Package ‘pengls’

April 4, 2024

Type Package
Title Fit Penalised Generalised Least Squares models
Version 1.8.0
Description Combine generalised least squares methodology from the nlme package for dealing with autocorrelation with penalised least squares methods from the glmnet package to deal with high dimensionality. This pengls packages glues them together through an iterative loop. The resulting method is applicable to high dimensional datasets that exhibit autocorrelation, such as spatial or temporal data.
License GPL-2
Encoding UTF-8
RoxygenNote 7.2.1
Imports glmnet, nlme, stats, BiocParallel
Suggests knitr,rmarkdown,testthat
VignetteBuilder knitr
Depends R (>= 4.2.0)
biocViews Transcriptomics, Regression, TimeCourse, Spatial
BugReports https://github.com/sthawinke/pengls
git_url https://git.bioconductor.org/packages/pengls
git_branch RELEASE_3_18
git_last_commit b111185
git_last_commit_date 2023-10-24
Repository Bioconductor 3.18
Date/Publication 2024-04-03
Author Stijn Hawinkel [cre, aut](https://orcid.org/0000-0002-4501-5180)
Maintainer Stijn Hawinkel <stijn.hawinkel@psb.ugent.be>
R topics documented:

coef.cv.pengls 2
coef.pengls 3
cv.pengls 3
getCorMat 5
getLoss 6
makeFolds 7
pengls 7
predict.cv.pengls 10
predict.pengls 10
print.cv.pengls 11
print.pengls 11

Index 12

c coef.cv.pengls

Extract coefficients from a cv.pengls model

Description

Extract coefficients from a cv.pengls model

Usage

```r
## S3 method for class 'cv.pengls'
coef(object, which = "lambda.1se", ...)
```

Arguments

- `object` A cv.pengls object
- `which` a character string, for which lambda should coefficients be returned
- `...` further arguments, currently ignored

Value

The vector of coefficients
coef.pengls

Extract coefficients from a pengls model

Usage

```r
## S3 method for class 'pengls'
coef(object, ...)
```

Arguments

- **object**: A pengls object
- **...**: further arguments, currently ignored

Value

The vector of coefficients

cv.pengls

Perform cross-validation pengls

Description

Perform cross-validation pengls

Usage

```r
cv.pengls(
  data,
  glsSt,
  xNames,
  outVar,
  corMat,
  nfolds,
  foldid,
  scale = FALSE,
  center = FALSE,
  cvType = "blocked",
  lambdas,
  transFun = "identity",
  transFunArgs = list(),
  loss = c("R2", "MSE"),
  ...
)
```
Arguments

data A data matrix or data frame

glsSt a covariance structure, as supplied to nlme::gls as "correlation"

xNames names of the regressors in data

outVar name of the outcome variable in data

corMat a starting value for the correlation matrix. Taken to be a diagonal matrix if missing

nfolds an integer, the number of folds used in cv.glmnet to find lambda

foldid An optional vector defining the fold

scale, center booleans, should regressors be scaled to zero mean and variance 1? Defaults to TRUE

cvType A character vector defining the type of cross-validation. Either "random" or "blocked", ignored if foldid is provided

lambdas an optional lambda sequence

transFun a transformation function to apply to predictions and outcome in the cross-validation

transFunArgs Additional arguments passed onto transFun

loss a character vector, currently either 'R2' or 'MSE' indicating the loss function (although R2 is not a proper loss...)

... passed onto glmnet::glmnet

Value

A list with components

lambda The series of lambdas

cvm The vector of mean R2’s

cvsd The standard error of R2 at the maximum

cvOpt The R2 according to the 1 standard error rule

coeffs The matrix of coefficients for every lambda value

bestFit The best fitting pengls model according to the 1 standard error rule

lambda.min Lambda value with maximal R2

lambda.1se Smallest lambda value within 1 standard error from the maximum

foldid The folds

glsSt The nlme correlation object

loss The loss function used
getCorMat

Examples

```r
library(nlme)
library(BiocParallel)
n <- 20  # Sample size
p <- 50  # Number of features
g <- 10  # Size of the grid

# Generate grid
Grid <- expand.grid("x" = seq_len(g), "y" = seq_len(g))
# Sample points from grid without replacement
GridSample <- Grid[sample(nrow(Grid), n, replace = FALSE),]

# Generate outcome and regressors
b <- matrix(rnorm(p*n), n, p)
a <- rnorm(n, mean = b %*% rbinom(p, size = 1, p = 0.2))  # 20% signal

# Compile to a matrix
df <- data.frame("a" = a, "b" = b, GridSample)

# Define the correlation structure (see ?nlme::gls), with initial nugget 0.5 and range 5
corStruct = corGaus(form = ~ x + y, nugget = TRUE, value = c("range" = 5, "nugget" = 0.5))

# Fit the pengls model, for simplicity for a simple lambda
penglsFitCV = cv.pengls(data = df, outVar = "a", xNames = grep(names(df), pattern = "b", value = TRUE),
glsSt = corStruct, nfolds = 5)

# With MSE as loss function
penglsFitCVmse = cv.pengls(data = df, outVar = "a",
glsSt = corStruct, nfolds = 5, loss = "MSE")

# Get the (square root of the inverse of the) correlation matrix
getCorMat(data, glsSt, Coef = c(coef(glsSt)), control, outVar)
```

getCorMat

Get the (square root of the inverse of the) correlation matrix

Description

Get the (square root of the inverse of the) correlation matrix

Usage

```r
getCorMat(data, glsSt, Coef = c(coef(glsSt)), control, outVar)
```
Arguments

data The data frame
 glsSt The correlation object for gls
 Coef optional vector of coefficients to glsSt
 control the list of control arguments for gls
 outVar the name of the outcome variable

Value

A list with components

 corMat The square root of the inverse correlation matrix
 Coef The coefficients of the correlation object

getLoss

Calculate the loss given predicted and observed values

Description

Calculate the loss given predicted and observed values

Usage

getLoss(preds, obs, loss)

Arguments

 preds Matrix of predicted values
 obs vector of observed values
 loss a character vector indicating the loss type, see ?cv.pengls

Value

the evaluated loss
makeFolds

Description

Divide observations into folds

Usage

```r
makeFolds(nfolds, data, cvType, coords)
```

Arguments

- `nfolds`: The number of folds
- `data`: the dataset
- `cvType`: a character vector, indicating the type of cross-validation required, either blocked or random
- `coords`: the names of the coordinates in data

Value

the vector of folds

Examples

```r
nfolds <- 10
data <- expand.grid("x" = seq_len(10), "y" = seq_len(10))
randomFolds <- makeFolds(nfolds = nfolds, data, "random", c("x", "y"))
blockedFolds <- makeFolds(nfolds = nfolds, data, "blocked", c("x", "y"))
```

pengls

Description

Iterative estimation of penalised generalised least squares
Usage

pengls(
 data,
 glsSt,
 xNames,
 outVar,
 corMat,
 lambda,
 foldid,
 maxIter = 30,
 tol = 0.05,
 verbose = FALSE,
 scale = FALSE,
 center = FALSE,
 optControl = lmeControl(opt = "optim", maxIter = 500, msVerbose = verbose, msMaxIter = 500, niterEM = 1000, msMaxEval = 1000),
 nfolds = 10,
 penalty.factor = c(0, rep(1, length(xNames))),
 ...
)

Arguments

data A data matrix or data frame

glsSt a covariance structure, as supplied to nlme::gls as "correlation"

xNames names of the regressors in data

outVar name of the outcome variable in data

corMat a starting value for the correlation matrix. Taken to be a diagonal matrix if missing

lambda The penalty value for glmnet. If missing, the optimal value of vanilla glmnet without autocorrelation component is used

foldid An optional vector defining the fold

maxIter maximum number of iterations between glmnet and gls

tol A convergence tolerance

verbose a boolean, should output be printed?

scale, center booleans, should regressors be scaled to zero mean and variance 1? Defaults to TRUE

optControl control arguments, passed onto nlme::gls' control argument

nfolds an integer, the number of folds used in cv.glmnet to find lambda

penalty.factor passed onto glmnet::glmnet. The first entry is zero by default for the intercept, which is not shrunk

... passed onto glmnet::glmnet
Value

A list with components

- glmnet: The glmnet fit, which can be manipulated as such
- gls: A list with info on the estimated correlation matrix
- iter: The iterations needed
- conv: A boolean, indicating whether the iteration between mean model and covariance estimation converged
- xNames, data, glsSt, outVar: As provided
- lambda: The lambda penalty parameter used

See Also

cv.pengls

Examples

Example 1: spatial data

```r
# Define the dimensions of the data
library(nlme)
n <- 50 # Sample size
p <- 100 # Number of features
g <- 10 # Size of the grid

# Generate grid
Grid <- expand.grid(x = seq_len(g), y = seq_len(g))

# Sample points from grid without replacement
GridSample <- Grid[sample(nrow(Grid), n, replace = FALSE),]

# Generate outcome and regressors
b <- matrix(rnorm(p*n), n, p)
a <- rnorm(n, mean = b %*% rbinom(p, size = 1, p = 0.2)) # 20% signal

# Compile to a matrix
df <- data.frame(a = a, b = b, GridSample)

# Define the correlation structure (see ?nlme::gls), with initial nugget 0.5 and range 5
corStruct <- corGaus(form = ~ x + y, nugget = TRUE, value = c("range" = 5, "nugget" = 0.5))

# Fit the pengls model, for simplicity for a simple lambda
penglsFit <- pengls(data = df, outVar = "a", xNames = grep(names(df), pattern = "b", value = TRUE),
glsSt = corStruct, nfolds = 5)
```

Example 2: timecourse data

```r
dftime <- data.frame(a = a, b = b, t = seq_len(n))
dftime$a[-1] = dftime$a[-n]*0.25 # Some temporal signal
corStructTime <- corAR1(form = ~ t, value = 0.5)
penglsFitTime <- pengls(data = dftime, outVar = "a",
xNames = grep(names(dftime), pattern = "b", value = TRUE),
glsSt = corStructTime, nfolds = 5)
```
predict.cv.pengls
Make predictions from a cv.pengls model

Description

Make predictions from a cv.pengls model

Usage

```r
## S3 method for class 'cv.pengls'
predict(object, ...)  
```

Arguments

- `object`: A cv.pengls object
- `...`: further arguments, currently ignored

Value

A vector with predicted values

predict.pengls
Make predictions from a pengls model

Description

Make predictions from a pengls model

Usage

```r
## S3 method for class 'pengls'
predict(object, newx, ...)  
```

Arguments

- `object`: A pengls object
- `newx`: The test data
- `...`: further arguments, currently ignored

Value

A vector with predicted values
Description
Print a summary of a cv.pengls model

Usage
S3 method for class ‘cv.pengls’
print(x, ...)

Arguments
x A cv.pengls object
... further arguments, currently ignored

Value
Prints output to console

print.pengls
Print a summary of a pengls model

Description
Print a summary of a pengls model

Usage
S3 method for class ‘pengls’
print(x, ...)

Arguments
x A pengls object
... further arguments, currently ignored

Value
Prints output to console
Index

coeff.cv.pengls, 2
coeff.pengls, 3
cv.pengls, 3

getCodeMat, 5
getLoss, 6

makeFolds, 7

pengls, 7
predict.cv.pengls, 10
predict.pengls, 10
print.cv.pengls, 11
print.pengls, 11