Package ‘protGear’

April 11, 2024

Type Package

Title Protein Micro Array Data Management and Interactive Visualization

Version 1.6.0

Description A generic three-step pre-processing package for protein microarray data. This package contains different data pre-processing procedures to allow comparison of their performance. These steps are background correction, the coefficient of variation (CV) based filtering, batch correction and normalization.

License GPL-3

URL https://github.com/Keniajin/protGear

BugReports https://github.com/Keniajin/protGear/issues

Depends R (>= 4.2), dplyr (>= 0.8.0), limma (>= 3.40.2), vsn (>= 3.54.0)

Imports magrittr (>= 1.5), stats (>= 3.6), ggplot2 (>= 3.3.0), tidyr (>= 1.1.3), data.table (>= 1.14.0), ggpur (>= 0.4.0), gtools (>= 3.8.2), tibble (>= 3.1.0), rmarkdown (>= 2.9), knitr (>= 1.33), utils (>= 3.6), genefilter (>= 1.74.0), readr (>= 2.0.1), Biobase (>= 2.52.0), plyr (>= 1.8.6), Kendall (>= 2.2), shiny (>= 1.0.0), purrr (>= 0.3.4), plotly (>= 4.9.0), MASS (>= 7.3), htmltools (>= 0.4.0), flexdashboard (>= 0.5.2), shinydashboard (>= 1.10.0), GGally (>= 2.1.2), pheatmap (>= 1.0.12), gridExtra (>= 2.3), ggplotify (>= 0.1-7), scales (>= 1.1.1), shinythemes (>= 1.2.0), shinyjs (>= 2.0.0), shinyWidgets (>= 0.6.2), shinyCSSLoaders (>= 1.0.0), shinyalert (>= 3.0.0), shinyFiles (>= 0.9.1), shinyFeedback (>= 0.3.0)

Suggests gridExtra (>= 2.3), png (>= 0.1-7), magick (>= 2.7.3), ggplotify (>= 0.1.0), scales (>= 1.1.1), shinythemes (>= 1.2.0), shinyjs (>= 2.0.0), shinyWidgets (>= 0.6.2), shinyCSSLoaders (>= 1.0.0), shinyalert (>= 3.0.0), shinyFiles (>= 0.9.1), shinyFeedback (>= 0.3.0)

biocViews Microarray, OneChannel, Preprocessing, BiomedicalInformatics, Proteomics, BatchEffect, Normalization, Bayesian, Clustering, Regression, SystemsBiology, ImmunoOncology
Encoding UTF-8
LazyData false
RoxygenNote 7.2.3
VignetteBuilder knitr
git_url https://git.bioconductor.org/packages/protGear
git_branch RELEASE_3_18
git_last_commit b98ee36
git_last_commit_date 2023-10-24
Repository Bioconductor 3.18
Date/Publication 2024-04-10
Author Kennedy Mwai [cre, aut],
James Mburu [aut],
Jacqueline Waeni [ctb]
Maintainer Kennedy Mwai <keniajin@gmail.com>

R topics documented:

array_vars .. 3
best_CV_estimation .. 4
bg_correct .. 5
buffer_spots ... 6
check_sampleID_files 6
create_dir .. 7
cv_by_sample_estimation 8
cv_estimation ... 9
error_replicates .. 10
extract_bg ... 10
launch_protGear_interactive 11
launch_select .. 12
matrix_normalise 12
merge_sampleID .. 14
minpositive ... 15
name_of_files 16
output_trend_stats 16
plot_bg ... 17
plot_buffer ... 18
plot_FB ... 18
plot_normalised 20
plot_normalised_antigen 20
read_array_files 21
read_array_visualize 22
rlm_normalise ... 23
rlm_normalise_matrix 23
tag_subtract .. 24
array_vars

List the array structure variables

Description

A generic function returning a list with the data structure.

Usage

```r
array_vars(
    channel = "635",
    totsamples,
    FG = "",
    BG = "",
    FBG = "",
    blockspersample,
    chip_path = "data/array_data",
    sampleID_path = "data/array_sampleID/",
    mig_prefix = "_first",
    machine = "",
    date_process = ""
)
```

Arguments

- `channel`: A character indicating the channel that the data was scanned at. It is mostly included in the MFI variable names.
- `totsamples`: A numeric value indicating the number of samples on a slide.
- `FG`: Optional: A character indicating the name of the foreground variable name. If not specified, its created as `paste0("F",channel,".Median")`
- `BG`: Optional: A character indicating the name of the background variable name. If not specified, its created as `paste0("B",channel,".Median")`
- `FBG`: Optional: A character indicating the name of the foreground - background variable name. If not specified, its created as `paste0("F",channel,".Median...B",channel)`
- `blockspersample`: A numeric value indicating the number of blocks in a mini-array. The ".gal" file can help in getting this.
- `chip_path`: A character indicating the path of the folder location with the array data.
- `sampleID_path`: A character indicating the path of the folder location with the sample identifiers matching the array structure.
- `mig_prefix`: Optional: A character indicating the identifier of an MIG dilution file.
Value

a list of parameters required to process the data

genepix_vars

Examples

```r
## specify the the parameters to process the data
genepix_vars <- array_vars(
  ## the channel the data was processed in
  channel = "635",
  ## folder where the array data is stored
  chip_path = "data/array_data",
  ## the number of samples per slide or in as single run
  totsamples = 21,
  ## How many blocks each sample occupies
  blockspersample = 2,
  ## folder where the array data samples id files are stored
  sampleID_path = "data/array_sampleID/",
  ## optional
  mig_prefix = ".first",
  machine = 1,
  date_process = "0520"
)
genepix_vars
```

Description

A function to select the best CV by combining the replicates in duplicates. The function has been build for up to to 3 replicates so far

Usage

```r
best_CV_estimation(dataCV, slide_id, lab_replicates, cv_cut_off)
```

Arguments

- **dataCV** A data frame
- **slide_id** A character string containing the identifier of the data frame variable.
- **lab_replicates** A numeric value indicating the number of lab replicates.
- **cv_cut_off** a numeric value for the CV cut off. Should be between 0-100
Details

Select set of replicates with the best CV

Value

A data frame with the best CV’s estimated

Examples

dataC <- readr::read_csv(system.file("extdata","dataC.csv", package="protGear"))

this file has 3 lab replicates and the default names
dataCV <- cv_estimation(dataC ,lab_replicates=3)
best_CV_estimation(dataCV,slide_id = "iden", lab_replicates = 3,
cv_cut_off = 20)

dataC <- readr::read_csv(system.file("extdata","dataC.csv", package="protGear"))

this file has 3 lab replicates and the default names
dataCV <- cv_estimation(dataC ,lab_replicates=3)
best_CV_estimation(dataCV,slide_id = "iden", lab_replicates = 3,
cv_cut_off = 20)

bg_correct bg_correct

Description

A generic function to perform background correction.

Usage

bg_correct(iden, Data1, genepix_vars, method = "subtract_local")

Arguments

iden A character indicating the name of the object to be used under Data1
Data1 A data frame with sample identifiers merged with micro array data.
genepix_vars A list of specific definitions of the experiment design. See array_vars.
method a description of the background correction to be used. Possible values are
"none","subtract_local","subtract_global","movingmin_bg","minimum_half","edwards"
or "normexp". The default is "subtract_local".

Details

Background correction

The function implements background correction methods developed by backgroundCorrect. But
the minimum_half and movingmin_bg uses the block of the protein array as the grid. If method="movingmin_bg"
the minimum background value within a block is subtracted. If method="minimum_half" then any
intensity which is negative after background subtraction is reset to be equal to half the minimum
positive value in a block. If method="movingmin_value" then any intensity which is negative after
background subtraction is reset to the minimum positive value in a block. For edwards we
implement a similar algorithm with limma::backgroundCorrect(method="edwards") and for
"normexp" we use the saddle-point approximation to maximum likelihood, backgroundCorrect
for more details.
check_sampleID_files

Value

A data frame with background corrected data

buffer_spots | Extract buffer spots of data

Description

A function to extract the buffer spots data. A buffer spot only has the solution for proprietary ingredients for stabilizing protein and minimizing evaporation.

Usage

`buffer_spots(Data1, buffer_spot = "buffer")`

Arguments

- `Data1` | An object of the class data frame
- `buffer_spot` | A character string containing the name of the buffer spots.

Value

A data frame of the buffer control spots

Examples

```r
bg_correct_df <- readr::read_csv(system.file("extdata", "Data1_sample.csv", package="protGear"))
buffer_spots(Data1 = bg_correct_df)
```

check_sampleID_files

Description

A generic function to check if the file(s) with the MFI values have a corresponding sample ID file. Sample ID file is a file with the identifiers for the samples in array file.

Usage

`check_sampleID_files(genepix_vars)`

Arguments

- `genepix_vars` | A list of specific definitions of the experiment design. See `array_vars`.
create_dir

Value

A file with missing corresponding sample ID files

Examples

genepix_vars <- array_vars(
 channel = "635",
 chip_path = system.file("extdata", "array_data/machine1/",
 package="protGear"),
 totsamples = 21,
 blockspersample = 2,
 mig_prefix = "_first",
 machine = 1,
 date_process = "0520"
)
check_sampleID_files(genepix_vars)

create_dir

Title Create directory function

Description

creating a directory

Usage

create_dir(path)

Arguments

path folder location to create a directory

Value

created directory

Examples

create_dir("data/sample_folder")
cv_by_sample_estimation

Description

A function to give the summary of the CV’s by the sampleID

Usage

cv_by_sample_estimation(
 dataCV,
 cv_variable,
 lab_replicates,
 sampleID_var = "sampleID"
)

Arguments

dataCV A dataframe

 cv_variable A character string containing the identifier of the variable with CV values.

 lab_replicates A numeric value indicating the number of lab replicates.

 sampleID_var A character string containing the name of the sample identifier variable. Default set to 'sampleID'

Details

Summarise CV by samples

Value

A data frame of CV calculated by sample

Examples

dataC <- readr::read_csv(system.file("extdata", "dataC.csv", package="protGear"))
this file has 3 lab replicates and the default names
dataCV <- cv_estimation(dataC ,lab_replicates=3)
cv_by_sample_estimation(dataCV, cv_variable = "cvCat_all", lab_replicates = 3)
cv_estimation

Description
A function to calculate the CV for the technical lab replicates. The default values are set as per the object names generated by machine.

Usage

```r
cv_estimation(
  dataC,
  lab_replicates,
  sampleID_var = "sampleID",
  antigen_var = "antigen",
  replicate_var = "replicate",
  mfi_var = "FMedianBG_correct",
  cv_cut_off = 20
)
```

Arguments

dataC A dataset a data frame with feature variables to be used
lab_replicates A numeric value indicating the number of lab replicates
sampleID_var A character string containing the name of the sample identifier variable. Default set to ‘sampleID’
antigen_var A character string containing the name of the features/protein variable. Default to ‘antigen’
replicate_var A character string containing the name of the replicate variable. Default to ‘replicate’
mfi_var A character string containing the name of the variable with MFI value. Assuming background correction is done already. Default to ‘FMedianBG_correct’
cv_cut_off Optional value indicating the cut off of flagging CV’s. Default set at 20.

Details
Coefficient of Variation

Value
A data frame where CV’s of the replicates have been calculated
Examples

dataC <- readr::read_csv(system.file("extdata", "dataC.csv", package="protGear"))
this file has 3 lab replicates and the default names
cv_estimation(dataC, lab_replicates=3)

error_replicates
_Start_Function_For Error
#

Description

A generic function to write into the log file with a replicate check error

Usage

error_replicates(iden)

Arguments

iden
An id for the file with replicates error

Value

a log file showing the replicate errors

extract_bg

Description

A generic function to extract the background data for micro array data.

Usage

extract_bg(iden, data_files, genepix_vars = genepix_vars)

Arguments

iden
A character indicating the name of the object to be used under data_files.
data_files
A list of data objects with names utilised by iden.
genepix_vars
A list of specific definitions of the experiment design. See array_vars.

Details

Extract the background values
Value

A data frame of background values

Examples

```r
## Not run:
genepix_vars <- array_vars(
  channel = "635",
  chip_path = system.file("extdata", "array_data/machine1/",
                          package="protGear"),
  totsamples = 21,
  blockspersample = 2,
  mig_prefix = ".first",
  machine = 1,
  ## optional
date_process = "0520"
)
# Define the data path
data_path <- paste0(genepix_vars$chip_path)
# List the file names to use
filenames <- list.files(genepix_vars$chip_path, pattern = "*.txt|*.gpr",
                        full.names = FALSE)
data_files <- purrr::map(.x = filenames, .f = read_array_files, data_path = data_path, genepix_vars = genepix_vars)
data_files <- purrr::set_names(data_files, purrr::map(filenames, name_of_files))
names(data_files)
extract_bg(iden = "KK2-06", data_files=data_files, genepix_vars=genepix_vars)
## End(Not run)
```

Description

This function is to launch the shiny application

Usage

`launch_protGear_interactive()`

Value

launches the shiny interactive protGear app
Examples

```
app <- system.file("shiny-examples", "protGear_interactive", "protGear_interactive.Rmd", package = "protGear")
if (app != ""){
## run this
#launch_protGear_interactive()
}
```

Description

This is Function is to launch multiple shiny applications for protGear

Usage

```r
launch_select(theApp)
```

Arguments

- `theApp`: accepts one of the folders containing the shiny application

Value

- launches the app defined under `theApp`

Examples

```
validExamples <- list.files(system.file("shiny-examples", package = "protGear"))
#launch_select(validExamples[[1]])
```

matrix_normalise

Normalize Arrays

Description

- Normalize Arrays
Usage

```r
matrix_normalise(
  matrix_antigen, 
  method = "log2", 
  batch_correct = FALSE, 
  batch_var1, 
  batch_var2 = day_batches, 
  return_plot = FALSE, 
  plot_by_antigen = TRUE, 
  control_antigens = NULL, 
  array_matrix = NULL
)
```

Arguments

- `matrix_antigen`: An object of class matrix with features/proteins as columns and samples as the rows.
- `method`: character string specifying the normalization method. Choices are "none","log2","vsn","cyclic_loess","cyclic_loess_log","rlm"
- `batch_correct`: A logical value indicating whether batch correction should be done or not.
- `batch_var1`: A character or factor vector of size similar to rows of `matrix_antigen` indicating the first batch.
- `batch_var2`: A character or factor vector of size similar to rows of `matrix_antigen` indicating the second batch.
- `return_plot`: A logical value indicating whether a plot is returned to show the results of normalisation.
- `plot_by_antigen`: Logical to indicate whether to plot by antigen or not slide name for the matrix_antigen object.
- `control_antigens`: logical vector specifying the subset of spots which are non-differentially-expressed control spots, for use with method="rlm"
- `array_matrix`: An object of class dataframe or matrix used with method='rlm' indicating the sample index and

Value

A data frame of normalised values

Examples

```r
matrix_antigen <- readr::read_csv(system.file("extdata", "matrix_antigen.csv", package="protGear"))
#VSN
normlise_vsn <- matrix_normalise(as.matrix(matrix_antigen),
  method = "vsn",
  return_plot = TRUE
```
merge_sampleID

merge_sampleID

Merge sample ID with the array data

Description

A generic function that merges the protein data with the sample identifiers or sample names. If the file does not have sample identifiers the function generates it automatically.

Usage

merge_sampleID(iden, data_files, genepix_vars, method)

Arguments

iden
A character indicating the name of the object to be used under data_files.
data_files
A list of data objects with names utilised by iden.
genepix_vars
A list of specific definitions of the experiment design. See array_vars.
method
A description of the background correction to be used. See bg_correct.

Value

a data frame merged with corresponding sample ID’s. The sample ID are specified in the sample ID files

Examples

Not run:
Define the genepix_vars
genepix_vars <- array_vars(
 channel = "635",
 chip_path = system.file("extdata", "array_data/machine1/",
 package="protGear"),
 totsamples = 21,
 blockspersample = 2,
 mig_prefix = "_first",
 machine = 1,
)

log
normlise_log <- matrix_normalise(as.matrix(matrix_antigen),
 method = "log2",
 return_plot = TRUE)

cyclic_loess_log
normlise_cyclic_log <- matrix_normalise(as.matrix(matrix_antigen),
 method = "cyclic_loess_log",
 return_plot = TRUE)
minpositive

optional
date_process = "0520"

the path where the micro-array data is located
data_path <- paste0(genepix_vars$chip_path)
filenames <- list.files(genepix_vars$chip_path,
 pattern = "*.txt$|*.gpr$", full.names = FALSE)

create a list of all the files
data_files <- purrr::map(
 .x = filenames,
 .f = read_array_files,
 data_path = data_path,
 genepix_vars = genepix_vars)
data_files <- purrr::set_names(data_files,
 purrr::map(filenames, name_of_files))

merge the lab data with samples and perform bg correction
merge_sampleID(iden = "KK2-06", data_files = data_files,
 genepix_vars = genepix_vars, method = "subtract_global")

End(Not run)

minpositive

Get the minimum positive value

Description

Get the minimum positive value

Usage

minpositive(x)

Arguments

x A numeric vector or variable

Value

Returns the minimum positive value in an object

Examples

minpositive(c(-1,-2,3,5,6,7,8,9,10))
name_of_files

Object names of a list

Description
A generic function returning a vector with the names of files in the same directory. Removes the file extension

Usage
name_of_files(i)

Arguments
i - a list filenames with .txt or .gpr extension

Value
a list of file names

name

Examples
name_of_files("KK2-06.txt")

output_trend_stats

Trend test using Cox–Stuart (C–S) and Mann–Kendall (M–K) trend tests

Description
Trend test using Cox–Stuart (C–S) and Mann–Kendall (M–K) trend tests

Usage
output_trend_stats(name, p_val, z_val)

Arguments
name Name of the test
p_val p value from the test
z_val the Z value of the test

Value
A statistics of mean standard deviation trend
plot_bg

Examples

```r
output_trend_stats(name="t.test",p_val=0.001, z_val=5)
```

Description

A generic function for plotting of R objects.

Usage

```r
plot_bg(df, x_axis = "antigen", bg_MFI = "BG_Median", log_mfi = TRUE)
```

Arguments

- `df`: A default dataset to use for plot.
- `x_axis`: The variable on the x axis
- `bg_MFI`: A numeric variable describing which is the background MFI
- `log_mfi`: A logical value indicating whether the MFI values should be log transformed or not.

Value

A `ggplot` of background values

Examples

```r
## Not run:
#After extracting the background using \code{\link{extract_bg}}
#we plot the data using
allData_bg <- readr::read_csv(system.file("extdata", "bg_example.csv",
  package="protGear"))
plot_bg(allData_bg, 
x_axis = "antigen",
bg_MFI = "BG_Median", log_mfi = TRUE
)
## End(Not run)
```
plot_buffer

Plot the buffer values

Description

Plot the buffer values

Usage

```r
plot_buffer(
  df = buffers,
  buffer_names = "antigen",
  buffer_mfi = "FMedianBG_correct",
  slide_id = ".id"
)
```

Arguments

- `df`: A data frame to be used to plot
- `buffer_names`: A character string containing the name of the variable with buffer spots. Default set to 'antigen'.
- `buffer_mfi`: A character string containing the name of the variable with MFI value. Assuming background correction is done already. Default to 'FMedianBG_correct'
- `slide_id`: A character string containing the name of the slide/array identifier variable.

Value

plot of buffer spots

Examples

```r
buffers <- readr::read_csv(system.file("extdata", "buffers_sample2.csv", package="protGear"))
plot_buffer(df=buffers, buffer_names = "sampleID")
```

plot_FB

plot_FB

Description

A generic function for plotting the background and foreground values.
plot_FB

Usage

plot_FB(
 df,
 antigen_name = "antigen",
 bg_MFI = "BG_Median",
 FG_MFI = "FBG_Median",
 log_mfi = FALSE
)

Arguments

df
 An object containing the data to which the plot is done.

antigen_name
 The variable describing which features/proteins/antibodies in the data should be used to plot

bg_MFI
 A numeric variable describing which is the background MFI

FG_MFI
 A numeric variable describing which is the foreground MFI

log_mfi
 a logical value indicating whether the MFI values should be log transformed or not.

Details

Plot foreground and background values

Value

a ggplot of foreground vs background MFI values

Examples

Not run:
#After extracting the background using `\code{\link{extract_bg}}`
#we plot the data using
allData_bg <- readr::read_csv(system.file("extdata", "bg_example.csv", package="protGear"))
plot_FB(allData_bg,
 antigen_name = "antigen",
 bg_MFI = "BG_Median", FG_MFI = "FBG_Median", log = FALSE
)
End(Not run)
plot_normalised

Comparison of normalised data by sample

Description
Comparison of normalised data by sample

Usage
plot_normalised(exprs_normalised_df, method, batch_correct)

Arguments
exprs_normalised_df
 a normalised data frame
method
 the method of normalisation used
batch_correct
 the batch correction

Value
A ggplot of normalised data

Examples
matrix_antigen <- readr::read_csv(system.file("extdata",
 "matrix_antigen.csv", package="protGear"))
normlise_vsn <- matrix_normalise(as.matrix(matrix_antigen),
 method = "vsn",
 return_plot = FALSE
)
plot_normalised(normlise_vsn,method="vsn",batch_correct=FALSE)

plot_normalised_antigen

Comparison of normalised data by feature

Description
Comparison of normalised data by feature

Usage
plot_normalised_antigen(exprs_normalised_df, method, batch_correct)
read_array_files

Arguments

- `exprs_normalised_df`: a normalised data frame
- `method`: the method of normalisation used
- `batch_correct`: the batch correction

Value

A ggplot of various normalisation approaches

Examples

```r
matrix_antigen <- readr::read_csv(system.file("extdata", "matrix_antigen.csv", package="protGear"))
normlise_vsn <- matrix_normalise(as.matrix(matrix_antigen), method = "vsn",
return_plot = FALSE)
plot_normalised_antigen(normlise_vsn, method="vsn", batch_correct=FALSE)
```

read_array_files

Read array files

Description

This helps to read the chip file(s).

Usage

```r
read_array_files(i, data_path, genepix_vars)
```

Arguments

- `i`: The name of the file which the data are to be read from.
- `data_path`: The path where the file with the data is located
- `genepix_vars`: A list of specific definitions of the experiment design. See `array_vars`.

Details

Read multiple array files

Value

A number of data frames in the global environment
Examples

Not run:
```r
read_array_visualize(infile = system.file("extdata", "/array_data/machine1/KK2-06.txt", package="protGear"))
```
End(Not run)
Description
A function for method='rlm' from \texttt{matrix_normalise}.

Usage
\begin{verbatim}
rlm_normalise(rlm_normalise_df)
\end{verbatim}

Arguments
\begin{itemize}
\item \texttt{rlm_normalise_df} \\
\hspace*{1em} rlm normalised data frame
\end{itemize}

Value
an elist of RLM normalisation to be utilised by \texttt{rlm_normalise_matrix}

Examples
\begin{verbatim}
matrix_antigen <- readr::read_csv(system.file("extdata", "matrix_antigen.csv", package="protGear"))
rlm_normalise_df <- rlm_normalise_matrix(matrix_antigen=matrix_antigen, array_matrix=array_matrix, control_antigens=control_antigens)
rlm_normalise(rlm_normalise_df)
\end{verbatim}

Description
A function for method='rlm' from \texttt{matrix_normalise}.

Usage
\begin{verbatim}
rlm_normalise_matrix(matrix_antigen, array_matrix, control_antigens)
\end{verbatim}

Arguments
\begin{itemize}
\item \texttt{matrix_antigen} \\
\hspace*{1em} A matrix with antigen data
\item \texttt{array_matrix} \\
\hspace*{1em} A matrix with control antigen data
\item \texttt{control_antigens} \\
\hspace*{1em} the control antigens for RLM normalisation
\end{itemize}
Value

A RLM normalised data frame

Examples

```r
matrix_antigen <- readr::read_csv(system.file("extdata", "matrix_antigen.csv", package="protGear"))
# rlm_normalise_matrix(matrix_antigen=matrix_antigen,
# array_matrix=array_matrix,
# control_antigens=control_antigens)
```

Description

End Function

Usage

```r
tag_subtract(
  dataC_mfi,
  tag_antigens,
  mean_best_CV_var,
  tag_file,
  batch_vars,
  sampleID_var = "sampleID",
  antigen_var = "antigen"
)
```

Arguments

- `dataC_mfi` A dataframe
- `tag_antigens` A character vector with the names of proteins or antigens used as TAG.
- `mean_best_CV_var` A character string containing the identifier of the variable with the MFI values.
- `tag_file` A data frame with variables antigen, TAG, TAG_name to show the TAG for the different antigens or proteins in dataC_mfi
- `batch_vars` A list of characters identifying variables in dataC_mfi for indicating batch.
- `sampleID_var` A character string containing the name of the sample identifier variable. Default set to 'sampleID'
- `antigen_var` A character string containing the name of the features/protein variable. Default to 'antigen'

Details

Subtract the purification TAG data
Value

A data frame of TAG values subtracted

Examples

```r
tag_file <- readr::read_csv(system.file("extdata", "TAG_antigens.csv", package="protGear"))
tag_antigens <- c("CD4TAG", "GST", "MBP")
batch_vars <- list(machine = "m1", day = "0520")
dataC <- readr::read_csv(system.file("extdata", "dataC.csv", package="protGear"))
## this file has 3 lab replicates and the default names
dataCV <- cv_estimation(dataC ,lab_replicates=3)
dataCV_best2 <- best_CV_estimation(dataCV,slide_id = "iden", lab_replicates = 3, cv_cut_off = 20)
tag_subtract(dataCV_best2,tag_antigens=tag_antigens,
mean_best_CV_var="mean_best_CV",
tag_file = tag_file,antigen_var = "antigen", batch_vars = batch_vars)
```

visualize_slide

Visualize the slide mimicking the original scan image.

Description

Visualize the slide mimicking the original scan image.

Usage

```r
visualize_slide(infile, MFI_var, interactive = FALSE, d_f = NA)
```

Arguments

- **infile**: a .gpr file to be used to visualize the expression intensities of the slide spots
- **MFI_var**: the MFI variable to plot, can be either the background or foreground value
- **interactive**: a logical to specify whether an interactive graph is returned or not
- **d_f**: a data frame with array data

Value

A ggplot of slide foreground values
visualize_slide_2d

Visualize the slide mimicking the original scan image using a 2d plot.

Description
Visualize the slide mimicking the original scan image using a 2d plot.

Usage
visualize_slide_2d(infile, MFI_var, d_f = NA)

Arguments
- `infile` - a .gpr file to be used to visualize the expression intensities of the slide spots
- `MFI_var` - the MFI variable to plot, can be either the background or foreground value
- `d_f` - a data frame with array data

Value
A 2d plot of either the background or foreground values

Examples
```r
## Not run:
visualize_slide_2d(
  infile = system.file("extdata", "/array_data/machine1/KK2-06.txt",
                    package="protGear"),
  MFI_var = "B635 Median"
)
## End(Not run)
```
Index

* internal
 error_replicates, 10
 rlm_normalise, 23

array_vars, 3, 5, 6, 10, 14, 21

backgroundCorrect, 5
best_CV_estimation, 4
bg_correct, 5, 14
buffer_spots, 6

check_sampleID_files, 6
create_dir, 7
cv_by_sample_estimation, 8
cv_estimation, 9

tag_subtract, 24

error_replicates, 10
eclipse, 10

launch_protGear_interactive, 11
launch_select, 12

matrix_normalise, 12, 23
merge_sampleID, 14
minpositive, 15

name_of_files, 16
output_trend_stats, 16

plot_bg, 17
plot_buffer, 18
plot_FB, 18
plot_normalised, 20
plot_normalised_antigen, 20

read_array_files, 21
read_array_visualize, 22
rlm_normalise, 22
rlm_normalise_matrix, 23, 23

visualize_slide, 25
visualize_slide_2d, 26