgene"),
agg_fun = "sum",
agg_method = c("monocle3", "stats"),
aggregate_orthologs = TRUE,
transpose = FALSE,
mthreshold = 1,
target = "ENSG",
numeric_ns = "",
as_integers = FALSE,
as_sparse = TRUE,
as_DelayedArray = FALSE,
dropNA = TRUE,
sort_rows = FALSE,
verbose = TRUE
)

Arguments

gene_df Input matrix where row names are genes.
gene_map A data.frame that maps the current gene names to new gene names. This function’s behaviour will adapt to different situations as follows:

 • gene_map=data.frame:
 When a data.frame containing the gene key:value columns (specified by input_col and output_col, respectively) is provided, this will be used to perform aggregation/expansion.
 • gene_map=NULL and input_species!=output_species:
 A gene_map is automatically generated by map_orthologs to perform inter-species gene aggregation/expansion.
 • gene_map=NULL and input_species==output_species:
 A gene_map is automatically generated by map_gens to perform within-species gene symbol standardization and aggregation/expansion.

input_col Column name within gene_map with gene names matching the row names of X.
output_col Column name within gene_map with gene names that you wish you map the row names of X onto.
input_species Name of the input species (e.g., "mouse","fly"). Use map_species to return a full list of available species.
output_species Name of the output species (e.g. "human","chicken"). Use map_species to return a full list of available species.
method R package to use for gene mapping:

 • "gprofiler": Slower but more species and genes.
 • "homologene": Faster but fewer species and genes.
 • "babelgene": Faster but fewer species and genes. Also gives consensus scores for each gene mapping based on a several different data sources.

agg_fun Aggregation function.
agg_method Aggregation method.
aggregate_rows

[Optional] After performing an initial round of many:many aggregation/expansion with `many2many_rows`, ensure each orthologous gene only appears in one row by using the `aggregate_rows` function (default: `TRUE`).

transpose	Transpose gene_df before mapping genes.
mthreshold	maximum number of results per initial alias to show. Shows all by default.
target	target namespace.
numeric_ns	namespace to use for fully numeric IDs (list of available namespaces).
as_integers	Force all values in the matrix to become integers, by applying floor (default: FALSE).
as_sparse	Convert aggregated matrix to sparse matrix.
as_DelayedArray	Convert aggregated matrix to DelayedArray.
dropNA	Drop genes assigned to NA in groupings.
sort_rows	Sort gene_df rows alphanumerically.
verbose	Print messages.

Value

Aggregated matrix

Examples

```r
#### Aggregate within species: gene synonyms ####
data("exp_mouse_enst")
X_agg <- aggregate_mapped_genes(gene_df = exp_mouse_enst,
                               input_species = "mouse")

#### Aggregate across species: gene orthologs ####
data("exp_mouse")
X_agg2 <- aggregate_mapped_genes(gene_df = exp_mouse,
                                 input_species = "mouse",
                                 output_species = "human",
                                 method="homologene")
```

Description

Aggregate rows of a matrix for many:1 mappings, using a grouping vector.
aggregate_rows_monocle3

Usage

```r
aggregate_rows(
  X,
  groupings,
  agg_fun = "sum",
  agg_method = c("monocle3", "stats"),
  as_sparse = TRUE,
  as_DelayedArray = TRUE,
  dropNA = TRUE,
  verbose = TRUE
)
```

Arguments

- **X**: Input matrix.
- **groupings**: Gene groups of the same length as `nrow(X)`.
- **agg_fun**: Aggregation function.
- **agg_method**: Aggregation method.
- **as_sparse**: Convert aggregated matrix to sparse matrix.
- **as_DelayedArray**: Convert aggregated matrix to `DelayedArray`.
- **dropNA**: Drop genes assigned to NA in `groupings`.
- **verbose**: Print messages.

Value

Aggregated matrix

Source

```r
data("exp_mouse_enst") X <- exp_mouse_enst gene_map <- map_genes(genes = rownames(X), species = "mouse") X_agg <- orthogene:::aggregate_rows(X = X, groupings = gene_map$name) sum(duplicated(rownames(exp_mouse))) # 0 sum(duplicated(rownames(X))) # 1215 sum(duplicated(rownames(X_agg))) # 0
```

aggregate_rows_monocle3

Aggregate rows: monocle3

Description

Aggregate rows: monocle3
Usage

aggregate_rows_monocle3(
 x,
 groupings = NULL,
 form = NULL,
 fun = "sum",
 na.action = stats::na.omit
)

Arguments

- **x**: Input matrix.
- **groupings**: Gene groups of the same length as nrow(X).
- **form**: Formula.
- **fun**: Aggregation function.
- **na.action**: Na action.

Value

Aggregated matrix.

Source

```r
X <- Matrix::rsparsematrix(nrow = 1000, ncol = 2000, density = .10)
groupings <- rep(c("A","B"),nrow(X)/2)
X2 <- orthogene:::aggregate_rows_monocle3(x = X, groupings=groupings)
```

all_genes

Get all genes

Description

Return all known genes from a given species.

Usage

```r
all_genes(
  species,
  method = c("gprofiler", "homologene", "babelgene"),
  ensure_filter_nas = FALSE,
  run_map_species = TRUE,
  verbose = TRUE,
  ...
)
```
all_genes_babelgene

Arguments

species Species to get all genes for. Will first be standardised with map_species.
method R package to use for gene mapping:
 • "gprofiler": Slower but more species and genes.
 • "homologene": Faster but fewer species and genes.
 • "babelgene": Faster but fewer species and genes. Also gives consensus scores for each gene mapping based on several different data sources.
ensure_filter_nas Perform an extra check to remove genes that are NAs of any kind.
run_map_species Standardise species names with map_species first (Default: TRUE).
verbose Print messages.
... Additional arguments to be passed to gorth or homologene.

NOTE: To return only the most "popular" interspecies ortholog mappings, supply mthreshold=1 here AND set method="gprofiler" above. This procedure tends to yield a greater number of returned genes but at the cost of many of them not being true biological 1:1 orthologs.

For more details, please see here.

Details

References homologeneData or gconvert.

Value

Table with all gene symbols from the given species.

Examples

genome_mouse <- all_genes(species = "mouse")
genome_human <- all_genes(species = "human")

all_genes_babelgene Get all genes: babelgene

Description

Get all genes for a given species using the method "babelgene".
all_species

Usage

all_genes_babelgene(
 species,
 run_map_species = TRUE,
 save_dir = tools::R_user_dir("orthogene", which = "cache"),
 use_old = FALSE,
 min_support = 1,
 verbose = TRUE
)

Arguments

species Species to get all genes for. Will first be standardised with map_species.
run_map_species Standardise species names with map_species first (Default: TRUE).
save_dir Directory to save babelgene mapping files to.
use_old Use an old version of babelgene::orthologs_df (stored on GitHub Releases) for consistency.
verbose Print messages.

Value

All genes.

Source

babelgene::orthologs_df version differences

all_species All species

Description

List all species currently supported by orthogene. Wrapper function for map_species. When method=NULL, all species from all available methods will be returned.

Usage

all_species(method = NULL, verbose = TRUE)

Arguments

method R package to use for gene mapping:
 • "gprofiler": Slower but more species and genes.
 • "homologene": Faster but fewer species and genes.
 • "babelgene": Faster but fewer species and genes. Also gives consensus scores for each gene mapping based on several different data sources.
verbose Print messages.
Value

`data.table` of species names, provided in multiple formats.

Examples

```r
species_dt <- all_species()
```

Description

Handles `gene_df` regardless of whether it’s a data.frame, matrix, list, or vector.

Usage

```r
check_gene_df_type(gene_df, gene_input, verbose = TRUE)
```

Arguments

gene_df: Data object containing the genes (see `gene_input` for options on how the genes can be stored within the object). Can be one of the following formats:

- **matrix**: A sparse or dense matrix.
- **data.frame**: A data.frame, data.table, or tibble.
- **codelist**: A list or character vector.

Genes, transcripts, proteins, SNPs, or genomic ranges can be provided in any format (HGNC, Ensembl, RefSeq, UniProt, etc.) and will be automatically converted to gene symbols unless specified otherwise with the ... arguments.

Note: If you set `method`="homologene", you must either supply genes in gene symbol format (e.g. "Sox2") OR set `standardise_genes=TRUE`.

gene_input: Which aspect of `gene_df` to get gene names from:

- "rownames": From row names of data.frame/matrix.
- "colnames": From column names of data.frame/matrix.
- `<column name>`: From a column in `gene_df`, e.g. "gene_names".

verbose: Print messages.
Value

List of gene_df and gene_input

Value

List of gene_df and gene_input

Description

Currently supports ortholog mapping between any pair of 700+ species. Use `map_species` to return a full list of available organisms.

Usage

```r
closest_common_ancestors(  
gene_df,  
gene_input = "rownames",  
gene_output = "rownames",  
standardise_genes = FALSE,  
input_species,  
output_species = "human",  
method = c("gprofiler", "homologene", "babelgene"),  
drop_nonorths = TRUE,  
nom121_strategy = "drop_both_species",  
agg_fun = NULL,  
mthreshold = Inf,  
as_sparse = FALSE,  
as_DelayedArray = FALSE,  
sort_rows = FALSE,  
gene_map = NULL,  
input_col = "input_gene",  
output_col = "ortholog_gene",  
verbose = TRUE,  
...  
)
```

Arguments

- **gene_df**: Data object containing the genes (see `gene_input` for options on how the genes can be stored within the object). Can be one of the following formats:
 - **matrix**: A sparse or dense matrix.
 - **data.frame**: A `data.frame`, `data.table`, or `tibble`.
• codelist:
 A list or character vector.

Genes, transcripts, proteins, SNPs, or genomic ranges can be provided in any format (HGNC, Ensembl, RefSeq, UniProt, etc.) and will be automatically converted to gene symbols unless specified otherwise with the ... arguments.

Note: If you set method="homologene", you must either supply genes in gene symbol format (e.g. "Sox2") OR set standardise_genes=TRUE.

gene_input Which aspect of gene_df to get gene names from:

 • "rownames":
 From row names of data.frame/matrix.
 • "colnames":
 From column names of data.frame/matrix.
 • <column name>:
 From a column in gene_df, e.g. "gene_names".

gene_output How to return genes. Options include:

 • "rownames":
 As row names of gene_df.
 • "colnames":
 As column names of gene_df.
 • "columns":
 As new columns "input_gene", "ortholog_gene" (and "input_gene_standard" if standardise_genes=TRUE) in gene_df.
 • "dict":
 As a dictionary (named list) where the names are input_gene and the values are ortholog_gene.
 • "dict_rev":
 As a reversed dictionary (named list) where the names are ortholog_gene and the values are input_gene.

standardise_genes If TRUE AND gene_output="columns", a new column "input_gene_standard" will be added to gene_df containing standardised HGNC symbols identified by gorth.

input_species Name of the input species (e.g., "mouse","fly"). Use map_species to return a full list of available species.

output_species Name of the output species (e.g. "human","chicken"). Use map_species to return a full list of available species.

method R package to use for gene mapping:

 • "gprofiler" : Slower but more species and genes.
 • "homologene" : Faster but fewer species and genes.
 • "babelgene" : Faster but fewer species and genes. Also gives consensus scores for each gene mapping based on a several different data sources.

drop_nonorths Drop genes that don't have an ortholog in the output_species.
non121_strategy

How to handle genes that don’t have 1:1 mappings between input_species:output_species. Options include:

- "drop_both_species" or "dbs" or 1:
 Drop genes that have duplicate mappings in either the input_species or output_species
 (DEFAULT).
- "drop_input_species" or "dis" or 2:
 Only drop genes that have duplicate mappings in the input_species.
- "drop_output_species" or "dos" or 3:
 Only drop genes that have duplicate mappings in the output_species.
- "keep_both_species" or "kbs" or 4:
 Keep all genes regardless of whether they have duplicate mappings in either species.
- "keep_popular" or "kp" or 5:
 Return only the most "popular" interspecies ortholog mappings. This procedure tends to yield a greater number of returned genes but at the cost of many of them not being true biological 1:1 orthologs.
- "sum", "mean", "median", "min" or "max":
 When gene_df is a matrix and gene_output="rownames", these options will aggregate many-to-one gene mappings (input_species-to-output_species) after dropping any duplicate genes in the output_species.

agg_fun
Aggregation function passed to aggregate_mapped_genes. Set to NULL to skip aggregation step (default).

mthreshold
Maximum number of ortholog names per gene to show. Passed to gorth. Only used when method="gprofiler" (DEFAULT: Inf).

as_sparse
Convert gene_df to a sparse matrix. Only works if gene_df is one of the following classes:

- matrix
- Matrix
- data.frame
- data.table
- tibble

If gene_df is a sparse matrix to begin with, it will be returned as a sparse matrix (so long as gene_output= "rownames" or "colnames").

as_DelayedArray
Convert aggregated matrix to DelayedArray.

sort_rows
Sort gene_df rows alphanumerically.

gene_map
A data.frame that maps the current gene names to new gene names. This function’s behaviour will adapt to different situations as follows:

- gene_map=<data.frame>:
 When a data.frame containing the gene key:value columns (specified by input_col and output_col, respectively) is provided, this will be used to perform aggregation/expansion.
• gene_map=NULL and input_species!=output_species:
 A gene_map is automatically generated by map_orthologs to perform inter-
 species gene aggregation/expansion.
• gene_map=NULL and input_species==output_species:
 A gene_map is automatically generated by map_genes to perform within-
 species gene gene symbol standardization and aggregation/expansion.

input_col Column name within gene_map with gene names matching the row names of X.
output_col Column name within gene_map with gene names that you wish you map the row
 names of X onto.
verbose Print messages.
... Additional arguments to be passed to gorth or homologene.

NOTE: To return only the most "popular" interspecies ortholog mappings, supply mthreshold=1 here AND set method="gprofiler" above. This procedure tends to yield a greater number of returned genes but at the cost of many of them not being true biological 1:1 orthologs.

For more details, please see here.

Value
gene_df with orthologs converted to the output_species.
Instead returned as a dictionary (named list) if gene_output="dict" or "dict_rev".

Examples
data("exp_mouse")
gene_df <- convert_orthologs(
 gene_df = exp_mouse,
 input_species = "mouse"
)

create_background Create gene background

Description
Create a gene background as the union/intersect of all orthologs between input species (species1 and species2), and the output_species. This can be useful when generating random lists of background genes to test against in analyses with data from multiple species (e.g. enrichment of mouse cell-type markers gene sets in human GWAS-derived gene sets).
create_background

create_background(
 species1,
 species2,
 output_species = "human",
 as_output_species = TRUE,
 use_intersect = TRUE,
 bg = NULL,
 gene_map = NULL,
 method = "homologene",
 non121_strategy = "drop_both_species",
 verbose = TRUE
)

Arguments

species1 First species.
species2 Second species.
output_species Species to convert all genes from species1 and species2 to first. Default="human", but can be to either any species supported by orthogene, including species1 or species2.

as_output_species Return background gene list as output_species orthologs, instead of the gene names of the original input species.

use_intersect When species1 and species2 are both different from output_species, this argument will determine whether to use the intersect (TRUE) or union (FALSE) of all genes from species1 and species2.

bg User supplied background list that will be returned to the user after removing duplicate genes.

gene_map User-supplied gene_map data table from map_orthologs or map_genes.

method R package to use for gene mapping:
- "gprofiler": Slower but more species and genes.
- "homologene": Faster but fewer species and genes.
- "babelgene": Faster but fewer species and genes. Also gives consensus scores for each gene mapping based on a several different data sources.

non121_strategy How to handle genes that don’t have 1:1 mappings between input_species:output_species. Options include:
- "drop_both_species" or "dbs" or 1: Drop genes that have duplicate mappings in either the input_species or output_species (DEFAULT).
- "drop_input_species" or "dis" or 2: Only drop genes that have duplicate mappings in the input_species.
• "drop_output_species" or "dos" or 3:
 Only drop genes that have duplicate mappings in the output_species.
• "keep_both_species" or "kbs" or 4:
 Keep all genes regardless of whether they have duplicate mappings in either
 species.
• "keep_popular" or "kp" or 5:
 Return only the most "popular" interspecies ortholog mappings. This pro-
 cedure tends to yield a greater number of returned genes but at the cost of
 many of them not being true biological 1:1 orthologs.
• "sum","mean","median","min" or "max":
 When gene_df is a matrix and gene_output="rownames", these options
 will aggregate many-to-one gene mappings (input_species-to-output_species)
 after dropping any duplicate genes in the output_species.

verbose
 Print messages.

Value
 Background gene list.

Examples

bg <- orthogene::create_background(species1 = "mouse",
species2 = "rat",
output_species = "human")

Description

Reimplementation of function that originally part of the R package Matrix.utils before the pack-
age was deprecated. The only difference is that this version of dMcast does not include an aggre-
gation feature at the end.

Usage

dMcast(
data,
formula,
value.var = NULL,
as.factors = FALSE,
na.action = stats::na.pass,
factor.nas = TRUE,
drop.unused.levels = TRUE
)

Arguments

- **data**: A data.frame.
- **formula**: Casting formula, see details for specifics.
- **value.var**: Name of column that stores values to be aggregated numerics.
- **as.factors**: If TRUE, treat all columns as factors, including
- **factor.nas**: If TRUE, treat factors with NAs as new levels. Otherwise, rows with NAs will receive zeroes in all columns for that factor.
- **drop.unused.levels**: Should factors have unused levels dropped? Defaults to TRUE, in contrast to model.matrix

Value

matrix

Source

groupings <- data.frame(A = as.factor(sample(1e4,1e6,TRUE)))
formula <- stats::as.formula("~0+.")
dm <- orthogene:::dMcast(data = groupings, formula = formula)

earthworm2human_map Earthworm to human map

Description

Orthologous gene mapping between earthworm (Eisenia andrei) and human (Homo sapiens) genes.

Usage

earthworm2human_map(
 evalue_threshold = NULL,
 save_dir = tools::R_user_dir("orthogene", which = "cache")
)

Arguments

- **evalue_threshold**: Only include mappings with an E-value below a set threshold. See here for further guidance.
- **save_dir**: Directory to save mapping file to.

Details

These mappings were generated using BLAST (a protein sequence tool) implemented within SAMap. This mapping data was provided upon request by the authors of Wang et al. 2022. Column names were collected from Metagenomics Wiki.
exp_mouse

Value

data.table containing earthworm-to-human gene orthologs.

Description

Mean pseudobulk single-cell RNA-seq gene expression matrix.
Data originally comes from Zeisel et al., 2018 (Cell).

Usage

data("exp_mouse")

Format
sparse matrix

Source

Publication
ctd <- ewceData::ctd() exp_mouse <- as(ctd[[1]]$mean_exp, "sparseMatrix")
usethis::use_data(exp_mouse, overwrite = TRUE)

exp_mouse_enst

Transcript expression data: mouse

Description

Mean pseudobulk single-cell RNA-seq Transcript expression matrix.
Data originally comes from Zeisel et al., 2018 (Cell).

Usage

data("exp_mouse_enst")

Format
sparse matrix

Source

Publication
data("exp_mouse") mapped_genes <- map_genes(genes = rownames(exp_mouse)[seq(1,100)], target = "ENST", species = "mouse", drop_na = FALSE) exp_mouse_enst <- exp_mouse[mapped_genes$input,] rownames(exp_mouse_enst) <- mapped_genes$target all_nas <- orthogene:::find_all_nas(rownames(exp_mouse_enst)) exp_mouse_enst <- exp_mouse_enst[!all_nas,] exp_mouse_enst <- phenomix::add_noise(exp_mouse_enst)
usethis::use_data(exp_mouse_enst, overwrite = TRUE)
Format species names

Description

Format scientific species names into a standardised manner.

Usage

```r
format_species(
  species,
  remove_parentheses = TRUE,
  abbrev = FALSE,
  remove_subspecies = FALSE,
  remove_subspecies_exceptions = c("Canis lupus familiaris"),
  split_char = " ",
  collapse = " ",
  remove_chars = c(" ", ",", ",", ",", ",", ",", ",")
  replace_char = " ",
  lowercase = FALSE,
  trim = " ",
  standardise_scientific = FALSE
)
```

Arguments

- **species**: Species query (e.g. "human", "homo sapiens", "hsapiens", or 9606). If given a list, will iterate queries for each item. Set to NULL to return all species.
- **remove_parentheses**: Remove substring within parentheses: e.g. "Xenopus (Silurana) tropicalis" -> "Xenopus tropicalis"
- **abbrev**: Abbreviate all taxonomic levels except the last one: e.g. "Canis lupus familiaris" => "C l familiaris"
- **remove_subspecies**: Only keep the first two taxonomic levels: e.g. "Canis lupus familiaris" -> "Canis lupus"
- **remove_subspecies_exceptions**: Selected species to ignore when remove_subspecies=TRUE. e.g. "Canis lupus familiaris" -> "Canis lupus familiaris"
- **split_char**: Character to split species names by.
- **collapse**: Character to re-collapse species names with after splitting with split_char.
- **remove_chars**: Characters to remove.
- **replace_char**: Character to replace remove_chars with.
- **lowercase**: Make species names all lowercase.
trim Characters to trim from the beginning/end of each species name.

standardise_scientific
Automatically sets multiple arguments at once to create standardised scientific names for each species. Assumes that species is provided in some version of scientific species names: e.g. "Xenopus (Silurana) tropicalis" -> "Xenopus tropicalis"

Value
A named vector where the values are the standardised species names and the names are the original input species names.

Examples
```r
species <- c("Xenopus (Silurana) tropicalis","Canis lupus familiaris")
species2 <- format_species(species = species, abbrev=TRUE)
species3 <- format_species(species = species,
standardise_scientific=TRUE,
remove_subspecies_exceptions=NULL)
```

get_orgdb_genomeinfodbdata
Import organism database: GenomeInfoDbData

Description
Import and format organism ID table from GenomeInfoDbData to be comparable to get_orgdb_gprofiler.

Usage
```
get_orgdb_genomeinfodbdata(verbose = TRUE)
```

Value
Organisms data.table

Source
GenomeInfoDbData GitHub
get_silhouettes

Description

Get silhouette images of each species from phylopic.

Usage

get_silhouettes(
 species,
 which = rep(1, length(species)),
 run_format_species = TRUE,
 include_image_data = FALSE,
 mc.cores = 1,
 add_png = FALSE,
 remove_bg = FALSE,
 verbose = TRUE
)

Arguments

species A character vector of species names to query phylopic for.
which An integer vector of the same length as species. Lets you choose which image you want to use for each species (1st, 2nd 3rd, etc.).
run_format_species Standardise species names with format_species before querying phylopic (default: TRUE).
include_image_data Include the image data itself (not just the image UID) in the results.
mc.cores Accelerate multiple species queries by parallelising across multiple cores.
add_png Return URLs for both the SVG and PNG versions of the image.
remove_bg Remove image background.
verbose Print messages.

Value

data.frame with:

• input_species : Species name (input).
• species : Species name (standardised).
• uid : Species UID.
• url : Image URL.
ggtree_plot

Description

Plot a phylogenetic tree with ggtree and metadata from report_orthologs.

Usage

```r
ggtree_plot(
  tr, 
  d, 
  scaling_factor = 1, 
  clades = NULL, 
  clades_palette = NULL, 
  reference_species = NULL, 
  verbose = TRUE
)
```

Arguments

- `tr`: Tree.
- `d`: Metadata
- `scaling_factor`: How much to scale y-axis parameters (e.g. offset) by.
- `clades`: Clades metadata.
- `clades_palette`: Palette to color highlighted clades with.
- `reference_species`: Print messages.
- `verbose`: ggplot object.
gprofiler_namespace

Available namespaces used by link[gprofiler2]gconvert.

Format

data.frame

Source

gProfiler site

```r
### Manually-prepared CSV ###
path <- "inst/extdata/gprofiler_namespace.csv.gz"
gprofiler_namespace <- data.table::fread(path)
```

gprofiler_orgs

Reference organisms

Description

Organism for which gene references are available via gProfiler API. Used as a backup if API is not available.

Format

data.frame

Source

gProfiler site

```r
# NOTE!: Must run usethis::use_data for all internal data at once. # otherwise, the prior internal data will be overwritten. ### Internal data 1: gprofiler_namespace ###
Manually-prepared CSV ###
path <- "inst/extdata/gprofiler_namespace.csv.gz"
gprofiler_namespace <- data.table::fread(path)
### Internal data 2: gprofiler_orgs ###
gprofiler_orgs <- orthogene:::get_orgdb_gprofiler(use_local=FALSE)
### Save ###
usethis::use_data(gprofiler_orgs, gprofiler_namespace, overwrite = TRUE, internal=TRUE)
```
Infer species from gene names

Description

Infers which species the genes within `gene_df` is from. Iteratively test the percentage of `gene_df` genes that match with the genes from each `test_species`.

Usage

```r
infer_species(
  gene_df,
  gene_input = "rownames",
  test_species = c("human", "monkey", "rat", "mouse", "zebrafish", "fly"),
  method = c("homologene", "gprofiler", "babelgene"),
  make_plot = TRUE,
  show_plot = TRUE,
  verbose = TRUE
)
```

Arguments

- `gene_df` Data object containing the genes (see `gene_input` for options on how the genes can be stored within the object). Can be one of the following formats:
 - matrix: A sparse or dense matrix.
 - data.frame: A `data.frame`, `data.table`, or `tibble`.
 - codelist: A list or character vector.

Genes, transcripts, proteins, SNPs, or genomic ranges can be provided in any format (HGNC, Ensembl, RefSeq, UniProt, etc.) and will be automatically converted to gene symbols unless specified otherwise with the ... arguments. **Note:** If you set `method="homologene"`, you must either supply genes in gene symbol format (e.g. "Sox2") OR set `standardise_genes=TRUE`.

- `gene_input` Which aspect of `gene_df` to get gene names from:
 - "rownames": From row names of `data.frame/matrix`.
 - "colnames": From column names of `data.frame/matrix`.
 - `<column name>`: From a column in `gene_df`, e.g. "gene_names".
test_species Which species to test for matches with. If set to NULL, will default to a list of humans and 5 common model organisms. If test_species is set to one of the following options, it will automatically pull all species from that respective package and test against each of them:
- "homologene" : 20+ species (default)
- "gprofiler" : 700+ species
- "babelgene" : 19 species

method R package to use for gene mapping:
- "gprofiler" : Slower but more species and genes.
- "homologene" : Faster but fewer species and genes.
- "babelgene" : Faster but fewer species and genes. Also gives consensus scores for each gene mapping based on a several different data sources.

make_plot Make a plot of the results.
show_plot Print the plot of the results.
verbose Print messages.

Value An ordered dataframe of test_species from best to worst matches.

Examples

```r
data("exp_mouse")
matches <- orthogene::infer_species(gene_df = exp_mouse[1:200,])
```
invert_dictionary

Invert dictionary

Description

Switch the names/items in a named list.

Usage

invert_dictionary(dict)

Value

Named list

many2many_rows

Expand/aggregate rows of matrix for many:many mappings

Description

Expand/aggregate rows of a matrix with any combination of many:many mappings. This method ensures that total counts per gene remain the same regardless of how many genes it has split/condensed into. This allows for many:many mappings that are otherwise not possible using standard aggregation functions, since they all require many:1 scenarios. Internally, this is done as follows:

1. Identify genes that appear more than once in gene_map[[input_col]].
2. For each gene identified, split its row into multiple rows, where the number of new rows is equal to the number of times that gene appears within gene_map[[input_col]]. In the new expanded matrix, each row will be equal to the column sums divided by the number of new rows. This means that averaged counts will be split equally amongst the new rows, in a column-specific manner. Thus, the column sums of the output matrix will be equal to the column sums in the input matrix. In the case of gene expression count matrices, this means that the total counts will remain equal between matrices, while avoiding being forced to drop genes with many:many mappings (as is the case with most other aggregation methods).
3. Map rownames of the expanded matrix onto the orthologous gene names from gene_map$ortholog_gene.
4. [Optional] : When aggregate_orthologs=TRUE, aggregate rows of the expanded/mapped matrix such that there will only be 1 row per ortholog gene, using aggregate_rows. The arguments FUN, method, as_sparse, as_DelayedArray, and dropNA will all be passed to aggregate_rows if this step is selected.
many2many_rows

Usage

```r
many2many_rows(
  X,
  gene_map,
  input_col = "input_gene",
  output_col = "ortholog Gene",
  agg_fun = "sum",
  agg_method = c("monocle3", "stats"),
  as_sparse = TRUE,
  as_DelayedArray = FALSE,
  dropNA = TRUE,
  aggregate_orthologs = TRUE,
  verbose = TRUE
)
```

Arguments

- **X**: Input matrix.
- **gene_map**: A data frame generated by `map_orthologs`, with columns mapping `input_col` to `output_col`.
- **input_col**: Column name within `gene_map` with gene names matching the row names of `X`.
- **output_col**: Column name within `gene_map` with gene names that you wish you map the row names of `X` onto.
- **agg_fun**: Aggregation function.
- **agg_method**: Aggregation method.
- **as_sparse**: Convert aggregated matrix to sparse matrix.
- **as_DelayedArray**: Convert aggregated matrix to DelayedArray.
- **dropNA**: Drop genes assigned to NA in groupings.
- **aggregate_orthologs** [Optional] After performing an initial round of many:many aggregation/expansion with `many2many_rows`, ensure each orthologous gene only appears in one row by using the `aggregate_rows` function (default: TRUE).
- **verbose**: Print messages.

Value

Expanded/aggregated matrix.

Source

```r
data("exp_mouse") X <- exp_mouse gene_map <- orthogene:::map_orthologs(genes = rownames(exp_mouse),
  input_species = "mouse", method="homologene") X_agg <- orthogene:::many2many_rows(X
  = X, gene_map = gene_map) sum(duplicated(rownames(exp_mouse))) # 0 sum(duplicated(gene_map$input_gene))
# 46 sum(duplicated(gene_map$ortholog_gene)) # 56 sum(duplicated(rownames(X_agg)))
# 56
```
map_genes

Description

Input a list of genes, transcripts, proteins, SNPs, or genomic ranges in any format (HGNC, Ensembl, RefSeq, UniProt, etc.) and return a table with standardised gene symbols (the "names" column).

Usage

```r
map_genes(
  genes,
  species = "hsapiens",
  target = "ENSG",
  mthreshold = Inf,
  drop_na = FALSE,
  numeric_ns = "",
  run_map_species = TRUE,
  verbose = TRUE
)
```

Arguments

- **genes**
 - Gene list.

- **species**
 - Species to map against.

- **target**
 - target namespace.

- **mthreshold**
 - maximum number of results per initial alias to show. Shows all by default.

- **drop_na**
 - Drop all genes without mappings. Sets `gprofiler2::gconvert(filter_na=)` as well an additional round of more comprehensive NA filtering by `orthogene`.

- **numeric_ns**
 - namespace to use for fully numeric IDs (list of available namespaces).

- **run_map_species**
 - Standardise species names with `map_species` first (Default: TRUE).

- **verbose**
 - Print messages.

Details

Uses `gconvert`. The exact contents of the output table will depend on target parameter. See ?gprofiler2:gconvert for more details.

Value

Table with standardised genes.
Examples

genes <- c(
 "Klf4", "Sox2", "TSPAN12", "NM_173007", "Q8BK56",
 "ENSMUSG00000012396", "ENSMUSG0000007437"
)
mapped_genes <- map_genes(
 genes = genes,
 species = "mouse"
)

Description

Map planarian (Schmidt mediterrani) genes to/from the SMED format using data from the planosphere database.

Usage

map_genes_planosphere(
 genes,
 output_format = "SMESG_dd_Smes_v2",
 drop_duplicates = TRUE,
 save_dir = tools::R_user_dir("orthogene", which = "cache"),
 verbose = TRUE
)

Arguments

genes Gene list.
drop_duplicates Only output one row per input gene.
verbose Print messages.

Value
data.table

Source

genes <- c("dd_Smed_v6_10690_0", "dd_Smed_v6_10691_0", "dd_Smed_v6_10693_0") gene_map <- map_genes_planosphere(genes=genes)
map_orthologs

Map orthologs

Description

Map orthologs from one species to another.

Usage

```r
map_orthologs(
  genes,
  standardise_genes = FALSE,
  input_species,
  output_species = "human",
  method = c("gprofiler", "homologene", "babelgene"),
  mthreshold = Inf,
  gene_map = NULL,
  input_col = "input_gene",
  output_col = "ortholog_gene",
  verbose = TRUE,
  ...
)
```

Arguments

- **genes**
 - can be a mixture of any format (HGNC, Ensembl, RefSeq, UniProt, etc.) and will be automatically converted to standardised HGNC symbol format.
- **standardise_genes**
 - If TRUE AND gene_output="columns", a new column "input_gene_standard" will be added to gene_df containing standardised HGNC symbols identified by gorth.
- **input_species**
 - Name of the input species (e.g., "mouse","fly"). Use map_species to return a full list of available species.
- **output_species**
 - Name of the output species (e.g. "human","chicken"). Use map_species to return a full list of available species.
- **method**
 - R package to use for gene mapping:
 - "gprofiler": Slower but more species and genes.
 - "homologene": Faster but fewer species and genes.
 - "babelgene": Faster but fewer species and genes. Also gives consensus scores for each gene mapping based on a several different data sources.
- **mthreshold**
 - Maximum number of ortholog names per gene to show. Passed to gorth. Only used when method="gprofiler" (DEFAULT : Inf).
- **gene_map**
 - A data.frame that maps the current gene names to new gene names. This function’s behaviour will adapt to different situations as follows:
map_orthologs_babelgene

- gene_map=<data.frame>:
 When a data.frame containing the gene key:value columns (specified by input_col and output_col, respectively) is provided, this will be used to perform aggregation/expansion.
- gene_map=NULL and input_species!=output_species:
 A gene_map is automatically generated by map_orthologs to perform inter-species gene aggregation/expansion.
- gene_map=NULL and input_species==output_species:
 A gene_map is automatically generated by map_genes to perform within-species gene symbol standardization and aggregation/expansion.

input_col Column name within gene_map with gene names matching the row names of X.
output_col Column name within gene_map with gene names that you wish you map the row names of X onto.
verbose Print messages.
...

Additional arguments to be passed to gorth or homologene.

NOTE: To return only the most "popular" interspecies ortholog mappings, supply mthreshold=1 here AND set method="gprofiler" above. This procedure tends to yield a greater number of returned genes but at the cost of many of them not being true biological 1:1 orthologs.

For more details, please see here.

Details

map_orthologs() is a core function within convert_orthologs(), but does not have many of the extra checks, such as non121_strategy) and drop_nonorths.

Value

Ortholog map data.frame with at least the columns "input_gene" and "ortholog_gene".

Examples

data("exp_mouse")
gene_map <- map_orthologs(
 genes = rownames(exp_mouse),
 input_species = "mouse")

map_orthologs_babelgene

Map orthologs: babelgene

Description

Map orthologs from one species to another using orthologs.
map_orthologs_babelgene

Usage

map_orthologs_babelgene(
 genes,
 input_species,
 output_species = "human",
 min_support = 1,
 top = FALSE,
 verbose = TRUE,
 ...
)

Arguments

genes Gene list.
input_species Name of the input species (e.g., "mouse","fly"). Use map_species to return a full list of available species.
output_species Name of the output species (e.g. "human","chicken"). Use map_species to return a full list of available species.
min_support Minimum number of supporting source databases. Gene pairs available in this package are supported by 2 to 12 databases (the maximum varies depending on the species).
top For each gene, output only the match with the highest support level if there are multiple hits.
verbose Print messages.
... Additional arguments to be passed to gorth or homologene.

NOTE: To return only the most "popular" interspecies ortholog mappings, supply mthreshold=1 here AND set method="gprofiler" above. This procedure tends to yield a greater number of returned genes but at the cost of many of them not being true biological 1:1 orthologs.

For more details, please see here.

Value

Ortholog map data.frame

Source

babelgene tutorial
Description

Map orthologs from one species to another using a custom gene_map table.

Usage

```r
map_orthologs_custom(
  gene_map,
  input_species,
  output_species,
  input_col,
  output_col,
  verbose = TRUE
)
```

Arguments

- `gene_map`: A data.frame that maps the current gene names to new gene names. This function’s behaviour will adapt to different situations as follows:
 - `gene_map=<data.frame>`:
 When a data.frame containing the gene key:value columns (specified by `input_col` and `output_col`, respectively) is provided, this will be used to perform aggregation/expansion.
 - `gene_map=NULL and input_species!=output_species`:
 A gene_map is automatically generated by `map_orthologs` to perform inter-species gene aggregation/expansion.
 - `gene_map=NULL and input_species==output_species`:
 A gene_map is automatically generated by `map_genes` to perform within-species gene symbol standardization and aggregation/expansion.

- `input_species`: Name of the input species (e.g., "mouse","fly"). Use `map_species` to return a full list of available species.

- `output_species`: Name of the output species (e.g. "human","chicken"). Use `map_species` to return a full list of available species.

- `input_col`: Column name within `gene_map` with gene names matching the row names of X.

- `output_col`: Column name within `gene_map` with gene names that you wish you map the row names of X onto.

- `verbose`: Print messages.

Value

Ortholog map data.frame
Map orthologs from one species to another using `gorth`.

Usage

```r
map_orthologs_gprofiler(
  genes,
  input_species,
  output_species = "human",
  filter_na = FALSE,
  mthreshold = Inf,
  verbose = TRUE,
  ...
)
```

Arguments

- `genes`: Gene list.
- `input_species`: Name of the input species (e.g., "mouse","fly"). Use `map_species` to return a full list of available species.
- `output_species`: Name of the output species (e.g. "human","chicken"). Use `map_species` to return a full list of available species.
- `filter_na`: Logical indicating whether to filter out results without a corresponding target name. (`DEFAULT` is `FALSE`, so that `NA`s can be handled by `orthogene`).
- `mthreshold`: Maximum number of ortholog names per gene to show. Passed to `gorth`. Only used when `method="gprofiler"` (`DEFAULT : Inf`).
- `verbose`: Print messages.
- `...`: Additional arguments to be passed to `gorth`.

Details

"mthreshold is used to set the maximum number of ortholog names per gene to show. This is useful to handle the problem of having many orthologs per gene (most of them uninformative). The function tries to find the most informative by selecting the most popular ones."

~ From `gprofiler2` vignette

Available namespaces for the numeric_ns argument can be found [here](#).

Value

Ortholog map data.frame
map_orthologs_homologene

Map orthologs: homologene

Description

Map orthologs from one species to another using *homologene*.

Usage

```r
map_orthologs_homologene(
  genes,
  input_species,
  output_species = "human",
  verbose = TRUE,
  ...
)
```

Arguments

- `genes`: Gene list.
- `input_species`: Name of the input species (e.g., "mouse","fly"). Use `map_species` to return a full list of available species.
- `output_species`: Name of the output species (e.g. "human","chicken"). Use `map_species` to return a full list of available species.
- `verbose`: Print messages.
- `...`: Additional arguments to be passed to *homologene*.

Value

Ortholog map data.frame

map_species

Standardise species names

Description

Search *gprofiler* database for species that match the input text string. Then translate to a standardised species ID.
Usage

```r
map_species(
  species = NULL,
  search_cols = c("display_name", "id", "scientific_name", "taxonomy_id"),
  output_format = c("scientific_name", "id", "display_name", "taxonomy_id", "version",
                   "scientific_name_formatted"),
  method = c("homologene", "gprofiler", "babelgene"),
  remove_subspecies = TRUE,
  remove_subspecies_exceptions = c("Canis lupus familiaris"),
  use_local = TRUE,
  verbose = TRUE
)
```

Arguments

- `species`: Species query (e.g. "human", "homo sapiens", "hsapiens", or 9606). If given a list, will iterate queries for each item. Set to `NULL` to return all species.
- `search_cols`: Which columns to search for species substring in metadata API.
- `output_format`: Which column to return.
- `method`: R package to use for gene mapping:
 - "gprofiler": Slower but more species and genes.
 - "homologene": Faster but fewer species and genes.
 - "babelgene": Faster but fewer species and genes. Also gives consensus scores for each gene mapping based on a several different data sources.
- `remove_subspecies`: Only keep the first two taxonomic levels: e.g. "Canis lupus familiaris" → "Canis lupus"
- `remove_subspecies_exceptions`: Selected species to ignore when `remove_subspecies=TRUE`. e.g. "Canis lupus familiaris" → "Canis lupus familiaris"
- `use_local`: If `TRUE` default, `map_species` uses a locally stored version of the species metadata table instead of pulling directly from the gprofiler API. Local version may not be fully up to date, but should suffice for most use cases.
- `verbose`: Print messages.

Value

Species ID of type `output_format`

Examples

```r
ids <- map_species(species = c(
  "human", 9606, "mus musculus",
  "fly", "C elegans"
))
```
message_parallel

Send messages to console even from within parallel processes

Description

Send messages to console even from within parallel processes

Usage

```r
message_parallel(...)  
```

Value

A message

plot_benchmark_bar

Plot benchmark: bar

Description

Plot run time and # genes returned across species and function tests.

Usage

```r
plot_benchmark_bar(bench_res, remove_failed_times = FALSE, show_plot = TRUE)  
```

Arguments

- `bench_res`: Results from
- `remove_failed_times`: In instances where no genes were returned, set time to NA.
- `show_plot`: Print plot.

Value

A ggplot object
plot_benchmark_scatter

Plot benchmark: scatter

Description
Plot run time vs. # genes returned across species and function tests.

Usage
plot_benchmark_scatter(
 bench_res,
 remove_failed_times = FALSE,
 show_plot = TRUE
)

Arguments
bench_res Results from
remove_failed_times
 In instances where no genes were returned, set time to NA.
show_plot Print plot.

Value
ggplot object

plot_orthotree

Create a phylogenetic tree of shared orthologs

Description
Automatically creates a phylogenetic tree plot annotated with metadata describing how many orthologous genes each species shares with the reference_species ("human" by default).

Usage
plot_orthotree(
 tree = NULL,
 orth_report = NULL,
 species = NULL,
 method = c("babelgene", "homologene", "gprofiler"),
 tree_source = "timetree",
 non121_strategy = "drop_both_species",
 reference_species = "human",
)

Arguments

tree A phylogenetic tree of class phylo. If no tree is provided (NULL) a 100-way multitiz tree will be imported from UCSC Genome Browser.

orth_report An ortholog report from one or more species generated by report_orthologs.
species Species to include in the final plot. If NULL, then all species from the given database (method) will be included (via map_species), so long as they also exist in the tree.

method R package to use for gene mapping:
 • "gprofiler": Slower but more species and genes.
 • "homologene": Faster but fewer species and genes.
 • "babelgene": Faster but fewer species and genes. Also gives consensus scores for each gene mapping based on a several different data sources.

tree_source Can be one of the following:
 • "timetree2022": Import and prune the TimeTree >147k species phylogenetic tree. Can also simply type "timetree".
 • "timetree2015": Import and prune the TimeTree >50k species phylogenetic tree.
 • "OmaDB": Construct a tree from OMA (Orthologous Matrix browser) via the getTaxonomy function. NOTE: Does not contain branch lengths, and therefore may have limited utility.
 • "UCSC": Import and prune the UCSC 100-way alignment phylogenetic tree (hg38 version).
 • "<path>": Read a tree from a newick text file from a local or remote URL using read.tree.
non121_strategy

How to handle genes that don’t have 1:1 mappings between input_species:output_species. Options include:

- "drop_both_species" or "dbs" or 1:
 Drop genes that have duplicate mappings in either the input_species or output_species (DEFAULT).
- "drop_input_species" or "dis" or 2:
 Only drop genes that have duplicate mappings in the input_species.
- "drop_output_species" or "dos" or 3:
 Only drop genes that have duplicate mappings in the output_species.
- "keep_both_species" or "kbs" or 4:
 Keep all genes regardless of whether they have duplicate mappings in either species.
- "keep_popular" or "kp" or 5:
 Return only the most "popular" interspecies ortholog mappings. This procedure tends to yield a greater number of returned genes but at the cost of many of them not being true biological 1:1 orthologs.
- "sum", "mean", "median", "min" or "max":
 When gene_df is a matrix and gene_output="rownames", these options will aggregate many-to-one gene mappings (input_species-to-output_species) after dropping any duplicate genes in the output_species.

reference_species

Reference species.

clades

A named list of clades each containing a character vector of species used to define the respective clade using MRCA.

clades_rotate

A list of clades to rotate (via rotate), each containing a character vector of species used to define the respective clade using MRCA.

scaling_factor

How much to scale y-axis parameters (e.g. offset) by.

show_plot

Whether to print the final tree plot.

save_paths

Paths to save plot to.

width

Saved plot width.

height

Saved plot height.

mc.cores

Number of cores to parallelise different steps with.

verbose

Print messages.

Value

A list containing:

- plot : Annotated ggtree object.
- tree : The pruned, standardised phylogenetic tree used in the plot.
- orth_report : Ortholog reports for each species against the reference_species.
• metadata: Metadata used in the plot, including silhouette PNG ids from phylopic.
• clades: Metadata used for highlighting clades.
• method: Method used.
• reference_species: Reference species used.
• save_paths: Save paths to plot.

Source
ggtree tutorial

Examples

orthotree <- plot_orthotree(species = c("human","monkey","mouse"))

prepare_tree

Prepare a phylogenetic tree

Description

Import a phylogenetic tree and then conduct a series of optional standardisation steps. Optionally, if output_format is not NULL, species names from both the tree and the species argument will first be standardised using map_species.

Usage

prepare_tree(
 tree_source = "timetree",
 species = NULL,
 output_format = "scientific_name_formatted",
 run_map_species = c(TRUE, TRUE),
 method = c("homologene", "gprofiler", "babelgene"),
 force_ultrametric = TRUE,
 age_max = NULL,
 show_plot = TRUE,
 save_dir = tools::R_user_dir("orthogene", which = "cache"),
 verbose = TRUE,
 ...
)

Arguments

tree_source: Can be one of the following:
 • "timetree2022":
 Import and prune the TimeTree >147k species phylogenetic tree. Can also simply type "timetree".
prepare_tree

- "timetree2015": Import and prune the TimeTree >50k species phylogenetic tree.
- "OmaDB": Construct a tree from OMA (Orthologous Matrix browser) via the getTaxonomy function. **NOTE:** Does not contain branch lengths, and therefore may have limited utility.
- "UCSC": Import and prune the UCSC 100-way alignment phylogenetic tree (hg38 version).
- "<path>": Read a tree from a newick text file from a local or remote URL using read.tree.

species Species names to subset the tree by (after standardise_species step).

output_format Which column to return.

run_map_species Whether to first standardise species names with map_species.

method R package to use for gene mapping:
- "gprofiler": Slower but more species and genes.
- "homologene": Faster but fewer species and genes.
- "babelgene": Faster but fewer species and genes. Also gives consensus scores for each gene mapping based on a several different data sources.

force_ultrametric Whether to force the tree to be ultrametric (i.e. make all tips the same date) using force.ultrametric.

age_max Rescale the edges of the tree into units of millions of years (MY) instead than evolutionary rates (e.g. dN/dS ratios). Only used if age_max, the max number, is numeric. Times are computed using makeChronosCalib and chronos.

show_plot Show a basic plot of the resulting tree.

save_dir Directory to cache full tree in. Set to NULL to avoid using cache.

verbose Print messages.

... Additional arguments passed to makeChronosCalib.

Value
A filtered tree of class "phylo" (with standardised species names).

Source
TimeTree 5: An Expanded Resource for Species Divergence Times

Examples
```r
species <- c("human","chimp","mouse")
tr <- orthogene::prepare_tree(species = species)
```
Description

Import and image and remove the background using **magick**.

Usage

```r
remove_image_bg(
  path,
  color = "white",
  fuzz = 0,
  save_path = file.path(tempdir(), "phylopic_processed", paste0(basename(dirname(path)), 
    ".png"))
)
```

Arguments

- **path**: a file, url, or raster object or bitmap array
- **color**: a valid color string such as "navyblue" or "#000080". Use "none" for transparency.
- **fuzz**: relative color distance (value between 0 and 100) to be considered similar in the filling algorithm

Value

Named list containing the modified image itself and the saved path of the modified image.

Source

```r
path <- paste0("https://images.phylopic.org/images/", "2de1c95c-7e1f-429b-9c08-17f0a27d176f/vector.svg")
img_res <- remove_image_bg(path=path)
```

Description

Identify the number of orthologous genes between two species.
Usage

```r
report_orthologs(
    target_species = "mouse",
    reference_species = "human",
    standardise_genes = FALSE,
    method_all_genes = c("homologene", "gprofiler", "babelgene"),
    method_convert_orthologs = method_all_genes,
    drop_nonorths = TRUE,
    non121_strategy = "drop_both_species",
    round_digits = 2,
    return_report = TRUE,
    ref_genes = NULL,
    mc.cores = 1,
    verbose = TRUE,
    ...
)
```

Arguments

- **target_species** Target species.
- **reference_species** Reference species.
- **standardise_genes** If TRUE AND gene_output="columns", a new column "input_gene_standard" will be added to gene_df containing standardised HGNC symbols identified by gorth.
- **method_all_genes** R package to to use in all_genes step:
 - "gprofiler": Slower but more species and genes.
 - "homologene": Faster but fewer species and genes.
 - "babelgene": Faster but fewer species and genes. Also gives consensus scores for each gene mapping based on a several different data sources.
- **method_convert_orthologs** R package to to use in convert_orthologs step:
 - "gprofiler": Slower but more species and genes.
 - "homologene": Faster but fewer species and genes.
 - "babelgene": Faster but fewer species and genes. Also gives consensus scores for each gene mapping based on a several different data sources.
- **drop_nonorths** Drop genes that don’t have an ortholog in the output_species.
- **non121_strategy** How to handle genes that don’t have 1:1 mappings between input_species:output_species. Options include:
 - "drop_both_species" or "dbs" or 1: Drop genes that have duplicate mappings in either the input_species or
output_species (DEFAULT).

- "drop_input_species" or "dis" or 2:
 Only drop genes that have duplicate mappings in the input_species.
- "drop_output_species" or "dos" or 3:
 Only drop genes that have duplicate mappings in the output_species.
- "keep_both_species" or "kbs" or 4:
 Keep all genes regardless of whether they have duplicate mappings in either species.
- "keep_popular" or "kp" or 5:
 Return only the most "popular" interspecies ortholog mappings. This procedure tends to yield a greater number of returned genes but at the cost of many of them not being true biological 1:1 orthologs.
- "sum", "mean", "median", "min" or "max":
 When gene_df is a matrix and gene_output="rownames", these options will aggregate many-to-one gene mappings (input_species-to-output_species) after dropping any duplicate genes in the output_species.

round_digits Number of digits to round to when printing percentages.

return_report Return just the ortholog mapping between two species (FALSE) or return both the ortholog mapping as well a data.frame of the report statistics (TRUE).

ref_genes A table of all genes for the reference_species. If NULL (default), this will automatically be created using all_genes.

mc.cores Number of cores to parallelise each target_species with.

verbose Print messages.

... Arguments passed on to convert_orthologs

gene_df Data object containing the genes (see gene_input for options on how the genes can be stored within the object).

Can be one of the following formats:

- **matrix**:
 A sparse or dense matrix.
- **data.frame**:
 A data.frame, data.table, or tibble.
- **codelist**:
 A list or character vector.

Genes, transcripts, proteins, SNPs, or genomic ranges can be provided in any format (HGNC, Ensembl, RefSeq, UniProt, etc.) and will be automatically converted to gene symbols unless specified otherwise with the ... arguments.

Note: If you set method="homologene", you must either supply genes in gene symbol format (e.g. "Sox2") OR set standardise_genes=TRUE.

gene_input Which aspect of gene_df to get gene names from:

- "rownames":
 From row names of data.frame/matrix.
• "colnames":
 From column names of data.frame/matrix.
• <column name>:
 From a column in gene_df, e.g. "gene_names".

gene_output How to return genes. Options include:

• "rownames":
 As row names of gene_df.
• "colnames":
 As column names of gene_df.
• "columns":
 As new columns "input_gene", "ortholog_gene" (and "input_gene_standard"
 if standardise_genes=TRUE) in gene_df.
• "dict":
 As a dictionary (named list) where the names are input_gene and the
 values are ortholog_gene.
• "dict_rev":
 As a reversed dictionary (named list) where the names are ortholog_gene
 and the values are input_gene.

input_species Name of the input species (e.g., "mouse", "fly"). Use map_species
to return a full list of available species.

output_species Name of the output species (e.g. "human", "chicken"). Use
map_species to return a full list of available species.

agg_fun Aggregation function passed to aggregate_mapped_genes. Set to NULL
to skip aggregation step (default).

mthreshold Maximum number of ortholog names per gene to show. Passed to
gorth. Only used when method="gprofiler" (DEFAULT : Inf).

method R package to use for gene mapping:
 • "gprofiler": Slower but more species and genes.
 • "homologene": Faster but fewer species and genes.
 • "babelgene": Faster but fewer species and genes. Also gives con-
 sensus scores for each gene mapping based on a several different data
 sources.

as_sparse Convert gene_df to a sparse matrix. Only works if gene_df is one
of the following classes:

 • matrix
 • Matrix
 • data.frame
 • data.table
 • tibble

If gene_df is a sparse matrix to begin with, it will be returned as a sparse
matrix (so long as gene_output = "rownames" or "colnames").

sort_rows Sort gene_df rows alphanumerically.
run_benchmark

gene_map A data.frame that maps the current gene names to new gene names. This function's behaviour will adapt to different situations as follows:

- gene_map=<data.frame>:
 When a data.frame containing the gene key:value columns (specified by input_col and output_col, respectively) is provided, this will be used to perform aggregation/expansion.

- gene_map=NULL and input_species!=output_species:
 A gene_map is automatically generated by map_orthologs to perform inter-species gene aggregation/expansion.

- gene_map=NULL and input_species==output_species:
 A gene_map is automatically generated by map_genes to perform within-species gene symbol standardization and aggregation/expansion.

as_DelayedArray Convert aggregated matrix to DelayedArray.

input_col Column name within gene_map with gene names matching the row names of X.

output_col Column name within gene_map with gene names that you wish you map the row names of X onto.

Value

A list containing:

- map: A table of inter-species gene mappings.
- report: A list of aggregate orthology report statistics.

If >1 target_species are provided, then a table of aggregated report statistics concatenated across species will be returned instead.

Examples

orth_fly <- report_orthologs(
 target_species = "fly",
 reference_species = "human")

Description

Runs benchmarks tests on all_genes and convert_orthologs across multiple species, using multiple methods ("homologene", and "gprofiler").
Usage

```r
run_benchmark(
  species,
  method_list = c("homologene", "gprofiler", "babelgene"),
  run_convert_orthologs = TRUE,
  remove_failed_times = FALSE,
  save_path = tempfile(fileext = ".csv"),
  mc.cores = 1,
  verbose = TRUE
)
```

Arguments

- `species`: Species names.
- `run_convert_orthologs`: Benchmark `convert_orthologs` function.
- `remove_failed_times`: In instances where no genes were returned, set time to `NA`.
- `save_path`: Path to save results to.
- `mc.cores`: Number of cores to parallelise species across.
- `verbose`: Print messages.
- `benchmark_homologene`: Benchmark method "homologene".
- `benchmark_gprofiler`: Benchmark method "gprofiler".
- `benchmark_babelgene`: Benchmark method "babelgene".

Value

data.table with benchmark results

set_gprofiler

Set gprofiler

Description

Set the default URL for gprofiler API queries.

- default: http://biit.cs.ut.ee/gprofiler
- bea: http://biit.cs.ut.ee/gprofiler_beta

Usage

```r
set_gprofiler(url = "http://biit.cs.ut.ee/gprofiler_beta")
```
Arguments

url the base URL.

Value

Null

taxa_id_dict Taxa ID dictionary

Description

Dictionary of NCBI taxonomy IDs mapped to Latin and common names of 20+ organisms.

Usage

taxa_id_dict(
 include_common_names = TRUE
)

Arguments

species Species to get dictionary for. Can supply either Latin names (e.g. "Homo sapiens") or common names (e.g. "human").

Value

Named list of taxa IDs to organism names.
Index

datasets
- exp_mouse, 19
- exp_mouse_enst, 19

internal
- add_synonyms, 4
- aggregate_rows, 6
- aggregate_rows_monocle3, 7
- all_genes_babelgene, 9
- check_gene_df_type, 11
- dMcast, 17
- earthworm2human_map, 18
- get_orgdb_genomeinfodbdata, 21
- ggtree_plot, 23
- infer_species_plot, 26
- invert_dictionary, 27
- many2many_rows, 27
- map_genes_planosphere, 30
- map_orthologs_babelgene, 32
- map_orthologs_custom, 34
- map_orthologs_gprofiler, 35
- map_orthologs_homologene, 36
- message_parallel, 38
- plot_benchmark_bar, 38
- plot_benchmark_scatter, 39
- remove_image_bg, 44
- run_benchmark, 48
- set_gprofiler, 49
- taxa_id_dict, 50

- add_synonyms, 4
- aggregate_mapped_genes, 4, 14, 47
- aggregate_rows, 6, 6, 27, 28
- aggregate_rows_monocle3, 7
- all_genes, 8, 45, 46, 48
- all_genes_babelgene, 9
- all_species, 10

- check_gene_df_type, 11
- chronos, 43
- convert_orthologs, 4, 12, 45, 46, 48, 49

- create_background, 15
- data.frame, 4, 5, 14, 18, 28, 31, 34, 48
- data.table, 11, 19, 30
- DelayedArray, 6, 7, 14, 28, 48
- dMcast, 17
- earthworm2human_map, 18
- exp_mouse, 19
- exp_mouse_enst, 19
- floor, 6
- force.ultrametric, 43
- format_species, 20, 22
- formula, 18
- gconvert, 9, 24, 29
- get_orgdb_genomeinfodbdata, 21
- get_silhouettes, 22
- getTaxonomy, 40, 43
- ggplot, 23
- ggtree_plot, 23
- gorth, 9, 13–15, 31–33, 35, 45, 47
- gprofiler_namespace, 24
- gprofiler_orgs, 24
- homologene, 9, 15, 32, 33, 36
- homologeneData, 9

- infer_species, 25, 26
- infer_species_plot, 26
- invert_dictionary, 27

- makeChronosCalib, 43
- many2many_rows, 4, 6, 27, 28
- map_genes, 5, 15, 16, 29, 32, 34, 48
- map_genes_planosphere, 30
- map_orthologs, 5, 15, 16, 28, 31, 32, 34, 48
- map_orthologs_babelgene, 32
- map_orthologs_custom, 34
- map_orthologs_gprofiler, 35
map_orthologs_homologene, 36
map_species, 5, 9, 10, 12, 13, 29, 31, 33–36, 36, 37, 40, 42, 43, 47
message_parallel, 38
MRCA, 41
orthogene (orthogene-package), 3
orthogene-package, 3
orthologs, 32
phylo, 40
plot_benchmark_bar, 38
plot_benchmark_scatter, 39
plot_orthotree, 39
prepare_tree, 42
read.tree, 40, 43
remove_image_bg, 44
report_orthologs, 23, 40, 44
rotate, 41
run_benchmark, 48
set_gprofiler, 49

taxa_id_dict, 50