Package ‘planttfhunter’

March 28, 2024

Title Identification and classification of plant transcription factors
Version 1.2.0
Date 2022-03-10
Description planttfhunter is used to identify plant transcription factors (TFs) from protein sequence data and classify them into families and subfamilies using the classification scheme implemented in PlantTFDB. TFs are identified using pre-built hidden Markov model profiles for DNA-binding domains. Then, auxiliary and forbidden domains are used with DNA-binding domains to classify TFs into families and subfamilies (when applicable). Currently, TFs can be classified in 58 different TF families/subfamilies.
License GPL-3
URL https://github.com/almeidasilvaf/planttfhunter
BugReports https://support.bioconductor.org/t/planttfhunter
biocViews Software, Transcription, FunctionalPrediction,
 GenomeAnnotation, FunctionalGenomics, HiddenMarkovModel,
 Sequencing, Classification
Encoding UTF-8
Roxygen list(markdown = TRUE)
RoxygenNote 7.2.1
SystemRequirements HMMER <http://hmmer.org/> Imports Biostrings, SummarizedExperiment, utils, methods
Suggests BiocStyle, covr, sessioninfo, knitr, rmarkdown, testthat (>= 3.0.0)
Config/testthat/edition 3 VignetteBuilder knitr Depends R (>= 4.2.0)
LazyData false
git_url https://git.bioconductor.org/packages/planttfhunter
git_branch RELEASE_3_18
Description

`planttfhunter` is used to identify plant transcription factors (TFs) from protein sequence data and classify them into families and subfamilies using the classification scheme implemented in Plant-TFDB. TFs are identified using pre-built hidden Markov model profiles for DNA-binding domains. Then, auxiliary and forbidden domains are used with DNA-binding domains to classify TFs into families and subfamilies (when applicable). Currently, TFs can be classified in 58 different TF families/subfamilies.

Author(s)

Maintainer: Fabrício Almeida-Silva <fabricio_almeidasilva@hotmail.com> (ORCID)

Authors:

- Yves Van de Peer <yves.vandepeer@psb.vib-ugent.be> (ORCID)
annotate_pfam

See Also

Useful links:

- https://github.com/almeidasilvaf/planttfhunter
- Report bugs at https://support.bioconductor.org/t/planttfhunter

annotate_pfam
Annote proteins sequences with PFAM domains

Description

PFAM domains are assigned to each sequence using HMMER.

Usage

annotate_pfam(seq = NULL, evalue = 1e-05)

Arguments

- **seq**: An AAStringSet object as returned by Biostrings::readAAStringSet(). The sequences in this object must represent only the translated sequences of primary (or longest) transcripts.
- **evalue**: Numeric indicating the E-value threshold for hmmsearch to be used for domains without pre-defined domain cutoffs. Only valid if parameter mode = 'local'. Default: 1e-05.

Value

A 2-column data frame with the variables **Gene** and **Domain**, which contain gene IDs and domain IDs, respectively.

Examples

data(gsu)
seq <- gsu[1:5]
if(hmmer_is_installed()) {
 annotate_pfam(seq)
}
classification_scheme
Data frame of TF family classification scheme

Description

The classification scheme is the same as the one used by PlantTFDB.

Usage

```r
data(classification_scheme)
```

Format

A data frame with the following variables:

- **Family**
 TF family name.
- **Subfamily**
 TF subfamily name.
- **DBD**
 DNA-binding domain
- **Auxiliary**
 Auxiliary domain
- **Forbidden**
 Forbidden domain

References

Examples

```r
data(classification_scheme)
```

classify_tfs
Identify TFs and classify them in families

Description

Identify TFs and classify them in families

Usage

```r
classify_tfs(domain_annotation = NULL)
```

Arguments

- **domain_annotation**

 A 2-column data frame with the gene ID in the first column and the domain ID in the second column.
Value

A 2-column data frame with the variables **Gene** and **Family** representing gene ID and TF family, respectively.

Examples

```r
data(gsu_annotation)
domain_annotation <- gsu_annotation
families <- classify_tfs(domain_annotation)
```

get_tf_counts

Get TF frequencies for each species as a SummarizedExperiment object

Description

This function identifies and classifies TFs, and returns TF counts for each family as a SummarizedExperiment object

Usage

```r
get_tf_counts(proteomes, species_metadata = NULL)
```

Arguments

- **proteomes**: List of `AAStringSet` objects
- **species_metadata** (Optional): A data frame containing species names in row names (names must match element names in the `proteomes` list), and species metadata (e.g., taxonomic information, ecological information) in columns. If NULL, the colData of the SummarizedExperiment object will be empty.

Value

A SummarizedExperiment object containing transcription factor frequencies per family in each species, as well as species metadata (if `species_metadata` is not NULL).

Examples

```r
data(gsu)
set.seed(123)
# Pick random subsets of 100 genes to simulate other species
proteomes <- list(
    Gsu1 = gsu[sample(names(gsu), 50, replace = FALSE)],
    Gsu2 = gsu[sample(names(gsu), 50, replace = FALSE)],
    Gsu3 = gsu[sample(names(gsu), 50, replace = FALSE)],
    Gsu4 = gsu[sample(names(gsu), 50, replace = FALSE)]
)
gsu

Protein sequences of the algae species Galdieria sulphuraria

Description

Data obtained from PLAZA Diatoms. Only genes containing domains used for TF family classification were kept for package size issues.

Usage

data(gsu)

Format

An AAStringSet object as returned by Biostrings::readAAStringSet().

References


Examples

data(gsu)
gsu_annotation

Domain annotation for the algae species Galdieria sulphuraria The data set was created using the funcion annotate_pfam() in local mode.

**Usage**

```r
data(gsu_annotation)
```

**Format**

A 2-column data frame with the following variables:

- **Gene** Gene ID
- **Annotation** Domain ID or domain name when ID is not available in PFAM

**Examples**

```r
data(gsu_annotation)
```

gsu_families

TFs families of the algae species Galdieria sulphuraria The data set was created using the funcion classify_tfs().

**Description**

TFs families of the algae species Galdieria sulphuraria The data set was created using the funcion classify_tfs().

**Usage**

```r
data(gsu_families)
```

**Format**

A 2-column data frame with the following variables:

- **Gene** Gene ID
- **Family** TF family

**Examples**

```r
data(gsu_families)
```
**hmmr_is_installed**  
*Check if HMMER is installed*

**Description**
Check if HMMER is installed

**Usage**

```r
hmmr_is_installed()
```

**Value**
Logical indicating whether HMMER is installed or not.

**Examples**

```r
hmmr_is_installed()
```

---

**tf_counts**  
*TF counts per family in 4 simulated species*

**Description**
Simulated species were created by sampling 100 genes from the example data set `gsu` with after `set.seed(123)`.

**Usage**

```r
data(tf_counts)
```

**Format**
A SummarizedExperiment with TF frequencies per family in each species in `assay` and species metadata in `colData`.

**Examples**

```r
data(tf_counts)
```
Index

* datasets
  classification_scheme, 4
  gsu, 6
  gsu_annotation, 7
  gsu_families, 7
  tf_counts, 8
* internal
  planttfhunter-package, 2

annotate_pfam, 3

classification_scheme, 4
classify_tfs, 4

get_tf_counts, 5
gsu, 6
gsu_annotation, 7
gsu_families, 7

hmmer_is_installed, 8

planttfhunter (planttfhunter-package), 2
planttfhunter-package, 2

tf_counts, 8