Package ‘protGear’

March 2, 2024

Type Package

Title Protein Micro Array Data Management and Interactive Visualization

Version 1.6.0

Description A generic three-step pre-processing package for protein microarray data. This package contains different data pre-processing procedures to allow comparison of their performance. These steps are background correction, the coefficient of variation (CV) based filtering, batch correction and normalization.

License GPL-3

URL https://github.com/Keniajin/protGear

BugReports https://github.com/Keniajin/protGear/issues

Depends R (>= 4.2), dplyr (>= 0.8.0), limma (>= 3.40.2), vsn (>= 3.54.0)

Imports magrittr (>= 1.5), stats (>= 3.6), ggplot2 (>= 3.3.0), tidyr (>= 1.1.3), data.table (>= 1.14.0), ggpubr (>= 0.4.0), tools (>= 3.8.2), tibble (>= 3.1.0), rmarkdown (>= 2.9), knitr (>= 1.33), utils (>= 3.6), genefilter (>= 1.74.0), readr (>= 2.0.1), Biobase (>= 2.52.0), plyr (>= 1.8.6), Kendall (>= 2.2), shiny (>= 1.0.0), purrr (>= 0.3.4), plotly (>= 4.9.0), MASS (>= 7.3), htmltools (>= 0.4.0), flexdashboard (>= 0.5.2), shinydashboard (>= 0.7.1), GGally (>= 2.1.2), pheatmap (>= 1.0.12), gridExtra (>= 2.3), png (>= 0.1-7), magick (>= 2.7.3), ggplotify (>= 0.1.0), scales (>= 1.1.1), shinythemes (>= 1.2.0), shinyjs (>= 2.0.0), shinyWidgets (>= 0.6.2), shinyCSSloaders (>= 1.0.0), shinyalert (>= 3.0.0), shinyFiles (>= 0.9.1), shinyFeedback (>= 0.3.0)

Suggests gridExtra (>= 2.3), png (>= 0.1-7), magick (>= 2.7.3), ggplotify (>= 0.1.0), scales (>= 1.1.1), shinythemes (>= 1.2.0), shinyjs (>= 2.0.0), shinyWidgets (>= 0.6.2), shinyCSSloaders (>= 1.0.0), shinyalert (>= 3.0.0), shinyFiles (>= 0.9.1), shinyFeedback (>= 0.3.0)

biocViews Microarray, OneChannel, Preprocessing, BiomedicalInformatics, Proteomics, BatchEffect, Normalization, Bayesian, Clustering, Regression, SystemsBiology, ImmunoOncology

1
Encoding UTF-8
LazyData false
RoxygenNote 7.2.3
VignetteBuilder knitr
git_url https://git.bioconductor.org/packages/protGear
git_branch RELEASE_3_18
git_last_commit b98ee36
git_last_commit_date 2023-10-24
Repository Bioconductor 3.18
Date/Publication 2024-03-01
Author Kennedy Mwai [cre, aut],
 James Mburu [aut],
 Jacqueline Waeni [ctb]
Maintainer Kennedy Mwai <keniajin@gmail.com>

R topics documented:

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>array_vars</td>
<td>3</td>
</tr>
<tr>
<td>best_CV_estimation</td>
<td>4</td>
</tr>
<tr>
<td>bg_correct</td>
<td>5</td>
</tr>
<tr>
<td>buffer_spots</td>
<td>6</td>
</tr>
<tr>
<td>check_sampleID_files</td>
<td>6</td>
</tr>
<tr>
<td>create_dir</td>
<td>7</td>
</tr>
<tr>
<td>cv_by_sample_estimation</td>
<td>8</td>
</tr>
<tr>
<td>cv_estimation</td>
<td>9</td>
</tr>
<tr>
<td>error_replicates</td>
<td>10</td>
</tr>
<tr>
<td>extract_bg</td>
<td>10</td>
</tr>
<tr>
<td>launch_protGear_interactive</td>
<td>11</td>
</tr>
<tr>
<td>launch_select</td>
<td>12</td>
</tr>
<tr>
<td>matrix_normalise</td>
<td>12</td>
</tr>
<tr>
<td>merge_sampleID</td>
<td>14</td>
</tr>
<tr>
<td>minpositive</td>
<td>15</td>
</tr>
<tr>
<td>name_of_files</td>
<td>16</td>
</tr>
<tr>
<td>output_trend_stats</td>
<td>16</td>
</tr>
<tr>
<td>plot_bg</td>
<td>17</td>
</tr>
<tr>
<td>plot_buffer</td>
<td>18</td>
</tr>
<tr>
<td>plot_FB</td>
<td>18</td>
</tr>
<tr>
<td>plot_normalised</td>
<td>20</td>
</tr>
<tr>
<td>plot_normalised_antigen</td>
<td>20</td>
</tr>
<tr>
<td>read_array_files</td>
<td>21</td>
</tr>
<tr>
<td>read_array_visualize</td>
<td>22</td>
</tr>
<tr>
<td>rlm_normalise</td>
<td>23</td>
</tr>
<tr>
<td>rlm_normalise_matrix</td>
<td>23</td>
</tr>
<tr>
<td>tag_subtract</td>
<td>24</td>
</tr>
</tbody>
</table>
array_vars

List the array structure variables

Description

A generic function returning a list with the data structure.

Usage

array_vars(
 channel = "635",
 totsamples,
 FG = "",
 BG = "",
 FBG = "",
 blockspersample,
 chip_path = "data/array_data",
 sampleID_path = "data/array_sampleID/",
 mig_prefix = "_first",
 machine = "",
 date_process = ""
)

Arguments

channel A character indicating the channel that the data was scanned at. It is mostly included in the MFI variable names.
totsamples A numeric value indicating the number of samples on a slide.
FG Optional: A character indicating the name of the foreground variable name. If not specified its created as paste0("F",channel,".Median")
BG Optional: A character indicating the name of the background variable name. If not specified its created as paste0("B",channel,".Median")
FBG Optional: A character indicating the name of the foreground - background variable name. If not specified its created as paste0("F",channel,".Median...B",channel)
blockspersample A numeric value indicating the number of blocks in a mini-array. The ".gal" file can help in getting this
chip_path A character indicating the path of the folder location with the array data.
sampleID_path A character indicating the path of the folder location with the sample identifiers matching the array structure.
mig_prefix Optional: A character indicating the identifier of an MIG dilution file
description

A function to select the best CV by combining the replicates in duplicates. The function has been build for up to to 3 replicates so far

Usage

best_CV_estimation(dataCV, slide_id, lab_replicates, cv_cut_off)

Arguments

dataCV A data frame
slide_id A character string containing the identifier of the data frame variable.
lab_replicates A numeric value indicating the number of lab replicates.
cv_cut_off a numeric value for the CV cut off. Should be between 0-100
bg_correct

Details

Select set of replicates with the best CV

Value

A data frame with the best CV's estimated

Examples

```r
dataC <- readr::read_csv(system.file("extdata", "dataC.csv", package="protGear"))
## this file has 3 lab replicates and the default names
dataCV <- cv_estimation(dataC, lab_replicates=3)
best_CV_estimation(dataCV, slide_id = "iden", lab_replicates = 3, cv_cut_off = 20)
```

Description

A generic function to perform background correction.

Usage

```r
bg_correct(iden, Data1, genepix_vars, method = "subtract_local")
```

Arguments

- `iden`: A character indicating the name of the object to be used under Data1
- `Data1`: A data frame with sample identifiers merged with micro array data.
- `genepix_vars`: A list of specific definitions of the experiment design. See `array_vars`.
- `method`: a description of the background correction to be used. Possible values are "none","subtract_local","subtract_global","movingmin_bg","minimum_half","edwards" or "normexp". The default is "subtract_local".

Details

Background correction

The function implements background correction methods developed by `backgroundCorrect`. But the `minimum_half` and `movingmin_bg` uses the block of the protein array as the grid. If method="movingmin_bg" the minimum background value within a block is subtracted. If method="minimum_half" then any intensity which is negative after background subtraction is reset to be equal to half the minimum positive value in a block. If method="movingmin_value" then any intensity which is negative after background subtraction is reset to the minimum positive value in a block. For `edwards` we implement a similar algorithm with `limma::backgroundCorrect(method="edwards")` and for 'normexp' we use the saddle-point approximation to maximum likelihood, `backgroundCorrect` for more details.
buffer_spots

Extract buffer spots of data

Description

A function to extract the buffer spots data. A buffer spot only has the solution for proprietary ingredients for stabilizing protein and minimizing evaporation.

Usage

buffer_spots(Data1, buffer_spot = "buffer")

Arguments

Data1

An object of the class data frame

buffer_spot

A character string containing the name of the buffer spots.

Value

A data frame of the buffer control spots

Examples

bg_correct_df <- readr::read_csv(system.file("extdata", "Data1_sample.csv", package="protGear"))
buffer_spots(Data1 = bg_correct_df)

check_sampleID_files

_End_Function_\# Check existing sample ID names

Description

A generic function to check if the file(s) with the MFI values have a corresponding sample ID file. Sample ID file is a file with the identifiers for the samples in array file.

Usage

check_sampleID_files(genepix_vars)

Arguments

genepix_vars

A list of specific definitions of the experiment design. See array_vars.
create_dir

Value

A file with missing corresponding sample ID files

Examples

genepix_vars <- array_vars(
 channel = "635",
 chip_path = system.file("extdata", "array_data/machine1/",
 package="protGear"),
 totsamples = 21,
 blockspersample = 2,
 mig_prefix = "_first",
 machine = 1,
 date_process = "0520"
)
check_sampleID_files(genepix_vars)

create_dir(path)

Arguments

path folder location to create a directory

Value

created directory

Examples

create_dir("data/sample_folder")
cv_by_sample_estimation

A function to give the summary of the CV’s by the sampleID

Usage

cv_by_sample_estimation(
 dataCV,
 cv_variable,
 lab_replicates,
 sampleID_var = "sampleID"
)

Arguments

dataCV A dataframe

cv_variable A character string containing the identifier of the variable with CV values.
lab_replicates A numeric value indicating the number of lab replicates.
sampleID_var A character string containing the name of the sample identifier variable. Default set to ‘sampleID’

Details

Summarise CV by samples

Value

A data frame of CV calculated by sample

Examples

dataC <- readr::read_csv(system.file("extdata", "dataC.csv", package="protGear"))
this file has 3 lab replicates and the default names
dataCV <- cv_estimation(dataC, lab_replicates=3)
cv_by_sample_estimation(dataCV, cv_variable = "cvCat_all",
 lab_replicates = 3)
Description

A function to calculate the CV for the technical lab replicates. The default values are set as per the object names generated by machine.

Usage

```r
cv_estimation(
  dataC,
  lab_replicates,
  sampleID_var = "sampleID",
  antigen_var = "antigen",
  replicate_var = "replicate",
  mfi_var = "FMedianBG_correct",
  cv_cut_off = 20
)
```

Arguments

- `dataC`: A dataset a data frame with feature variables to be used
- `lab_replicates`: A numeric value indicating the number of lab replicates
- `sampleID_var`: A character string containing the name of the sample identifier variable. Default set to 'sampleID'
- `antigen_var`: A character string containing the name of the features/protein variable. Default to 'antigen'
- `replicate_var`: A character string containing the name of the replicate variable. Default to 'replicate'
- `mfi_var`: A character string containing the name of the variable with MFI value. Assuming background correction is done already. Default to 'FMedianBG_correct'
- `cv_cut_off`: Optional value indicating the cut off of flagging CV’s. Default set at 20.

Details

Coefficient of Variation

Value

A data frame where CV’s of the replicates have been calculated
Examples

dataC <- readr::read_csv(system.file("extdata", "dataC.csv", package="protGear"))
this file has 3 lab replicates and the default names
cv_estimation(dataC, lab_replicates=3)

description

A generic function to write into the log file with a replicate check error

Usage

error_replicates(iden)

Arguments

iden An id for the file with replicates error

Value

a log file showing the replicate errors

description

A generic function to extract the background data for micro array data.

Usage

extract_bg(iden, data_files, genepix_vars = genepix_vars)

Arguments

iden A character indicating the name of the object to be used under data_files.
data_files A list of data objects with names utilised by iden.
genepix_vars A list of specific definitions of the experiment design. See array_vars.

Details

Extract the background values
launch_protGear_interactive

Value

A data frame of background values

Examples

```r
## Not run:
genepix_vars <- array_vars(
  channel = "635",
  chip_path = system.file("extdata", "array_data/machine1/",
    package="protGear"),
  totsamples = 21,
  blockspersample = 2,
  mig_prefix = ".first",
  machine = 1,
  ## optional
date_process = "0520"
)
# Define the data path
data_path <- paste0(genepix_vars$chip_path)
# List the file names to use
filenames <- list.files(genepix_vars$chip_path,
  pattern = '*.txt$|*.gpr$', full.names = FALSE)
data_files <- purrr::map(
  .x = filenames,
  .f = read_array_files,
  data_path = data_path,
  genepix_vars = genepix_vars
)
data_files <- purrr::set_names(data_files,
  purrr::map(filenames, name_of_files))
names(data_files)
extract_bg(iden = "KK2-06",
data_files=data_files, genepix_vars=genepix_vars)
## End(Not run)
```

Description

This function is to launch the shiny application.

Usage

`launch_protGear_interactive()`

Value

launches the shiny interactive protGear app
Examples

```r
app <- system.file("shiny-examples", "protGear_interactive", "protGear_interactive.Rmd", package = "protGear")
if (app!=""){
  ## run this
  #launch_protGear_interactive()
}
```

Description

This is Function is to launch multiple shiny applications for protGear

Usage

```r
launch_select(theApp)
```

Arguments

- `theApp`: accepts one of the folders containing the shiny application

Value

launches the app defined under theApp

Examples

```r
validExamples <-
  list.files(system.file("shiny-examples", package = "protGear"))
#launch_select(validExamples[[1]])
```

Description

Normalize Arrays
Matrix_normalise

Usage

```r
matrix_normalise(
    matrix_antigen,
    method = "log2",
    batch_correct = FALSE,
    batch_var1,
    batch_var2 = day_batches,
    return_plot = FALSE,
    plot_by_antigen = TRUE,
    control_antigens = NULL,
    array_matrix = NULL
)
```

Arguments

- **matrix_antigen**: An object of class `matrix` with features/proteins as columns and samples as the rows.
- **method**: character string specifying the normalization method. Choices are "none", "log2", "vsn", "cyclic_loess", "cyclic_loess_log", "rlm"
- **batch_correct**: A logical value indicating whether batch correction should be done or not.
- **batch_var1**: A character or factor vector of size similar to rows of `matrix_antigen` indicating the first batch.
- **batch_var2**: A character or factor vector of size similar to rows of `matrix_antigen` indicating the second batch.
- **return_plot**: A logical value indicating whether a plot is returned to show the results of normalisation.
- **plot_by_antigen**: Logical to indicate whether to plot by antigen or not.
- **control_antigens**: logical vector specifying the subset of spots which are non-differentially-expressed control spots, for use with `method="rlm"`.
- **array_matrix**: An object of class `dataframe` or `matrix` used with `method='rlm'` indicating the sample index and

Value

A data frame of normalised values

Examples

```r
matrix_antigen <- readr::read_csv(system.file("extdata",
    "matrix_antigen.csv", package="protGear"))
#VSN
normlise_vsn <- matrix_normalise(as.matrix(matrix_antigen),
    method = "vsn",
    return_plot = TRUE
```
merge_sampleID

Merge sample ID with the array data

Description
A generic function that merges the protein data with the sample identifiers or sample names. If the file does not have sample identifiers the function generates it automatically.

Usage
merge_sampleID(iden, data_files, genepix_vars, method)

Arguments
iden A character indicating the name of the object to be used under data_files.
data_files A list of data objects with names utilised by iden.
genepix_vars A list of specific definitions of the experiment design. See array_vars.
method A description of the background correction to be used. See bg_correct.

Value
a data frame merged with corresponding sample ID’s. The sample ID are specified in the sample ID files

Examples
Not run:
Define the genepix_vars
genepix_vars <- array_vars(
 channel = "635",
 chip_path = system.file("extdata", "array_data/machine1/",
 package="protGear"),
 totsamples = 21,
 blockspersample = 2,
 mig_prefix = ",first",
 machine = 1,
)
minpositive

Get the minimum positive value

Description

Get the minimum positive value

Usage

`minpositive(x)`

Arguments

`x`
A numeric vector or variable

Value

Returns the minimum positive value in an object

Examples

`minpositive(c(-1,-2,3,5,6,7,8,9,10))`
name_of_files

Object names of a list

Description

A generic function returning a vector with the names of files in the same directory. Removes the file extension

Usage

```r
name_of_files(i)
```

Arguments

- `i` - a list filenames with .txt or .gpr extension

Value

- a list of file names

Examples

```r
name_of_files("KK2-06.txt")
```

output_trend_stats

Trend test using Cox–Stuart (C–S) and Mann–Kendall (M–K) trend tests

Description

Trend test using Cox–Stuart (C–S) and Mann–Kendall (M–K) trend tests

Usage

```r
output_trend_stats(name, p_val, z_val)
```

Arguments

- `name` - Name of the test
- `p_val` - p value from the test
- `z_val` - the Z value of the test

Value

A statistics of mean standard deviation trend
Examples

output_trend_stats(name="t.test", p_val=0.001, z_val=5)

plot_bg

Plot background

Description

A generic function for plotting of R objects.

Usage

plot_bg(df, x_axis = "antigen", bg_MFI = "BG_Median", log_mfi = TRUE)

Arguments

df A default dataset to use for plot.
x_axis The variable on the x axis
bg_MFI A numeric variable describing which is the background MFI
log_mfi a logical value indicating whether the MFI values should be log transformed or not.

Value

A ggplot of background values

Examples

```r
## Not run:
#After extracting the background using \code{\link{extract_bg}}
#we plot the data using
allData_bg <- readr::read_csv(system.file("extdata", "bg_example.csv",
package="protGear"))
plot_bg(allData_bg,
x_axis = "antigen",
bg_MFI = "BG_Median",
log_mfi = TRUE
)
## End(Not run)
```
Description

Plot the buffer values

Usage

plot_buffer(
 df = buffers,
 buffer_names = "antigen",
 buffer_mfi = "FMedianBG_correct",
 slide_id = ".id"
)

Arguments

df A data frame to be used to plot
buffer_names A character string containing the name of the variable with buffer spots. Default set to 'antigen'.
buffer_mfi A character string containing the name of the variable with MFI value. Assuming background correction is done already. Default to 'FMedianBG_correct'
slide_id A character string containing the name of the slide/array identifier variable.

Value

plot of buffer spots

Examples

buffers <- readr::read_csv(system.file("extdata", "buffers_sample2.csv", package="protGear"))
plot_buffer(df=buffers,buffer_names = "sampleID")

Description

A generic function for plotting the background and foreground values.
plot_FB

Usage

plot_FB(
 df,
 antigen_name = "antigen",
 bg_MFI = "BG_Median",
 FG_MFI = "FBG_Median",
 log_mfi = FALSE
)

Arguments

df An object containing the data to which the plot is done.

antigen_name The variable describing which features/proteins/antibodies in the data should be used to plot.

bg_MFI A numeric variable describing which is the background MFI.

FG_MFI A numeric variable describing which is the foreground MFI.

log_mfi A logical value indicating whether the MFI values should be log transformed or not.

Details

Plot foreground and background values.

Value

A ggplot of foreground vs background MFI values.

Examples

Not run:
After extracting the background using \code{\link{extract_bg}}
we plot the data using
allData_bg <- readr::read_csv(system.file("extdata",
 "bg_example.csv", package="protGear"))
plot_FB(allData_bg,
 antigen_name = "antigen",
 bg_MFI = "BG_Median", FG_MFI = "FBG_Median", log = FALSE
)
End(Not run)
Comparison of normalised data by sample

Description
Comparison of normalised data by sample

Usage
plot_normalised(exprs_normalised_df, method, batch_correct)

Arguments
exprs_normalised_df
a normalised data frame
method
the method of normalisation used
batch_correct
the batch correction

Value
A ggplot of normalised data

Examples
matrix_antigen <- readr::read_csv(system.file("extdata", "matrix_antigen.csv", package="protGear"))
normlise_vsn <- matrix_normalise(as.matrix(matrix_antigen), method = "vsn", return_plot = FALSE)
plot_normalised(normlise_vsn,method="vsn",batch_correct=FALSE)

Comparison of normalised data by feature

Description
Comparison of normalised data by feature

Usage
plot_normalised_antigen(exprs_normalised_df, method, batch_correct)
read_array_files

Arguments

- `exprs_normalised_df`
 A normalised data frame
- `method`
 The method of normalisation used
- `batch_correct`
 The batch correction

Value

A ggplot of various normalisation approaches

Examples

```r
matrix_antigen <- readr::read_csv(system.file("extdata", "matrix_antigen.csv", package="protGear"))
normlise_vsn <- matrix_normalise(as.matrix(matrix_antigen), method = "vsn", return_plot = FALSE)
plot_normalised_antigen(normlise_vsn, method="vsn",batch_correct=FALSE)
```

read_array_files
Read array files

Description

This helps to read the chip file(s).

Usage

```r
read_array_files(i, data_path, genepix_vars)
```

Arguments

- `i`
 The name of the file which the data are to be read from.
- `data_path`
 The path where the file with the data is located
- `genepix_vars`
 A list of specific definitions of the experiment design. See `array_vars`.

Details

Read multiple array files

Value

A number of data frames in the global environment
Examples

Not run:
genepix_vars <- array_vars(
 channel = "635",
 chip_path = system.file("extdata", "array_data/machine1/",
 package="protGear"),
 totsamples = 21,
 blockspersample = 2,
 mig_prefix = ".first",
 machine = 1,
 date_process = "0520"
)
file_read <- "KK2-06.txt"
read_array_files(i=file_read,
data_path=system.file("extdata", "array_data/machine1/",
 package="protGear"), genepix_vars=genepix_vars)
End(Not run)

read_array_visualize Read a gpr file to visualize

Description

Read a gpr file to visualize

Usage

read_array_visualize(infile)

Arguments

infile a .gpr file to be used to visualize the expression intensities of the slide spots

Value

a data frame to visualize the background or foreground values

Examples

Not run:
read_array_visualize(infile = system.file("extdata",
"/array_data/machine1/KK2-06.txt", package="protGear"))
End(Not run)
rlm_normalise

RLM normalisation

Description

A function for method='rlm' from *matrix_normalise*.

Usage

```r
rlm_normalise(rlm_normalise_df)
```

Arguments

- `rlm_normalise_df`
 rlm normalised data frame

Value

An elist of RLM normalisation to be utilised by *rlm_normalise_matrix*.

Examples

```r
matrix_antigen <- readr::read_csv(system.file("extdata", "matrix_antigen.csv", package="protGear"))
# rlm_normalise_df <- rlm_normalise_matrix(matrix_antigen=matrix_antigen,
# array_matrix=array_matrix,
# control_antigens=control_antigens)
# rlm_normalise(rlm_normalise_df)
```

rlm_normalise_matrix

Normalise using RLM

Description

A function for method='rlm' from *matrix_normalise*.

Usage

```r
rlm_normalise_matrix(matrix_antigen, array_matrix, control_antigens)
```

Arguments

- `matrix_antigen`
 A matrix with antigen data
- `array_matrix`
 A matrix with control antigen data
- `control_antigens`
 The control antigens for RLM normalisation
Value

A RLM normalised data frame

Examples

```r
matrix_antigen <- readr::read_csv(system.file("extdata", "matrix_antigen.csv", package="protGear"))
# rlm_normalise_matrix(matrix_antigen=matrix_antigen,
# array_matrix=array_matrix,
# control_antigens=control_antigens)
```

Description

_End_Function_

Usage

```r
tag_subtract(
dataC_mfi,
tag_antigens,
mean_best_CV_var,
tag_file,
batch_vars,
sampleID_var = "sampleID",
antigen_var = "antigen"
)
```

Arguments

dataC_mfi A dataframe
tag_antigens A character vector with the names of proteins or antigens used as TAG.
mean_best_CV_var A character string containing the identifier of the variable with the MFI values.
tag_file A data frame with variables antigen, TAG, TAG_name to show the TAG for the different antigens or proteins in dataC_mfi
batch_vars A list of characters identifying variables in dataC_mfi for indicating batch.
sampleID_var A character string containing the name of the sample identifier variable. Default set to 'sampleID'
antigen_var A character string containing the name of the features/protein variable. Default to 'antigen'

Details

Subtract the purification TAG data
Value

A data frame of TAG values subtracted

Examples

tag_file <- readr::read_csv(system.file("extdata", "TAG_antigens.csv", package="protGear"))
tag_antigens <- c("CD4TAG", "GST", "MBP")
batch_vars <- list(machine = "m1", day = "0520")
dataC <- readr::read_csv(system.file("extdata", "dataC.csv", package="protGear"))
this file has 3 lab replicates and the default names
dataCV <- cv_estimation(dataC ,lab_replicates=3)
dataCV_best2 <- best_CV_estimation(dataCV,slide_id = "iden", lab_replicates = 3, cv_cut_off = 20)
tag_subtract(dataCV_best2,tag_antigens=tag_antigens,
mean_best_CV_var="mean_best_CV",
tag_file = tag_file,antigen_var = "antigen", batch_vars = batch_vars)

visualize_slide Visualize the slide mimicking the original scan image.

Description

Visualize the slide mimicking the original scan image.

Usage

visualize_slide(infile, MFI_var, interactive = FALSE, d_f = NA)

Arguments

infile a .gpr file to be used to visualize the expression intensities of the slide spots
MFI_var the MFI variable to plot, can be either the background or foreground value
interactive a logical to specify whether an interactive graph is returned or not
d_f a data frame with array data

Value

A ggplot of slide foreground values
visualize_slide_2d

Visualize the slide mimicking the original scan image using a 2d plot.

Description

Visualize the slide mimicking the original scan image using a 2d plot.

Usage

```r
visualize_slide_2d(infile, MFI_var, d_f = NA)
```

Arguments

- `infile`: a .gpr file to be used to visualize the expression intensities of the slide spots
- `MFI_var`: the MFI variable to plot, can be either the background or foreground value
- `d_f`: a data frame with array data

Value

A 2d plot of either the background or foreground values

Examples

```r
## Not run:
visualize_slide_2d(
  infile = system.file("extdata", "/array_data/machine1/KK2-06.txt",
                       package="protGear"),
  MFI_var = "B635 Median"
)
## End(Not run)
```
Index

* internal
 error_replicates, 10
 rlm_normalise, 23

array_vars, 3, 5, 6, 10, 14, 21

backgroundCorrect, 5
best_CV_estimation, 4
bg_correct, 5, 14
buffer_spots, 6

check_sampleID_files, 6
create_dir, 7
cv_by_sample_estimation, 8
cv_estimation, 9

tag_subtract, 24

error_replicates, 10
extract_bg, 10

launch_protGear_interactive, 11
launch_select, 12

matrix_normalise, 12, 23
merge_sampleID, 14

name_of_files, 16

output_trend_stats, 16

plot_bg, 17
plot_buffer, 18
plot_FB, 18
plot_normalised, 20
plot_normalised_antigen, 20

read_array_files, 21
read_array_visualize, 22
rlm_normalise, 22
rlm_normalise_matrix, 23, 23

visualize_slide, 25
visualize_slide_2d, 26