Package ‘planttfhunter’

May 30, 2024

Title Identification and classification of plant transcription factors
Version 1.4.0
Date 2022-03-10

Description planttfhunter is used to identify plant transcription factors (TFs) from protein sequence data and classify them into families and subfamilies using the classification scheme implemented in PlantTFDB. TFs are identified using pre-built hidden Markov model profiles for DNA-binding domains. Then, auxiliary and forbidden domains are used with DNA-binding domains to classify TFs into families and subfamilies (when applicable). Currently, TFs can be classified in 58 different TF families/subfamilies.

License GPL-3

URL https://github.com/almeidasilvaf/planttfhunter

BugReports https://support.bioconductor.org/t/planttfhunter

biocViews Software, Transcription, FunctionalPrediction, GenomeAnnotation, FunctionalGenomics, HiddenMarkovModel, Sequencing, Classification

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.1

SystemRequirements HMMER <http://hmmer.org/>

Imports Biostrings, SummarizedExperiment, utils, methods

Suggests BiocStyle, covr, sessioninfo, knitr, rmarkdown, testthat (>= 3.0.0)

Config/testthat/edition 3

VignetteBuilder knitr

Depends R (>= 4.2.0)

LazyData false

git_url https://git.bioconductor.org/packages/planttfhunter

git_branch RELEASE_3_19
planttfhunter-package

Description

planttfhunter is used to identify plant transcription factors (TFs) from protein sequence data and classify them into families and subfamilies using the classification scheme implemented in Plant-TFDB. TFs are identified using pre-built hidden Markov model profiles for DNA-binding domains. Then, auxiliary and forbidden domains are used with DNA-binding domains to classify TFs into families and subfamilies (when applicable). Currently, TFs can be classified in 58 different TF families/subfamilies.

Author(s)

Maintainer: Fabrício Almeida-Silva <fabricio_almeidasilva@hotmail.com> (ORCID)

Authors:

• Yves Van de Peer <yves.vandepeer@psb.vib-ugent.be> (ORCID)
annotate_pfam

Description

PFAM domains are assigned to each sequence using HMMER.

Usage

annotate_pfam(seq = NULL, evalue = 1e-05)

Arguments

seq An AAStringSet object as returned by Biostrings::readAAStringSet(). The sequences in this object must represent only the translated sequences of primary (or longest) transcripts.

evalue Numeric indicating the E-value threshold for hmmsearch to be used for domains without pre-defined domain cutoffs. Only valid if parameter mode = 'local'. Default: 1e-05.

Value

A 2-column data frame with the variables Gene and Domain, which contain gene IDs and domain IDs, respectively.

Examples

data(gsu)
seq <- gsu[1:5]
if(hmmer_is_installed()) {
 annotate_pfam(seq)
}
classify_tfs

__Description__

Identify TFs and classify them in families

__Usage__

```r
classify_tfs(domain_annotation = NULL)
```

__Arguments__

- `domain_annotation`

 A 2-column data frame with the gene ID in the first column and the domain ID in the second column.

classification_scheme

__Data frame of TF family classification scheme__

__Description__

The classification scheme is the same as the one used by PlantTFDB.

__Usage__

```r
data(classification_scheme)
```

__Format__

A data frame with the following variables:

- **Family** TF family name.
- **Subfamily** TF subfamily name.
- **DBD** DNA-binding domain
- **Auxiliary** Auxiliary domain
- **Forbidden** Forbidden domain

__References__

__Examples__

```r
data(classification_scheme)
```
get_tf_counts

Value
A 2-column data frame with the variables Gene and Family representing gene ID and TF family, respectively.

Examples
data(gsu_annotation)
domain_annotation <- gsu_annotation
families <- classify_tfs(domain_annotation)

get_tf_counts Get TF frequencies for each species as a SummarizedExperiment object

Description
This function identifies and classifies TFs, and returns TF counts for each family as a SummarizedExperiment object.

Usage
get_tf_counts(proteomes, species_metadata = NULL)

Arguments
proteomes List of AAStringSet objects
species_metadata (Optional) A data frame containing species names in row names (names must match element names in the proteomes list), and species metadata (e.g., taxonomic information, ecological information) in columns. If NULL, the colData of the SummarizedExperiment object will be empty.

Value
A SummarizedExperiment object containing transcription factor frequencies per family in each species, as well as species metadata (if species_metadata is not NULL).

Examples
data(gsu)
set.seed(123)
Pick random subsets of 100 genes to simulate other species
proteomes <- list(
 Gsu1 = gsu[sample(names(gsu), 50, replace = FALSE)],
 Gsu2 = gsu[sample(names(gsu), 50, replace = FALSE)],
 Gsu3 = gsu[sample(names(gsu), 50, replace = FALSE)],
 Gsu4 = gsu[sample(names(gsu), 50, replace = FALSE)]
)
gsu

Protein sequences of the algae species Galdieria sulphuraria

Description

Data obtained from PLAZA Diatoms. Only genes containing domains used for TF family classification were kept for package size issues.

Usage

data(gsu)

Format

An AAStringSet object as returned by Biostrings::readAAStringSet().

References

Examples

data(gsu)
gsu_annotation

| gsu_annotation | Domain annotation for the algae species Galdieria sulphuraria The data set was created using the funcion `annotate_pfam()` in local mode. |

Description

Domain annotation for the algae species Galdieria sulphuraria
The data set was created using the funcion `annotate_pfam()` in local mode.

Usage

data(gsu_annotation)

Format

A 2-column data frame with the following variables:

- **Gene** Gene ID
- **Annotation** Domain ID or domain name when ID is not available in PFAM

Examples

data(gsu_annotation)

| gsu_families | TFs families of the algae species Galdieria sulphuraria The data set was created using the funcion `classify_tfs()` |

Description

TFs families of the algae species Galdieria sulphuraria
The data set was created using the funcion `classify_tfs()`.

Usage

data(gsu_families)

Format

A 2-column data frame with the following variables:

- **Gene** Gene ID
- **Family** TF family

Examples

data(gsu_families)
hmmer_is_installed \textit{Check if HMMER is installed}

\begin{description}
\item[Description] Check if HMMER is installed
\item[Usage] \texttt{hmmer_is_installed()}
\item[Value] Logical indicating whether HMMER is installed or not.
\item[Examples] \texttt{hmmer_is_installed()}
\end{description}

tf_counts \textit{TF counts per family in 4 simulated species}

\begin{description}
\item[Description] Simulated species were created by sampling 100 genes from the example data set \texttt{gsu} with after \texttt{set.seed(123)}.
\item[Usage] \texttt{data(tf_counts)}
\item[Format] A \texttt{SummarizedExperiment} with TF frequencies per family in each species in \texttt{assay} and species metadata in \texttt{colData}.
\item[Examples] \texttt{data(tf_counts)}
Index

* datasets
 classification_scheme, 4
 gsu, 6
 gsu_annotation, 7
 gsu_families, 7
 tf_counts, 8
* internal
 planttfhunter-package, 2

annotate_pfam, 3

classification_scheme, 4
classify_tfs, 4

gtf_counts, 5
gsu, 6
gsu_annotation, 7
gsu_families, 7

hmmr_is_installed, 8

planttfhunter (planttfhunter-package), 2
planttfhunter-package, 2

tf_counts, 8