Package ‘pcxn’

May 30, 2024

Type Package

Version 2.26.0

Title Exploring, analyzing and visualizing functions utilizing the pcxnData package

Description Discover the correlated pathways/gene sets of a single pathway/gene set or discover correlation relationships among multiple pathways/gene sets. Draw a heatmap or create a network of your query and extract members of each pathway/gene set found in the available collections (MSigDB H hallmark, MSigDB C2 Canonical pathways, MSigDB C5 GO BP and Pathprint).

Author Sokratis Kariotis, Yered Pita-Juarez, Winston Hide, Wenbin Wei

Maintainer Sokratis Kariotis <s.kariotis@sheffield.ac.uk>

License MIT + file LICENSE

biocViews ExperimentData, ExpressionData, MicroarrayData, GEO, Homo_sapiens_Data, OneChannelData, PathwayInteractionDatabase

NeedsCompilation no

Suggests igraph, annotate, org.Hs.eg.db

Imports methods, grDevices, utils, pheatmap

Depends R (>= 3.4), pcxnData

Encoding UTF-8

RoxygenNote 6.0.1

PackageStatus Deprecated

git_url https://git.bioconductor.org/packages/pcxn
git_branch RELEASE_3_19
git_last_commit cf7a4c0
git_last_commit_date 2024-04-30

Repository Bioconductor 3.19

Date/Publication 2024-05-29
Contents

pcxn ... 2
pcxn-class .. 4
pcxn_explore_analyze 5
pcxn_gene_members 6
pcxn_heatmap .. 7
pcxn_network .. 8

Index 9

pcxn Exploring, analyzing and visualizing functions utilizing the pcxnData package

Description

Discover the correlated pathways/gene sets of a single pathway/gene set or discover correlation
types among multiple pathways/gene sets. Draw a heatmap or create a network of your
query and extract members of each pathway/gene set found in the available collections (MSigDB H
hallmark, MSigDB C2 Canonical pathways, MSigDB C5 GO BP and Pathprint).

Details

Package: pcxn
Type: Package
Version: 2.0.0
Date: 2018-4-1
License: MIT

Author(s)

Sokratis Kariotis, Yered Pita-Juarez, Winston Hide, Wenbin Wei
Maintainer: Sokratis Kariotis <s.kariotis@sheffield.ac.uk>

References

Pathway Coexpression Network: Revealing Pathway Relationships."
Examples

library(pcxnData)

load the data
ds = c("cp_gs_v5.1", "gobp_gs_v5.1", "h_gs_v5.1", "pathprint.Hs.gs",
 "pathCor_CPv5.1_dframe",
 "pathCor_CPv5.1_unadjusted_dframe",
 "pathCor_GOBPv5.1_dframe",
 "pathCor_GOBPv5.1_unadjusted_dframe",
 "pathCor_Hv5.1_dframe",
 "pathCor_Hv5.1_unadjusted_dframe",
 "pathCor_pathprint_v1.2.3_dframe",
 "pathCor_pathprint_v1.2.3_unadjusted_dframe")

data(list = ds)

Explore the static extendable network (correlation coefficients are adjusted
for gene overlap) by focusing on single pathways and their 10 most correlated
neighbours in the pathprint collection
pcxn.obj <- pcxn_explore(collection = "pathprint",
query_geneset = "Alzheimer's disease (KEGG)",
adj_overlap = TRUE,
top = 10,
min_abs_corr = 0.05,
max_pval = 0.05)

Explore the static extendable network (correlation coefficients are not
adjusted for gene overlap) by focusing on single pathways and their
10 most correlated neighbours in the pathprint collection
pcxn.obj <- pcxn_explore(collection = "pathprint",
query_geneset = "Alzheimer's disease (KEGG)",
adj_overlap = FALSE,
top = 10,
min_abs_corr = 0.05,
max_pval = 0.05)

Analyse relationships between groups of pathways shown to be enriched in the
collection by gene set enrichment (correlation coefficients are adjusted
for gene overlap)
pcxn.obj <- pcxn_analyze(collection = "pathprint",
phenotype_0_genesets = c("ABC transporters (KEGG)",
 "ACE Inhibitor Pathway (Wikipathways)",
 "AR down reg. targets (Netpath)")
phenotype_1_genesets = c("DNA Repair (Reactome)",
adj_overlap = TRUE,
top = 10,
min_abs_corr = 0.05,
max_pval = 0.05)

Analyse relationships between groups of pathways shown to be enriched in the
collection by gene set enrichment (correlation coefficients are not adjusted
for gene overlap)
pcxn.obj <- pcxn_analyze(collection = "pathprint",
phenotype_0_genesets = c("ABC transporters (KEGG)",
"ACE Inhibitor Pathway (Wikipathways)",
"AR down reg. targets (Netpath)"),
phenotype_1_genesets = c("DNA Repair (Reactome)")
adj_overlap = FALSE,
top = 10,
min_abs_corr = 0.05,
max_pval = 0.05)

Generate the heatmap for any pcxn object generated by the pcxn_explore() or
pcxn_analyze() function
hm <- pcxn_heatmap(pcxn.obj, cluster_method = "complete")

Get the gene members (Entrez Ids and names) of any pathway/geneset in the
available collections
genesets_list <- pcxn_gene_members(pathway_name = "Alzheimer's disease (KEGG)"

Create a network for any pcxn object generated by the pcxn_explore() or
pcxn_analyze() function
network <- pcxn_network(pcxn.obj)

pcxn-class

A pcxn object produced by pcxn_explore() or pcxn_analyze(). It holds
the corresponding analysis, the data produced by the analysis and the
geneset groups involved.

Description

A pcxn object produced by pcxn_explore() or pcxn_analyze(). It holds the corresponding analysis,
the data produced by the analysis and the geneset groups involved.

Value

pcxn object with a type, data and geneset_groups field

Slots

- type character.
- data matrix.
- geneset_groups list.

Examples

Create and show a pcxn object
pcxn <- pcxn_explore("pathprint","Alzheimer's disease (KEGG)", 10,
0.05, 0.05)

pcxn
pcxn_explore_analyze

pcxn_explore_analyze
Discover correlated pathway/gene sets of a single pathway/gene set or correlation relationships among multiple pathways/gene sets.

Description

Using pcxn_explore, select a single pathway/gene set from one of the four collections (MSigDB H hallmark gene sets, MSigDB C2 Canonical pathways, MSigDB C5 GO BP gene sets, and Pathprint) and discover its correlated pathway/gene sets within the same collection.

Using pcxn_analyze, discover correlation relationships among multiple pathways/gene sets identified by GSEA (gene set enrichment analysis). All the input pathways/gene sets should come from the same collection. MSigDB H hallmark gene sets, MSigDB C2 Canonical pathways, MSigDB C5 GO BP gene sets, and Pathprint are treated as four separate collections.

Usage

```r
pcxn_explore(collection = c("pathprint", "MSigDB_H","MSigDB_C2_CP",  
                        "MSigDB_C5_GO_BP"),
               query_geneset,
               adj_overlap = FALSE,
               top = 10,
               min_abs_corr = 0.05,
               max_pval = 0.05)

pcxn_analyze(collection = c("pathprint", "MSigDB_H","MSigDB_C2_CP",  
                            "MSigDB_C5_GO_BP"),
              phenotype_0_genesets,
              phenotype_1_genesets,
              adj_overlap = FALSE,
              top = 10,
              min_abs_corr = 0.05,
              max_pval = 0.05)
```

Arguments

- **collection**: pathways’ collection chosen among: "pathprint", "MSigDB_H", "MSigDB_C2_CP", "MSigDB_C5.GO_BP"
- **query_geneset**: the single pathway of interest
- **phenotype_0_genesets**: genesets/pathways of the first group of pathways
- **phenotype_1_genesets**: genesets/pathways of the second group of pathways
- **adj_overlap**: whether the correlation coefficients are adjusted for gene overlap
- **top**: most correlated genesets/pathways
- **min_abs_corr**: minimum absolute correlation
- **max_pval**: maximum p-value
pcxn_gene_members

Value

a pcxn object

Author(s)

Sokratis Kariotis

References

Examples

```r
# pcxn_explore function can be used with the default parameters:
pcxn_explore("pathprint","Alzheimer's disease (KEGG)")

# If specific parameters are desired we can use the full list of arguments:
pcxn_explore("pathprint","Alzheimer's disease (KEGG)", FALSE,
100, 0.02, 0.045)

# pcxn_analyze can be used with two gene sets and the default parameters:
pcxn_analyze("pathprint",c("ABC transporters (KEGG)",
"ACE Inhibitor Pathway (Wikipathways)",
"AR down reg. targets (Netpath)"),
c("DNA Repair (Reactome)"))

# Alternatively, you can use only one gene set:
pcxn_analyze("MSigDB_H",c("HALLMARK_COAGULATION","HALLMARK_UV_RESPONSE_UP"))

# If specific parameters are desired we can use the full list of arguments:
pcxn_analyze("pathprint",c("ABC transporters (KEGG)",
"ACE Inhibitor Pathway (Wikipathways)",
"AR down reg. targets (Netpath)"),
c("DNA Repair (Reactome)"),
FALSE,
top = 100,
min_abs_corr = 0.025,
max_pval = 0.03)
```

Description

Acquire the gene members of one of the available pathways that belong to MSigDB H hallmark pathways, MSigDB C2 Canonical pathways, MSigDB C5 GO BP gene sets or Pathprint genesets
Usage
pcxn_gene_members(pathway_name = "Alzheimer's disease (KEGG)")

Arguments
pathway_name the pathway whose members we want

Value
a matrix of Entrez IDs and gene symbols

Author(s)
Sokratis Kariotis

Examples
Get the members of a single pathway
pcxn_gene_members("Alzheimer's disease (KEGG)"

pcxn_heatmap

Draw a heatmap of a pcxn object

Description
Draw a heatmap of a pcxn object where color represents correlation coefficients.

Usage
pcxn_heatmap(object, cluster_method = "complete")

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>pcxn object created by pcxn_explore or pcxn_analyze functions</td>
</tr>
<tr>
<td>cluster_method</td>
<td>clustering method drawn from: "ward.D", "ward.D2", "single", "complete", "average", "mcquitty", "median", "centroid"</td>
</tr>
</tbody>
</table>

Value
a pheatmap object

Author(s)
Sokratis Kariotis

See Also
pcxn_network
Examples

Draw a heatmap of a pcxn object with a specific clustering method
object <- pcxn_explore("pathprint","Alzheimer's disease (KEGG)", 10, 0.05, 0.05)

pcxn_heatmap(object, "complete")

pcxn_network

Create a network of a pcxn object

Description

Create a network of a pcxn object

Usage

pcxn_network(object)

Arguments

object pcxn object created by explore or analyze functions

Value
draws a tkplot object and saves a graph object representing the network

Examples

Create a network of a pcxn object
object <- pcxn_explore("pathprint","Alzheimer's disease (KEGG)",
10, 0.05, 0.05)

network <- pcxn_network(object)
Index

* package
 pcxn, 2

Introduction to pcxn (pcxn), 2

pcxn, 2
pcxn-class, 4
pcxn_analyze (pcxn_explore_analyze), 5
pcxn_explore (pcxn_explore_analyze), 5
pcxn_explore_analyze, 5
pcxn_gene_members, 6
pcxn_heatmap, 7
pcxn_network, 7, 8