Package ‘pairedGSEA’

May 18, 2024

Title Paired DGE and DGS analysis for gene set enrichment analysis

Version 1.4.0

Description pairedGSEA makes it simple to run a paired Differential
Gene Expression (DGE) and Differential Gene Splicing (DGS) analysis.
The package allows you to store intermediate results for further
investigation, if desired.
pairedGSEA comes with a wrapper function for running an
Over-Representation Analysis (ORA) and functionalities for
plotting the results.

License MIT + file LICENSE

Imports DESeq2, DEXSeq, limma, fgsea, sva, SummarizedExperiment,
S4Vectors, BiocParallel, ggplot2, aggregation, stats, utils,
methods

Suggests writexl, readxl, readr, rhdf5, msigdb, plotly, testthat (>=
3.0.0), knitr, rmarkdown, covr, BiocStyle

Config/testthat/edition 3

Encoding UTF-8

Language en-US

RoxygenNote 7.2.3

VignetteBuilder knitr

biocViews DifferentialExpression, AlternativeSplicing,
DifferentialSplicing, GeneExpression, ImmunoOncology,
GeneSetEnrichment, Pathways, RNASeq, Software, Transcription,

URL https://github.com/shdam/pairedGSEA

BugReports https://github.com/shdam/pairedGSEA/issues

Depends R (>= 4.3.0)

git_url https://git.bioconductor.org/packages/pairedGSEA

git_branch RELEASE_3_19

git_last_commit 438a425

git_last_commit_date 2024-04-30
example_diff_result

Output of running paired_diff on example_se.

Description

This example result is used primarily to do package tests and for function man pages

Usage

data("example_diff_result")

Format

A ‘DataFrame’ with 954 rows and 7 columns.

Value

A ‘DataFrame’.
example_gene_sets

| example_gene_sets | MSigDB gene sets from humans, category C5 with ensemble gene IDs |

Description

This example gene set list is used primarily to do package tests and for function man pages.

Usage

```r
data("example_gene_sets")
```

Format

A list of 77 human gene sets

Value

A list of gene sets

example_ora_results

Output of running paired_ora on example_diff_result and gene sets extracted from MSigDB

Description

This example result is used primarily to do package tests and for function man pages.

Usage

```r
data("example_ora_results")
```

Format

A `DataFrame` with 559 rows and 18 columns.

Value

A `DataFrame`
example_se

A small subset of the GEO:GSE61220 data set.

Description

The subset is used in the vignettes and function man pages. The subset was created by extracting
genes belonging to Telomere-related gene sets and randomly selecting 900 other genes from the
original dataset.

Usage

data("example_se")

Format

A ‘SummarizedExperiment’

- **assay** Count matrix with 5611 transcripts and 6 samples
- **colData** The metadata associated with the count matrix

Value

A ‘SummarizedExperiment’

Source

paired_diff

Run paired DESeq2 and DEXSeq analyses

Description

With paired_diff you can run a paired differential gene expression and splicing analysis. The
function expects a counts matrix or a SummarizedExperiment or DESeqDataSet object as input. A
preliminary prefiltering step is performed to remove genes with a summed count lower than the pro-
vided threshold. Likewise, genes with counts in only one sample are removed. This step is mostly
to speed up differential analyses, as DESeq2 will do a stricter filtering. Surrogate Variable Analysis
is recommended to allow the analyses to take batch effects etc. into account. After the two differ-
ential analyses, the transcript-level p-values will be aggregated to gene-level to allow subsequent
Gene-Set Enrichment Analysis. Transcript-level results can be extracted by setting store_results = TRUE.
Usage

```r
paired_diff(
  object,
  group_col,
  sample_col,
  baseline,
  case,
  metadata = NULL,
  covariates = NULL,
  experiment_title = NULL,
  store_results = FALSE,
  run_sva = TRUE,
  use_limma = FALSE,
  prefilter = 10,
  test = "LRT",
  fit_type = "local",
  quiet = FALSE,
  parallel = FALSE,
  BPPARAM = BiocParallel::bpparam(),
  expression_only = FALSE,
  custom_design = FALSE,
  ...
)
```

Arguments

- **object**: A data object of the types matrix, `SummarizedExperiment`, or `DESeqDataSet`. If a matrix is used, please also provide metadata.
- **group_col**: The metadata column specifying the what group each sample is associated with.
- **sample_col**: The column in the metadata that specifies the sample IDs (should correspond to column names in `object`). Set to "rownames" if the rownames should be used.
- **baseline**: Group value of baseline samples
- **case**: Group value of case samples
- **metadata** (Default: NULL) A metadata file or data.frame object
- **covariates**: Name of column(s) in the metadata that indicate(s) covariates. E.g., c("gender", "tissue_type")
- **experiment_title**: Title of your experiment. Your results will be stored in `paste0("results/", experiment_title, ".RDS")`.
- **store_results** (Default: FALSE) A logical indicating if results should be stored in the folder "results/".
- **run_sva** (Default: TRUE) A logical stating whether SVA should be run.
- **use_limma** (Default: FALSE) A logical determining if limma+voom or DESeq2 + DEXSeq should be used for the analysis
prefilter (Default: 10) The prefilter threshold, where rowSums lower than the prefilter threshold will be removed from the count matrix. Set to 0 or FALSE to prevent prefiltering.

test either "Wald" or "LRT", which will then use either Wald significance tests (defined by nbinomWaldTest), or the likelihood ratio test on the difference in deviance between a full and reduced model formula (defined by nbinomLRT).

fit_type (Default: "local") Either "parametric", "local", "mean", or "glmGamPoi" for the type of fitting of dispersions to the mean intensity.

quiet (Default: FALSE) Whether to print messages.

parallel (Default: FALSE) If FALSE, no parallelization. If TRUE, parallel execution using BiocParallel, see next argument BPPARAM.

BPPARAM (Default: bpparam()) An optional parameter object passed internally to bplapply when parallel = TRUE. If not specified, the parameters last registered with register will be used.

expression_only (Default: FALSE) A logical that indicates whether to only run DESeq2 analysis. Not generally recommended. The setting was implemented to make the SVA impact analysis easier.

custom_design (Default: FALSE) A logical or formula. Can be used to apply a custom design formula for the analysis. Generally not recommended, as pairedGSEA will make its own design formula from the group and covariate columns.

... Additional parameters passed to DESeq()

Value
A DFrame of aggregated pvalues

See Also
Other paired: paired_ora()

Examples

Run analysis on included example data
data("example_se")
diff_results <- paired_diff(
 object = example_se[1:15,],
 group_col = "group_nr",
 sample_col = "id",
 baseline = 1,
 case = 2,
 experiment_title = "Example",
 store_results = FALSE
)
paired_ora

Paired Over-Representation Analysis

Description

paired_ora uses *fora* to run the over-representation analysis. First the aggregated pvalues are adjusted using the Benjamini & Hochberg method. The analysis is run on all significant genes found by DESeq2 and DEXSeq individually. I.e., two runs of *fora* are executed and subsequently joined into a single object. You can use prepare_msigdb to create a list of gene_sets.

Usage

```r
paired_ora(
  paired_diff_result,
  gene_sets,
  cutoff = 0.05,
  min_size = 25,
  experiment_title = NULL,
  expression_only = FALSE,
  quiet = FALSE
)
```

Arguments

- `paired_diff_result`
The output of `paired_diff`
- `gene_sets`
 List of gene sets to analyse
- `cutoff`
 (Default: 0.05) Adjusted p-value cutoff for selecting significant genes
- `min_size`
 (Default: 25) Minimal size of a gene set to test. All pathways below the threshold are excluded.
- `experiment_title`
 Title of your experiment. Your results will be stored in `paste0("results/", experiment_title, ",_fora.RDS")`.
- `expression_only`
 (Default: FALSE) A logical that indicates whether to only run DESeq2 analysis. Not generally recommended.
- `quiet`
 (Default: FALSE) Whether to print messages

Value

A data.table of merged ORA results

See Also

Other paired: `paired_diff()`
Examples

```r
data("example_diff_result")
data("example_gene_sets")

ora <- paired_ora(
  example_diff_result,
  example_gene_sets)
```

plot_ora
Scatter plot of Over-Representation Analysis results

Description
Scatter plot of Over-Representation Analysis results

Usage

```r
plot_ora(
  ora,
  pattern = NULL,
  paired = TRUE,
  plotly = FALSE,
  cutoff = 0.05,
  lines = TRUE,
  colors = c("darkgray", "purple", "lightblue", "maroon")
)
```

Arguments

- **ora**: Output of `paired_ora`
- **pattern**: Highlight pathways containing a specific regex pattern
- **paired**: (Default: TRUE) New plotting mode for paired ora analysis
- **plotly**: (Default: FALSE) Logical on whether to return plot as an interactive `plotly` plot or a simple `ggplot`.
- **cutoff**: (Default: 0.2) Adjusted p-value cutoff for pathways to include
- **lines**: (Default: TRUE) Whether to show dashed lines
- **colors**: (Default: c("darkgray", "purple", "navy")) Colors to use in plot. The colors are ordered as "Both", "DGS", and "DGE"

Value
A `ggplot`
prepare_msigdb

Load MSigDB and convert to names list of gene sets

Description

This function is wrapper around `msigdbr()`. Please see their manual for details on its use. The function extracts the gene set name and a user-defined gene id type (Default: "ensembl_gene"). Please make sure the gene IDs match those from your DE analysis. This function will format the gene sets such that they can be directly used with `paired_ora()`.

Usage

```r
prepare_msigdb(
  gene_id_type = "ensembl_gene",
  species = "Homo sapiens",
  category = "C5",
  subcategory = NULL
)
```

Arguments

- `gene_id_type` (Default: "ensembl_gene") The gene ID type to extract. The IDs should match the gene IDs from your DE analysis.
- `species` Species name, such as Homo sapiens or Mus musculus.
- `category` MSigDB collection abbreviation, such as H or C1.
- `subcategory` MSigDB sub-collection abbreviation, such as CGP or BP.

Value

A list of gene sets

Note

Suggested: importFrom msigdbr msigdbr

Examples

```r
gene_sets <- prepare_msigdb(species = "Homo sapiens")
```
Index

* datasets
 example_diff_result, 2
 example_gene_sets, 3
 example_ora_results, 3
 example_se, 4
* paired
 paired_diff, 4
 paired_ora, 7
* plotting
 plot_ora, 8

BiocParallel, 6
bplapply, 6
bpparam(), 6

DESeq(), 6
DESeq2, 4, 6, 7
DESeqDataSet, 4, 5
DEXSeq, 7

example_diff_result, 2
example_gene_sets, 3
example_ora_results, 3
example_se, 4

fora, 7

msigdbr(), 9

nbinomLRT, 6
nbinomWaldTest, 6

paired_diff, 4, 7
paired_ora, 6, 7, 8
paired_ora(), 9
plot_ora, 8
plotly, 8
prepare_msigdb, 7, 9

SummarizedExperiment, 4, 5