Package ‘phosphonormalizer’

May 30, 2024

Type Package
Title Compensates for the bias introduced by median normalization in
Version 1.28.0
Date 2016-11-11
Description It uses the overlap between enriched and non-enriched
datasets to compensate for the bias introduced in global
phosphorylation after applying median normalization.
biocViews Software, StatisticalMethod, WorkflowStep, Normalization,
Proteomics
License GPL (>= 2)
Imports plyr, stats, graphics, matrixStats, methods
Suggests knitr, rmarkdown, testthat
Enhances MSnbase
Depends R (>= 4.0)
VignetteBuilder knitr
NeedsCompilation no
LazyData true
git_url https://git.bioconductor.org/packages/phosphonormalizer
git_branch RELEASE_3_19
git_last_commit 676d839
git_last_commit_date 2024-04-30
Repository Bioconductor 3.19
Date/Publication 2024-05-29
Author Sohrab Saraei [aut, cre],
 Tomi Suomi [ctb],
 Otto Kauko [ctb],
 Laura Elo [ths]
Maintainer Sohrab Saraei <sohrab.saraei@blueprintgenetics.com>
Contents

- enriched.rd .. 2
- non.enriched.rd ... 3
- normalizePhospho ... 4

Index 6

enriched.rd Enriched dataset

Description

A dataset containing sequences, modifications and abundances of about 4000 peptides over 5 samples with 3 technical replicates each.

Usage

enriched.rd

Format

A data frame with 4099 rows and 17 variables, all samples are median normalized:

- **Sequence** The sequence of the peptide
- **Modification** The modification and its location
- **gcNorm.ctrl2.1** Sample: Control 2 Technical Replicate: 1
- **gcNorm.ctrl2.2** Sample: Control 2 Technical Replicate: 2
- **gcNorm.ctrl2.3** Sample: Control 2 Technical Replicate: 3
- **gcNorm.c1r1.1** Sample: Control 1 Technical Replicate: 1
- **gcNorm.c1r1.2** Sample: Control 1 Technical Replicate: 2
- **gcNorm.c1r1.3** Sample: Control 1 Technical Replicate: 3
- **gcNorm.CIP2A.1** Sample: CIP2A Technical Replicate: 1
- **gcNorm.CIP2A.2** Sample: CIP2A Technical Replicate: 2
- **gcNorm.CIP2A.3** Sample: CIP2A Technical Replicate: 3
- **gcNorm.RAS.1** Sample: RAS Technical Replicate: 1
- **gcNorm.RAS.2** Sample: RAS Technical Replicate: 2
- **gcNorm.RAS.3** Sample: RAS Technical Replicate: 3
- **gcNorm.OA.1** Sample: OA Technical Replicate: 1
- **gcNorm.OA.2** Sample: OA Technical Replicate: 2
- **gcNorm.OA.3** Sample: OA Technical Replicate: 3 ...

Value

Example Non-enriched dataset
non.enriched.rd

Source

http://www.nature.com/articles/srep13099

Description

A dataset containing sequences, modifications and abundances of about 17000 peptides measured over 5 samples with 3 technical replicates each.

Usage

non.enriched.rd

Format

A data frame with 16982 rows and 17 variables, all samples are median normalized:

- **Sequence** The sequence of the peptide
- **Modification** The modification and its location
- **gcNorm.ctrl2.1** Sample: Control 2 Technical Replicate: 1
- **gcNorm.ctrl2.2** Sample: Control 2 Technical Replicate: 2
- **gcNorm.ctrl2.3** Sample: Control 2 Technical Replicate: 3
- **gcNorm.ctrl1.1** Sample: Control 1 Technical Replicate: 1
- **gcNorm.ctrl1.2** Sample: Control 1 Technical Replicate: 2
- **gcNorm.ctrl1.3** Sample: Control 1 Technical Replicate: 3
- **gcNorm.CIP2A.1** Sample: CIP2A Technical Replicate: 1
- **gcNorm.CIP2A.2** Sample: CIP2A Technical Replicate: 2
- **gcNorm.CIP2A.3** Sample: CIP2A Technical Replicate: 3
- **gcNorm.RAS.1** Sample: RAS Technical Replicate: 1
- **gcNorm.RAS.2** Sample: RAS Technical Replicate: 2
- **gcNorm.RAS.3** Sample: RAS Technical Replicate: 3
- **gcNorm.OA.1** Sample: OA Technical Replicate: 1
- **gcNorm.OA.2** Sample: OA Technical Replicate: 2
- **gcNorm.OA.3** Sample: OA Technical Replicate: 3

Value

Example Non-enriched dataset

Source

http://www.nature.com/articles/srep13099
Pairwise Normalization of MS-based phosphoproteomic data

Description

This function compensates for the bias introduced in global phosphorylation in the sample after
using median normalization.

Usage

normalizePhospho(enriched, non.enriched, phospho = NULL,
samplesCols, modseqCols, techRep, plot.fc=NULL)

Arguments

enriched The enriched data with the type data.frame or MSnSet, which should contain the
sequence, modification of the sequence with their phosphorylation site and their
abundances across samples

non.enriched The non-enriched data with the type data.frame or MSnSet, which should con-
tain the sequence, modification of the sequence with their phosphorylation site
and their abundances across samples

phospho a string that shows the term that represents phosphorylation in the modification
column of the data. If it is not assigned, "Phospho" will be used as the default
value

samplesCols A data.frame with two columns, with the column names enriched and non.enriched,
of type numeric or integer, which must contain the column number of samples
that hold the abundances

modseqCols A data.frame with two columns, with the names enriched and non.enriched, of type numeric or integer, which must contain the column number of samples that
hold the sequence and modifications of the peptides

techRep a factor that holds information about columns order and the technical replicates
of the samples

plot.fc This parameter if set plots the fold change distribution before and after pairwise
normalization. controls and samples should be set as named vectors in a list
(look at the example)

Details

It is shown that global median normalization can introduce bias in the fold change of global phos-
phorylation between samples. It is suggested that by taking the non-enriched data into considera-
tion, this bias could be compensated (Kauko et al. 2015).

Value

A data.frame with the normalized values and their sequence and modification.
normalizePhospho

Author(s)

Sohrab Saraei, Tomi Suomi, Otto Kauko, Laura L. Elo

Maintainer: Sohrab Saraei <sohrab.saraei@utu.fi>

References

http://www.nature.com/articles/srep13099

See Also

MSnbase

Examples

```r
#Specifying the column numbers of abundances in the original data.frame,
#from both enriched and non-enriched runs
samplesCols <- data.frame(enriched=3:17, non.enriched=3:17)
#Specifying the column numbers of sequence and modification in the original data.frame,
#from both enriched and non-enriched runs
modseqCols <- data.frame(enriched = 1:2, non.enriched = 1:2)
#The samples and their technical replicates
techRep <- factor(x = c(1,1,1,2,2,2,3,3,3,4,4,4,5,5,5))
#Call the function
norm <- normalizePhospho(enriched = enriched.rd, non.enriched = non.enriched.rd,
samplesCols = samplesCols, modseqCols = modseqCols, techRep = techRep,
plot.fc = list(control = c(1,2), samples = c(3,4,5)))
head(norm)
```
Index

* Mass-spectrometry
 normalizePhospho, 4

* Normalization,
 normalizePhospho, 4

* Phosphoproteomics,
 normalizePhospho, 4

* datasets
 enriched.rd, 2
 non.enriched.rd, 3

enriched.rd, 2

non.enriched.rd, 3
normalizePhospho, 4