Package ‘pickgene’

May 30, 2024

Version 1.76.0
Author Brian S. Yandell <yandell@stat.wisc.edu>
Title Adaptive Gene Picking for Microarray Expression Data Analysis
Description Functions to Analyze Microarray (Gene Expression) Data.
Maintainer Brian S. Yandell <yandell@stat.wisc.edu>
License GPL (>= 2)
Imports graphics, grDevices, MASS, stats, utils
URL http://www.stat.wisc.edu/~yandell/statgen
biocViews Microarray, DifferentialExpression
git_url https://git.bioconductor.org/packages/pickgene
git_branch RELEASE_3_19
git_last_commit 6d7929c
git_last_commit_date 2024-04-30
Repository Bioconductor 3.19
Date/Publication 2024-05-29

Contents

em.ggb .. 2
model.pickgene .. 3
oddsplot ... 4
pickgene ... 5
pickgene-internal 8
robustscale ... 9
Simulation.pickgene 10

Index 13
EM calculation for Gamma-Gamma-Bernoulli Model

Description

The function plots contours for the odds that points on microarray show differential expression between two conditions (e.g. Cy3 and Cy5 dye channels on the same microarray).

Usage

em.ggb(x, y, theta, start = c(2,1.2,2.7), pprior = 2, printit = FALSE, tol = 1e-9, offset = 0)

Arguments

x first condition expression levels
y second condition expression levels
theta four parameters a, a0, nu, p
start starting estimates for theta
pprior Beta hyperparameter for prob p of differential expression
printit print iterations if TRUE
tol parameter tolerance for convergence
offset offset added to xx and yy before taking log (can help with negative adjusted values)

Details

Fit Gamma/Gamma/Bernoulli model (equal marginal distributions) The model has spot intensities x ~ Gamma(a,b); y ~ Gamma(a,c). The shape parameters b and c are ~ Gamma(a0,nu). With probability p, b = c; otherwise b != c. All spots are assumed to be independent.

Value

Four parameter vector theta after convergence.

Author(s)

Michael Newton

References

model.pickgene

See Also

oddsplot

Examples

Not run:
em.ggb(x, y)
End(Not run)

model.pickgene Create Model Matrix for Orthogonal Contrasts

Description

The function created a model matrix of orthogonal contrasts to be used by pickgene.

Usage

model.pickgene(faclevel, facnames = letters[seq(length(faclevel))],
contrasts.fac = "contr.poly", collapse = "+", show =
NULL, renorm = 1, modelexpr = formula(paste("~",
paste(facnames, collapse = collapse))),
contrasts.list = contr.list)

Arguments

faclevel vector with number of levels for each factor
facnames vector of factor names (default = "a", "b", ...)
contrasts.fac vector of contrast types
collapse "+" for additive model, "#" for full model with interactions
show vector of contrast numbers to show (default is all)
renorm vector to renormalize contrasts (e.g., use sqrt(2) to turn two-condition contrast
into fold change)
modelexpr model formula
contrasts.list list of contrasts indexed by facnames

Details

Creates a model matrix data frame with first column having all 1’s and other columns having con-
trasts.

Value

Result of call to model.matrix
Author(s)
Brian Yandell

See Also
model.matrix

Examples
model.pickgene(c(2,3), c("sex","genotype"))

oddsplot Odds Plot for Differential Microarray Expression

Description
The function plots contours for the odds that points on microarray show differential expression between two conditions (e.g. Cy3 and Cy5 dye channels on the same microarray).

Usage
oddsplot(x, y, theta, by.level = 10, rotate = FALSE, offset = 0, main = "", xlab = xlabs, ylab = ylabs, col = NULL, cex = c(0.25, 0.75), shrink = FALSE, lims = range(c(x, y)))

Arguments
- x: first condition expression levels
- y: second condition expression levels
- theta: four parameters from em.ggb
- by.level: odds plot contours increase by this level
- rotate: rotate to average versus ratio if TRUE, otherwise plot conditions against each other
- offset: offset for log transform
- main: main title for plot
- xlab: horizontal axis label (default if Cy3 if rotate is FALSE, Average Intensity otherwise)
- ylab: vertical axis label (default if Cy5 if rotate is FALSE, Cy3 / Cy5 otherwise)
- col: color of points (if NULL, use black for non-changing points, blue for changing points)
- cex: character expansion (use rep(.25,2) to have all points the same size)
- shrink: use shrinkage on expression levels if TRUE (default is FALSE)
- lims: limits for plot area
Details

Fit Gamma/Gamma/Bernoulli model (equal marginal distributions) The model has spot intensities \(x \sim \text{Gamma}(a,b) \); \(y \sim \text{Gamma}(a,c) \). The shape parameters \(b \) and \(c \) are \(\sim \text{Gamma}(a_0,\nu) \). With probability \(p \), \(b = c \); otherwise \(b \neq c \). All spots are assumed to be independent.

Value

Log odds for all points in original order.

Author(s)

Michael Newton

References

See Also

em.ggb

Examples

```r
## Not run:
oddsplot( x, y )
## End(Not run)
```

pickgene

Plot and Pick Genes based on Differential Expression

Description

The function picks plots the average intensity versus linear contrasts (currently linear, quadratic up to cubic) across experimental conditions. Critical line is determine according to Bonferroni-like multiple comparisons, allowing SD to vary with intensity.

Usage

```r
pickgene(data, geneID = 1:nrow(data), overalllevel = 0.05, npickgene = -1, marginal = FALSE, rankbased = TRUE, allrank = FALSE, meanrank = FALSE, offset = 0, modelmatrix = model.pickgene(faclevel, facnames, contrasts.fac, collapse, show, renorm), faclevel = ncol(data), facnames = letters[seq(length(faclevel))], contrasts.fac =
```

"contr.poly", show = NULL, main = "", renorm = 1, drop.negative = FALSE, plotit = npickgene < 1, mfrow = c(nr, nc), mfcol = NULL, ylab = paste(shownames, "Trend"), ...)

Arguments

data data matrix
geneID gene identifier (default 1:nrow(x))
overalllevel overall significance level (default 0.05)
npickgene number of genes to pick (default -1 allows automatic selection)
marginal additive model if TRUE, include interactions if FALSE
rankbased use ranks if TRUE, log transform if FALSE
allrank rank all chips together if true, otherwise rank separately
meanrank show mean abundance as rank if TRUE
offset offset for log transform
modelmatrix model matrix with first row all 1’s and other rows corresponding to design contrasts; automatically created by call to model.pickgene if omitted
faclevel number of factor levels for each factor
facnames factor names
contrasts.fac type of contrasts
show vector of contrast numbers to show (default is all)
main vector of main titles for plots (default is none)
renorm vector to renormalize contrasts (e.g. use sqrt(2) to turn two-condition contrast into fold change)
drop.negative drop negative values in log transform
plotit plot if TRUE
mfrow par() plot arrangement by rows (default up to 6 per page; set to NULL to not change)
mfcol par() plot arrangement by columns (default is NULL)
ylab vertical axis labels
... parameters for robustscale

Details

Infer genes that differentially express across conditions using a robust data-driven method. Adjusted gene expression levels A are replaced by qnorm(rank(A)), followed by robustscale estimation of center and spread. Then Bonferroni-style gene by gene tests are performed and displayed graphically.
Value

Data frame containing significant genes with the following information:

pick data frame with picked genes
score data frame with center and spread for plotting

Each of these is a list with elements for each contrast. The pick data frame elements have the following information:

probe gene identifier
average average gene intensity
fold1 positive fold change
fold2 negative fold change
pvalue Bonferroni-corrected p-value

The score data frame elements have the following:

x mean expression level (antilog scale)
y contrast (antilog scale)
center center for contrast
scale scale (spread) for contrast
lower lower test limit
upper upper test limit

Author(s)

Yi Lin and Brian Yandell

References

See Also

pickgene

Examples

Not run:
pickgene(data)

End(Not run)
Description

These are generally not to be called by the user.

Usage

adjustlevel(ntest, alpha)
chen.poly(cv, err)
chipnorm(xx, chip)
dencont(x, y, align, crit, xlim, ylim, dolog, byranks, dif,
 ave, numlines, levels.z)
dencum(x, y, align, crit, xlim, ylim, dolog, byranks,
 standardize, dif, ave, splineit, numlines, show,
 levels.z)
denlines(x, y, align, crit, xlim, ylim, dolog, dif, ave,
 numlines, offset)
do.oddsplot(data, main, theta, col, redo, conditions, identifier,
 ...
fitgg(xx, yy, start)
gammaden(x, a, b)
holms(x, alpha, cut)
lod.ggb(x, y, theta)
lod.plot(data, x, y, theta, filename, probe, xlab, ylab, ps,
 col, lowlod, ...)
lodprobes(xx, yy, theta, lod, probes, col, lowlod, offset)
loglik(theta, xx, yy)
makecont(x, y, size, cex, levels)
multipickgene(...)
nlminb(start, objective, lower, xx, yy, zz, use.optim)
nloglik(theta, xx, yy)
normal.richmond(foo, channel)
npdiag(xx, yy, aa, a0, nu, pp)
nploglik(theta, xx, yy, zz)
orangene(n, center, spread, contamination, alpha, noise,
 omega)
pickedchisq(pick, show, title, plotit, alpha)
pickedhist(pick, show, title, pl, plotit, rotate, mrow, bw)
pickedpair(x, columns, description, probe, renorm, pick, main,
 ...)
pickedscore(pick, description, show, alpha, xlab, ylab, main,
 mrow)
pickgene2(...)
pickgene.poly(x, condi, geneID, overalllevel, npickgene, d, ylabs,
 contrastnames, ...)
robustscale

Robust Estimation of Median (center) and MAD (scale)

Description

Smoothing spline estimate of median and mean absolute deviation (MAD).

Usage

robustscale(y, x, nslice=400, corcenter=TRUE, decrease=TRUE)

Arguments

y response
x predictor
nslice number of slices (should be "large")
corcenter correct for center
decrease force MAD to decrease with x

details

This divides data into roughly many nslice slices and computes median and mean absolute deviation (mad) for each slice. These are then smoothed using smooth.spline.
Value

Data frame containing significant genes with the following information:

- **center**: estimate of center median
- **scale**: MAD estimate of scale
- **x**: ordered x values for plotting
- **y**: y sorted by x

Author(s)

Yi Lin

See Also

`mad`, `smooth.spline`

Examples

```r
## Not run:
robustscale(y, x)
## End(Not run)
```

Simulation.pickgene Yi Lin’s simulations for microarray analysis

Description

Example simulations

See Also

`multipickgene`

Examples

```r
### Note: This uses old pickgene
# detail of the model (7-8). (first run does not include meas error \eta_i)
#par(mfrow=c(3,3))
t<-rnorm(10000, 4, 2)
changes1<-rep(0, 10000)
changes1[1:500]<-rnorm(500)
t1<-t+changes1
changes2<-rep(0, 10000)
changes2[1:500]<-rnorm(500)
t2<-t+changes2
s<-rnorm(10000, 0, 0.1)
cx<-3
```
cy<-2
t1<-t1+rnorm(10000,0,0.1)
t2<-t2+rnorm(10000,0,0.1)
x<-cx*exp(t1)
y<-cy*exp(t2)
#x<-cx*exp(t1)+rnorm(10000,0,50)
#y<-cy*exp(t2)+rnorm(10000,0,40)
xx<-qnorm(rank(x)/(10000+1))
yy<-qnorm(rank(y)/(10000+1))
#hist(x,breaks=100)
#hist(y,breaks=100)
#plot(x,y)
#hist(y[x<=0],breaks=20)
#hist(x[y<=0],breaks=20)
#plot(xx,yy)
topgenepick<-multipickgene(cbind(xx,yy),condi=0:1,geneID=1:10000, d=1,
npickgene=500)$pick[[1]]$probe
abchangesrank<-rank((-1)*abs(t1-t2))
count <- rep(NA,500)
for(i in 1:500) {
topipick <- topgenepick[1:i]
count[i] <- sum(abchangesrank[topipick] <= i)
}
Figure 2
plot(1:500, 1:500, type="n",
xlab="Rank of 500 most changed genes by our procedure",
ylab="Number similarly ranked by the 'optimal' procedure",
xaxs="i", yaxs="i"
)
lines(1:500, count, type="s", lty=1, lwd=2)
abline(0,1)
Not run: dev.print(hor=F, height=6.5, width=6.5, file="rank1.ps")

#again, but with the additive noise. (includes \eta_i)
par(mfrow=c(2,2))
t<-rnorm(10000,4,2)
changes1<-rep(0,10000)
changes1[1:500]<-rnorm(500)
t1<-t+changes1
changes2<-rep(0,10000)
changes2[1:500]<-rnorm(500)
t2<-t+changes2
s<-rnorm(10000,0,0.1)
cx<-3
cy<-2
t1<-t1+rnorm(10000,0,0.1)
t2<-t2+rnorm(10000,0,0.1)
note that noise is very large here (50,40)
x<-cx*exp(t1)+rnorm(10000,0,50)
y<-cy*exp(t2)+rnorm(10000,0,40)
xx<-qnorm(rank(x)/(10000+1))
yy<-qnorm(rank(y)/(10000+1))
hist(x,breaks=100)
hist(y, breaks=100)
plot(x, y, cex=0.4)
hist(y[x<=0], breaks=20)
hist(x[y<=0], breaks=20)
plot(xx, yy, cex=0.4)
Not run: dev.print(hor=F, height=6.5, width=6.5, file="simudata.ps")

Not run: dev.print(hor=F, height=6.5, width=6.5, file="rank2.ps")

Figure 5

genepick <- multipickgene(cbind(xx, yy), condi=0:1, geneID=1:10000, d=1)

npick <- length(genepick$pickedgene)
genepick$pickedgene
npick

count[npick]
Index

* hplot
 oddsplot, 4
 pickgene, 5
* internal
 pickgene-internal, 8
* models
 em.ggb, 2
 oddsplot, 4
 pickgene, 5
* robust
 robustscale, 9
* smooth
 robustscale, 9
* utilities
 model.pickgene, 3
 adjustlevel (pickgene-internal), 8
 chen.poly (pickgene-internal), 8
 chipnorm (pickgene-internal), 8
 dencont (pickgene-internal), 8
 dencum (pickgene-internal), 8
 denlines (pickgene-internal), 8
 do.oddsplot (pickgene-internal), 8
 em.ggb, 2, 5
 fitgg (pickgene-internal), 8
 gammaden (pickgene-internal), 8
 holms (pickgene-internal), 8
 lod.ggb (pickgene-internal), 8
 lod.plot (pickgene-internal), 8
 lodprobes (pickgene-internal), 8
 loglik (pickgene-internal), 8
 mad, 10
 makecont (pickgene-internal), 8
 model.matrix, 4
 model.pickgene, 3
 multipickgene (pickgene-internal), 8
 nlminb (pickgene-internal), 8
 nloglik (pickgene-internal), 8
 normal.richmond (pickgene-internal), 8
 npdiag (pickgene-internal), 8
 nploglik (pickgene-internal), 8
 oddsplot, 3, 4
 orangene (pickgene-internal), 8
 pickedchisq (pickgene-internal), 8
 pickedhist (pickgene-internal), 8
 pickedpair (pickgene-internal), 8
 pickedscore (pickgene-internal), 8
 pickgene, 5, 7
 pickgene-internal, 8
 pickgene.poly (pickgene-internal), 8
 pickgene.two (pickgene-internal), 8
 pickgene2 (pickgene-internal), 8
 pmarg (pickgene-internal), 8
 predrecur (pickgene-internal), 8
 rangene (pickgene-internal), 8
 rankgene (pickgene-internal), 8
 robustbox (pickgene-internal), 8
 robustscale, 9
 s.check0 (pickgene-internal), 8
 s.check1 (pickgene-internal), 8
 s.check2 (pickgene-internal), 8
 s.marg (pickgene-internal), 8
 shrinkplot (pickgene-internal), 8
 Simulation.pickgene, 10
 sixden (pickgene-internal), 8
 smooth.spline, 10
 toprankgene (pickgene-internal), 8
 twoarray.norm (pickgene-internal), 8
twoarray.plot (pickgene-internal), 8

twowayanovapickgene
 (pickgene-internal), 8