Package ‘regioneReloaded’

April 4, 2024

Type Package
Title RegioneReloaded: Multiple Association for Genomic Region Sets
Version 1.4.0
URL https://github.com/RMalinverni/regioneReload

Description RegioneReloaded is a package that allows simultaneous analysis of associations between genomic region sets, enabling clustering of data and the creation of ready-to-publish graphs. It takes over and expands on all the features of its predecessor regioneR. It also incorporates a strategy to improve p-value calculations and normalize z-scores coming from multiple analysis to allow for their direct comparison. RegioneReloaded builds upon regioneR by adding new plotting functions for obtaining publication-ready graphs.

License Artistic-2.0
Encoding UTF-8
LazyData false
RoxygenNote 7.2.1

Depends R (>= 4.2), regioneR
Imports stats, RColorBrewer, Rtsne, umap, ggplot2, ggrepel, reshape2, methods, scales, cluster, grid, grDevices
Suggests rmarkdown, BiocStyle, GenomeInfoDb, knitr, testthat (>= 3.0.0)

biocViews Genetics, ChIPSeq, DNaseq, MethylSeq, CopyNumberVariation, Clustering, MultipleComparison

VignetteBuilder knitr

Config/testthat/edition 3
git_url https://git.bioconductor.org/packages/regioneReloaded
git_branch RELEASE_3_18
git_last_commit e177e0f
git_last_commit_date 2023-10-24
Repository Bioconductor 3.18
The Alien Genome is an artificial genomic coordinates system for the purposes of testing and demonstrating the functions of regioneReload with a low computing time.

Usage

```r
data(cw_Alien)
```

Format

An objects of class `GRanges`.

Details

The Alien Genome consists of four chromosomes and is generated by the following code:

```r
AlienGenome <-
toGRanges(data.frame(
    chr = c("AlChr1", "AlChr2", "AlChr3", "AlChr4"),
    start = c(rep(1, 4)),
    end = c(2e6, 1e6, 5e5, 1e5)
))
```

List of region sets (as `GRanges`) on the AlienGenome.

Usage

```r
data(cw_Alien)
```
chooseHclustMet

Format

A list of `GRanges` objects.

Details

This region sets are generated for the purpose of demonstrating the functions of RegioneReloaded with a low computing time and "predictable" associations. The regions are generated with by combining `createRandomRegions()` and `similarRegionSet()` so that there is a known overlap between certain region sets. To see a full description of this sample data and the code used to generate it, see the RegioneReloaded vignette.

AlienRSList_narrow

Description

List of region sets (as `GRanges`) on the `AlienGenome`.

Usage

```r
data(cw_Alien)
```

Format

A list of `GRanges` objects.

Details

This region sets are generated for the purpose of demonstrating the functions of RegioneReloaded with a low computing time and "predictable" associations. The regions are generated with by combining `createRandomRegions()` and `similarRegionSet()` so that there is a known overlap between certain region sets. To see a full description of this sample data and the code used to generate it, see the RegioneReloaded vignette.

chooseHclustMet

Description

Evaluate and choose the best method for clustering a matrix using the `hclust()` function.

Usage

```r
chooseHclustMet(GM, scale = FALSE, vecMet = NULL, distHC = "euclidean")
```
Arguments

GM matrix, numerical matrix.

scale logical, if TRUE, the clustering will be performed using the scaled matrix. (default = FALSE)

vecMet character, vector of methods that will be tested in the function. If NULL, the following methods will be tested: "complete", "average", "single", "ward.D2", "median", "centroid" and "mcquitty. (default = NULL)

distHC character, the distance measure to be used from those available in dist(). (default = "euclidean")

Value

An object of class hclust

See Also

hclust()

Examples

M1 <- matrix(1:18, nrow = 6, ncol = 3)
set.seed(42)
M2 <- matrix(sample(100, 18), nrow = 6, ncol = 3)
GM <- cbind(M1, M2)
chooseHclustMet(GM)

cleanCrosswiseMatrix cleanCrosswiseMatrix

description

Clean and scale a matrix from a genoMatriXeR object

Usage

cleanCrosswiseMatrix(GM, GM_pv, pvcut, scale, subEX)

Arguments

GM matrix, numerical matrix of z-scores.

GM_pv matrix, numerical matrix of pvalues.

pvcut numeric, the z-score value is substituted by subEX (0 by default) for all the associations with an adj.pvalue (as calculated in crosswisePermTest()) higher than pvcut. (default = 0.05)
scale logical, if TRUE the matrix will be scaled. (default = FALSE)
subEX numeric, value used to substitute the z-score values when the associated pvalue is higher than pvcut. (default = 0)

Value
a matrix filtered for a matrix of pvalue

See Also
makeCrosswiseMatrix()

description
Create the universe parameter for \texttt{regioneR::resampleRegions()} using all unique regions present in Alist.

Usage
createUniverse(Alist, joinR = TRUE)

Arguments
Alist list of regions set in a format accepted for \texttt{regioneR}
joinR logical, if TRUE all the regions will be joined using the function \texttt{regioneR::joinRegions()}.(default == TRUE)

Value
A list of \texttt{GRanges} objects

Examples
data("cw_Alien")
universe <- createUniverse(AlienRSList_narrow)
crosswiseMatrix

Description

Create a matrix from a genoMatriXeR object.

Usage

```r
crosswiseMatrix(mPT, zs.type='norm_zscore', ...)
```

Arguments

- `mPT`: an object of class `genoMatriXeR`.
- `zs.type`: character, z-score type to use to generate the matrix, either raw z-score ("zs-core") or normalized z-score ("norm_zscore"). (default = "norm_zscore")
- `...`: further arguments to be passed to other methods.

Value

a numeric matrix

crosswisePermTest

Description

Perform multiple permutation tests between each element in two lists of region sets.

Usage

```r
crosswisePermTest(Alist, Blist = NULL, sampling = FALSE, fraction = 0.15, min_sampling = 5000, ranFUN = "randomizeRegions", evFUN = "numOverlaps", ntimes = 100, universe = NULL, adj_pv_method = "BH", genome = "hg19", ...)
```

Arguments

- `Alist, Blist`: GRangesList or list of region sets in any accepted formats by regioneR package (GRanges, data.frame etc.).
- `sampling`: logical, if TRUE the function will use only a sample of each element of Alist to perform the test as specified in fraction. (default = FALSE)
- `fraction`: logical, if sampling=TRUE, defines the fraction of the region sets used to perform the test. (default = 0.15)
min_sampling numeric, minimum number of regions accepted after sampling is performed with the specified fraction. If the number of sampled regions is less than min_sampling, the number specified by min_sampling will be used as number of regions sampled instead. (default = 5000)

ranFUN character, the randomization strategy used for the test, see regioneR. (default = "randomizeRegions")

evFUN character, the evaluation strategy used for the test, see regioneR. (default = "numOverlaps")

ntimes numeric, number of permutations used in the test. (default = 100)

universe region set to use as universe, used only when regioneR::resampleRegions() function is selected. (default = NULL)

adj_pv_method character, the method used for the calculation of the adjusted p-value, to choose between the options of p.adjust(). (default = "BH")

genome character or GRanges, genome used to compute the randomization. (default = "hg19")

... further arguments to be passed to other methods.

Details

This function performs multiple permutation tests for all pairwise combinations of the elements in two lists of region sets. Essentially, it uses the regioneR::permTest() function and its associated randomization and evaluation functions. It creates and returns a genoMatriXeR object with the result of the permutation tests stored in the multiOverlaps slot. In addition, all the parameters used for the test are stored in the parameters slot.

Value

A object of class genoMatriXeR containing three slots

• @parameters
• @multiOverlaps
• @matrix

See Also
genoMatriXeR, regioneR, regioneR::permTest(), regioneR::overlapPermTest()

Examples

fakeGenome <- regioneR::toGRanges("chrF", 1, 1000)
regA <- regioneR::createRandomRegions(nregions = 10, length.mean = 10, length.sd = 2, genome = fakeGenome)
regB <- regioneR::createRandomRegions(nregions = 10, length.mean = 10, length.sd = 2, genome = fakeGenome)
regAs <- similarRegionSet(GR = regA, genome = fakeGenome, name = "A", vectorPerc = seq(0.1, 0.3, by = 0.1))
regBs <- similarRegionSet(GR = regB, genome = fakeGenome, name = "B",
vectorPerc = seq(0.1, 0.3, by = 0.1))
ABLlist <- c(regAs, regBs)
cw_ptAB <- crosswisePermTest(ABLlist, genome = fakeGenome, ntimes = 10)
print(cw_ptAB)

cw_Alien

cw_Alien

Description
Alien Genome crosswise matrix using regioneR::randomizeRegions, regioneR::circularRandomizeRegions, regioneR::resampleRegions, regioneR::resampleGenome functions as permutation strategies.

Usage
data(cw_Alien)

Format
An objects of class genoMatriXeR; see makeCrosswiseMatrix().

cw_Alien_RaR
cw_Alien_RaR

Description
Alien Genome crosswise matrix using regioneR::randomizeRegions() function a permutation strategy. Alist = AlienRSList_narrow, Blist = AlienRSList_narrow

Usage
data(cw_Alien)

Format
An objects of class genoMatriXeR; see makeCrosswiseMatrix().
Description

Alien Genome crosswise matrix using `regioneR::resampleGenome()` function as permutations strategy. Alist = AlienRSList_narrow, Blist = AlienRSList_narrow

Usage

data(cw_Alien)

Format

An objects of class `genoMatrixeR`; see `makeCrosswiseMatrix()`.

Description

Alien Genome crosswise matrix using `regioneR::resampleGenome()` function as permutations strategy. Alist = AlienRSList_narrow, Blist = AlienRSList_broad

Usage

data(cw_Alien)

Format

An objects of class `genoMatrixeR`; see `makeCrosswiseMatrix()`.
Description

Alien Genome crosswise matrix using `regioneR::resampleRegions()` function a permutation strategy. Alist = AlienRSList_narrow, Blist = AlienRSList_narrow

Usage

data(cw_Alien)

Format

An objects of class `genoMatriXeR`; see `makeCrosswiseMatrix()`.

Description

Dataframe from MultiLocalZScore object

Usage

DFfromLZ(mLZ, RS)

Arguments

mLZ object class MultilocalZScore
RS string name of single region set present in the mLZ object

Value

a data.frame from `multiLocalZScore`
getHClust

Description

get Object of class `hclust` from `genoMatriXeR` or `multiLocalZScore`

Usage

```r
getHClust( rR, hctype = "rows")
```

Arguments

- **rR**
 A `genoMatriXeR` or `multiLocalZScore` object.

- **hctype**
 character. Can be "rows" or "cols". (default= "cols")
getMatrix

Value

an object of class hclust

See Also

genoMatriXeR, multiLocalZScore, hclust

Examples

data("cw_Alien")

cw_Alien_ReG <- makeCrosswiseMatrix(cw_Alien_ReG)
hc <- getHClust(cw_Alien_ReG)
plot(hc)

data("cw_Alien")

cw_Alien_ReG <- makeCrosswiseMatrix(cw_Alien_ReG)
mtx <- getMatrix(cw_Alien_ReG)
mtx
data("cw_Alien")

cw_Alien_RaR <- makeCrosswiseMatrix(cw_Alien_RaR)
GM <- getMatrix(cw_Alien_RaR)

GM

definition: Get multiEvaluation slot from genoMatriXeR or multiLocalZScore class.

Usage

googleMultiEvaluation(rR, namesRS = NULL)

Arguments

rR
A genoMatriXeR or multiLocalZScore object.

namesRS
a vector of names. (default = NA)

Value

If rR is a genoMatriXeR object, a list of data frames resuming the associations results. If rR is a multiLocalZScore object, a list of two elements: "resumeTable" that is a data frame summarizing the associations and "shifts", a list of shifts computed from multiLocalZscore() function for the elements indicated in the nameRS vector.

See Also

genoMatriXeR, multiLocalZScore

Examples

data("cw_Alien")

mevs <- getMultiEvaluation(cw_Alien_ReG, names = "regA")

mevs
Description

Get parameters from a genoMatriXeR or multiLocalZScore class object.

Usage

getParameters(rR, show_err = FALSE)

Arguments

rR
A genoMatriXeR or multiLocalZScore class object.

show_err
logical, if TRUE the function returns a list with two dataframes: one containing the parameter values and one with any error messages that have been generated during the permutation test iterations when running crosswisePermTest.

Value

A dataframe with parameters and values, or a list with two dataframes with parameters and errors information.

See Also

genoMatriXeR, multiLocalZScore

Examples

data("cw_Alien")

prm <- getParameters(cw_Alien_ReG)

prm

gmxrMatrix

Export matrix slot from genoMatriXeR objects

Description

Export matrix slot from genoMatriXeR objects

Usage

gmxrMatrix(x)
Arguments

x A genoMatriXeR object.

Value

matrix slot of a genoMatriXeR object.

See Also
genoMatriXeR

gmxrMatrix<- Set matrix slot value of a genoMatriXeR object

Description

Set matrix slot value of a genoMatriXeR object

Usage

gmxrMatrix(x) <- value

Arguments

x A genoMatriXeR object.
value Value to assign to the matrix slot.

Value

A genoMatriXeR object.

gmxrMultiOverlaps Export multiOverlaps slot from genoMatriXeR objects

Description

Export multiOverlaps slot from genoMatriXeR objects

Usage

gmxrMultiOverlaps(x)

Arguments

x A genoMatriXeR object.
Value

multiOverlaps slot of a genoMatriXeR.

See Also

genoMatriXeR

gmxrParam

Description

Export parameters from genoMatriXeR objects

Usage

gmxrParam(x)

Arguments

x

A genoMatriXeR object.

Value

Parameters slot of a genoMatriXeR object.

See Also

genoMatriXeR

makeCrosswiseMatrix

Description

Populate the matrix slot in a genoMatriXeR object.

Usage

makeCrosswiseMatrix(mPT, clusterize = TRUE, hc.method = NULL, dist.method = "euclidean", transform = FALSE, scale = FALSE, zs.type = 'norm_zscore', symm_matrix = TRUE, selectRow = NULL, selectCol = NULL, pvcut = 1, subEX = 0, GM_diag = TRUE, ...)
Arguments

mPT an object of class genoMatriXeR.
clusterize logical, if TRUE the matrix will be clustered using the method specified by hc.method (default = TRUE)
hc.method character, select the hclust() method to use for clustering the matrix. If NULL, the clustering method will be automatically selected by the function chooseHclustMet(). (default = NULL)
dist.method character, the distance measure to be used from those available in dist(). (default = "euclidean")
transform logical, if TRUE the matrix will be transformed using the function t(). (default = FALSE)
scale logical, if TRUE the matrix will be scaled. (default = FALSE)
zs.type character, z-score type to use to generate the matrix, either raw z-score ("zs-core") or normalized z-score ("norm_zscore"). (default = "norm_zscore")
symm_matrix logical, if TRUE the matrix will be treated as symmetrical (same clustering for rows and columns). (default = TRUE)
selectRow, selectCol vector, the matrix will be reduced selecting the rows and/or columns in this vector. (default = NULL)
pvcut numeric, the z-score value is substituted by subEX (0 by default) for all the associations with an adj.pvalue (as calculated in crosswisePermTest()) higher than pvcut. (default = 0.05)
subEX numeric, value used to substitute the z-score values when the associated pvalue is higher than pvcut. (default = 0)
GM_diag logic, if FALSE the values of the diagonal will be set to 0. (default = TRUE)
...

Details

This function will create a series of matrices of z-scores, adj.pvalues and pearson correlation values from all the pairwise permutation tests stored in the multiOverlaps slot of a genoMatriXeR as calculated with multiPermTest(). These matrices will then be stored in the matrix slot of the genoMatriXeR object. In addition, clustering will be performed on the association matrices using hclust.

Value

An object of class genoMatriXeR containing three slots, with a populated matrix slot.

@parameters
@multioverlaps
@matrix

See Also

crosswisePermTest(), chooseHclustMet(), plotCrosswiseMatrix()
Examples

data("cw_Alien")

cw_Alien_ReG <- makeCrosswiseMatrix(cw_Alien_ReG)

summary(cw_Alien_ReG)

makeLZMatrix

Make Local Z-Score Matrix

Description

Create a local z-score matrix from a multiLocalZScore object and save it in its matrix slot.

Usage

makeLZMatrix(mlZA, normalize = TRUE, clusterize = TRUE,
 centralize = NA, hc.method = NULL, dist.method = "euclidean",
 scale = FALSE, ...)

Arguments

mlZA
 an object of class multiLocalZScore or a numerical matrix.
normalize
 logical, if TRUE the z-score values in the matrix will be normalized. (default = FALSE)
clusterize
 logical, if TRUE the matrix will be clustered using the method specified by
 hc.method (default = TRUE)
centralize
 numeric, only z-score values in a number of steps (defined by centralize)
 around the center of the local association will be used for clustering. If NA, all
 the values in the matrix will be used for clustering. (default = NA)
hc.method
 character, select the hclust() method to use for clustering the matrix. If NULL,
 the clustering method will be automatically selected by the function chooseHclustMet().
 (default = NULL)
dist.method
 character, the distance measure to be used from those available in dist(). (de-
 fault = "euclidean")
scale
 logical, if TRUE the matrix will be scaled. (default = FALSE)
...
 further arguments to be passed to other methods.

Value

A object of class multiLocalZScore containing three slots, with a populated matrix slot.

• @parameters
• @multiLocalZscores
• @matrix
mlzsMatrix<-

See Also

localZScore

Examples

data("cw_Alien")

mlzsMatrix

Export matrix from multiLocalZScore objects

Description

Export matrix from multiLocalZScore objects

Usage

mlzsMatrix(x)

Arguments

x A multiLocalZScore object.

Value

A printed output for multiLocalZScore matrix slot.

See Also

multiLocalZScore

mlzsMatrix<-

Set matrix slot value of a multiLocalZScore object.

Description

Set matrix slot value of a multiLocalZScore object.

Usage

mlzsMatrix(x) <- value
Arguments

 x A multiLocalZScore object.
value Value to assign to the multiLocalZScore slot.

Value

 A multiLocalZScore object.

Description

Export multiLocalZscores slot from multiLocalZScore objects

Usage

 mlzsMultiLocalZscores(x)

Arguments

 x A multiLocalZScore object.

Value

 multiLocalZscores slot of a multiLocalZScore object.

See Also

 multiLocalZScore

Description

Export parameters from multiLocalZScore objects

Usage

 mlzsParam(x)

Arguments

 x A multiLocalZScore object.
Value

parameters slot of a multiLocalZScore object.

See Also

multiLocalZScore

mlzsParam<- Set parameters slot value of a multiLocalZScore object

Description

Set parameters slot value of a multiLocalZScore object

Usage

mlzsParam(x) <- value

Arguments

x A multiLocalZScore object.
value Value to assign to the parameters slot.

Value

A multiLocalZScore object.

Description

Alien Genome multiLocalZScore calculated for regA regionset from AlienRSList_narrow using regioneR::resampleGenome() function as permutation strategy.

Usage

data(cw_Alien)

Format

An objects of class multiLocalZScore; see makeLZMatrix().
Description

Alien Genome multiLocalZScore calculated for regA regionset from AlienRSList_broad using `regioneR::resampleGenome()` function as permutation strategy.

Usage

```r
data(cw_Alien)
```

Format

An object of class `multiLocalZScore`

Description

Alien Genome multiLocalZScore calculated for regD regionset from AlienRSList_narrow using `regioneR::resampleGenome()` function as permutation strategy.

Usage

```r
data(cw_Alien)
```

Format

An object of class `multiLocalZScore`
multiLocalZscore

Description

Perform multiple permutation tests between a region set and each element in a list of region sets using shifted positions to calculate a local z-score.

Usage

```r
multiLocalZscore(A, Blist = NULL, sampling = FALSE, fraction = 0.15, min_sampling = 5000, ranFUN = "randomizeRegions", evFUN = "numOverlaps", ntimes = 100, adj_pv_method = "BH", genome = "hg19", universe = NULL, window = 1000, step = 100, ...)
```

Arguments

- **A**: query region set for which to estimate local z-score values.
- **Blist**: GRangesList or list of region sets in any accepted formats by regioneR package (GRanges, data.frame etc.).
- **sampling**: logical, if TRUE the function will use only a sample of each element of Alist to perform the test as specified in fraction. (default = FALSE)
- **fraction**: logical, if sampling=TRUE, defines the fraction of the region sets used to perform the test. (default = 0.15)
- **min_sampling**: numeric, minimum number of regions accepted after sampling is performed with the specified fraction. If the number of sampled regions is less than min_sampling, the number specified by min_sampling will be used as number of regions sampled instead. (default = 5000)
- **ranFUN**: character, the randomization strategy used for the test, see regioneR. (default = "randomizeRegions")
- **evFUN**: character, the evaluation strategy used for the test, see regioneR. (default = "numOverlaps")
- **ntimes**: numeric, number of permutations used in the test. (default = 100)
- **adj_pv_method**: character, the method used for the calculation of the adjusted p-value, to choose between the options of p.adjust(). (default = "BH")
- **genome**: character or GRanges, genome used to compute the randomization. (default = "hg19")
- **universe**: region set to use as universe, used only when regioneR::resampleRegions() function is selected. (default = NULL)
- **window**: numeric, window (number of base pairs) in which the local z-score will be calculated. (default = 1000)
- **step**: numeric, step (number of base pairs) by which will be estimated the local Z-score. (default = 100)
- **...**: further arguments to be passed to other methods.
multiLocalZScore-class

Details

This function performs multiple permutation tests between a single region set and each element in a list of region sets. For every pairwise combination, the evaluation step is repeated each time shifting the position of all the regions in the query region set by a fixed step inside a defined window (using `regioneR::localZScore()`). This produces a "local z-score" profile that can be indicative of the nature of the association between region sets. For example, an association can occur "centrally" if the z-score value drops sharply when shifting the region set. On the other hand, two region sets may have a peak of local z-score away from the central position if they happen to occur often at a regular distance, showing a "lateral" association.

Value

A object of class multiLocalZScore containing three slots

- @parameters
- @multiLocalZscores
- @matrix

See Also

`regioneR::localZScore()`

Examples

```r
fakeGenome <- regioneR::toGRanges("chrF",1,1000)
regA <- regioneR::createRandomRegions(nregions = 10, length.mean = 10, length.sd = 2, genome = fakeGenome)
regB <- regioneR::createRandomRegions(nregions = 10, length.mean = 10, length.sd = 2, genome = fakeGenome)
regAs <- similarRegionSet(GR = regA, genome = fakeGenome, name = "A", vectorPerc = seq(0.1,0.3,by =0.1))
regBs <- similarRegionSet(GR = regB, genome = fakeGenome, name = "B", vectorPerc = seq(0.1,0.3,by =0.1))
ABList <- c(regAs, regBs)

mlz_ptAB <- multiLocalZscore(A = regA, Blist = ABList, genome = fakeGenome, ntimes = 10)
summary(mlz_ptAB)
```

multiLocalZScore-class

multiLocalZScore Class

Description

An S4 class for "multiLocalZScore" object.
multiPermTest

Slots

parameters List of parameters used to create the object
multiLocalZscores Results of multiple pairwise permutation tests on shifted region sets generated with `multiLocalZscore()`.
matrix List of numerical matrices containing local z-scores and correlation values generated with `makeLZMatrix()`.

Examples

data("cw_Alien")

AlienRSList_narrow_small <- AlienRSList_narrow[c("regA","regB","regC")]

mlz_test <- multiLocalZscore(A = AlienRSList_narrow_small$regA, Blist = AlienRSList_narrow_small,
 sampling = FALSE, genome = AlienGenome, per.chromosome = TRUE,
 ranFUN = "resampleGenome", evFUN = "numOverlaps",
 ntimes = 10, mc.cores = 2)

class(mlz_test)

multiPermTest

Description

multiPermTest

Usage

multiPermTest (A, Blist, ranFUN, evFUN, uni, genome, rFUN, ntimes, adj_pv_method, ...)

Arguments

A Genomic Ranges or any accepted formats by `regioneR` package (`GRanges`, `data.frame` etc.).
ranFUN character, the randomization strategy used for the test, see `regioneR`. (default = "randomizeRegions")
evFUN character, the evaluation strategy used for the test, see `regioneR`. (default = "numOverlaps")
uni region set to use as universe, used only when `regioneR::resampleRegions()` function is selected. (default = NULL)
genome character or `GRanges`, genome used to compute the randomization. (default = "hg19")
ntimes numeric, number of permutations used in the test. (default = 100)
adj_pv_method character, the method used for the calculation of the adjusted p-value, to choose between the options of `p.adjust()`. (default = "BH")

... further arguments to be passed to other methods.
plotCrosswiseDimRed

Details
Perform a multiple permutation test

Value
a data frame object computed starting from results of regioneR::permTest() function

See Also
regioneR::permTest()

plotCrosswiseDimRed

Description
Plot a visualization of a genoMatriXeR object (or matrix) using different dimensional reduction algorithms (PCA, tSNE and UMAP).

Usage
plotCrosswiseDimRed(mPT, type = "PCA", GM_clust = NA, clust_met = "hclust", nc = 5, listRS = NULL, main = "", labSize = 2, emphasize = FALSE, labAll = FALSE, labMaxOverlap = 100, ellipse = TRUE, colPal = NULL, perplexity = 10, theta = 0.1, return_table = FALSE, return_plot = TRUE, ...)

Arguments
mPT an object of class genoMatriXeR or a numerical matrix.
type character, dimensional reduction algorithm to use ("PCA", "tSNE", "UMAP"). (default = "PCA")
GM_clust numeric, vector of assigned clusters used to cluster the matrix. If NA, the matrix will be clustered using the method defined by clust_met. (default = NA)
clust_met character, unsupervised cluster strategy used (hclust, kmeans or pam). (default = "hclust")
nc numeric, number of clusters to define if using the default "kmeans" method. (default = 5)
listRS list, a list of names of region sets of interest to be highlighted in the graph. (default = NULL)
main character, title for the plot. (default = ")
labSize numeric, size for point labels in the plot. If 0, no labels will be plotted. (default = 2)
emphasize logical, if TRUE, only the cluster in which the elements of listRS are present will be highlighted. (default = FALSE)
plotCrosswiseDimRed

labAll logical, if TRUE all data points are labelled, even if not in listRS when emphasize = TRUE. (default = FALSE)

labMaxOverlap numeric, max.overlaps for geom_text_repel. (default = 100)

elipse logical, if TRUE ellipses will be drawn around the clusters. (default = FALSE)

colPal character, colors to use as palette for the plot. If NULL, default colors will be used. (default = NULL)

perplexity, theta numeric, if type = "tSNE" values of perplexity and theta for the function Rtsne(). (default = 10)

return_table logical, if TRUE a table with the cluster assigned to each region is returned. (default = FALSE)

return_plot logical, if TRUE a plot is returned. (default = TRUE)

... further arguments to be passed on to other methods

Details

This function generates a plot with a two-dimensional representation of the association data stored in a genoMatriXeR object by using either PCA, tSNE or UMAP transformations of the data. This function incorporates a clustering step and allows to highlight specific region sets of interest and the clusters they belong to. In addition to generating a plot, a table with the cluster assignments can be retrieved.

Value

A ggplot object or a table with cluster assignments is returned.

See Also

crosswisePermTest()

Examples

data("cw_Alien")
cw_Alien_ReG <- makeCrosswiseMatrix(cw_Alien_ReG)
plotCrosswiseDimRed(cw_Alien_ReG, type = "PCA")

CDR_clust <- plotCrosswiseDimRed(cw_Alien_ReG, type = "UMAP", return_table = TRUE)
print(CDR_clust)
plotCrosswiseMatrix

Description

Plot matrix of associations/correlations stored in a genoMatriXeR object.

Usage

plotCrosswiseMatrix(mPT, lineColor = NA, interpolate = FALSE, colMatrix = "default", matrix_type = "association", cor = "row", maxVal = NA, main = "", ord_mat = NULL)

Arguments

mPT an object of class genoMatriXeR or a numerical matrix.
lineColor logical, color for the line grid delineating the tiles of the matrix plot. If NA, no line will be drawn. (default = NA)
interpolate logical, if TRUE the image will be interpolated using the function geom_raster(). (default = FALSE)
colMatrix character or vector of colors, if "default" will be used a default selection see..
matrix_type character, type of matrix to be plotted, either "association" or "correlation". (default = "association")
cor character, if matrix_type is "correlation", choose if the function cor() will be executed on each "row" or "col" of the matrix. (default = "row")
maxVal numeric, maximum absolute value displayed by the plot. If "max", the maximum values in the matrix are used. If NA, the 0.95 quantile of all absolute values is used. (default = NA)
main character, title of the plot. (default = "")
ord_mat numeric, list with two numeric vectors that represent the ordering of rows and column of the matrix to be used in the plot. If NULL, the order of the matrix is preserved as is. (default = NULL)

details

This function creates a graphical representation of the matrix of associations stored in a genoMatriXeR object. The values plotted and clustering options can be controlled when creating the matrix with the function makeCrosswiseMatrix.

Value

Returns a ggplot object.

See Also
crosswisePermTest makeCrosswiseMatrix
Examples

```r
data("cw_Alien")
cw_Alien_ReG <- makeCrosswiseMatrix( cw_Alien_ReG)
plotCrosswiseMatrix(cw_Alien_ReG, matrix_type = "association")
plotCrosswiseMatrix(cw_Alien_ReG, matrix_type = "correlation")
```

plotLocalZScoreMatrix Plot Local Z-Score Matrix

Description

Plot Local Z-Score Matrix of associations/correlations stored in a `multiLocalZScore` object.

Usage

```r
plotLocalZScoreMatrix (mLZ, lineColor = NA, colMatrix = "default",
matrix_type = "association", maxVal = "max", main = "", labSize = 6,
revert = FALSE, highlight = NULL, highlight_size = 2.5, highlight_max = FALSE,
smoothing = FALSE, ...)
```

Arguments

- **mLZ**: an object of class `multiLocalZScore` or a matrix
- **lineColor**: logical, color for the line grid delineating the tiles of the matrix plot. If NA, no line will be drawn. (default = NA)
- **colMatrix**: character or vector of colors, if "default" will be used a default selection see..
- **matrix_type**: character, type of matrix to be plotted, either "association" or "correlation". (default = "association")
- **maxVal**: numeric, maximum absolute value displayed by the plot. If "max", the maximum values in the matrix are used. If NA, the 0.95 quantile of all absolute values is used. (default = NA)
- **main**: character, title of the plot. (default = "")
- **labSize**: numeric, size for the plot labels. (default = 6)
- **revert**: logical, if TRUE reverts the order of the plotted elements. (default = FALSE)
- **highlight**: character, vector indicating the region set names to highlight by adding labels pointing to the 0 shift position (default = NULL)
- **highlight_size**: numeric, size of the highlight labels. (default = 2.5)
- **highlight_max**: logical, if TRUE the highlight labels are placed at the maximum local z-score value instead of the 0 shift position. (default = FALSE)
- **smoothing**: logical, if TRUE the `stats::smooth.spline` function will be applied to the local z-score profile. (default = FALSE)
- **...**: further arguments to be passed to other methods.
Value

Returns a ggplot object.

See Also

`multiLocalZscore makeLZMatrix multiLocalZScore`

Examples

```r
data("cw_Alien")
```
labMax logical, if TRUE the labels are placed at the maximum value of each local Z-score profile instead of the center. (default = FALSE)

smoothing logical, if TRUE the `smooth.spline()` function will be applied to the localZ-score profile. (default = FALSE)

... further arguments to be passed to other methods.

Details

This function generates a line plot with the local Z-score profiles of selected region sets from a `multiLocalZScore` object. This type of plot complements the local Z-score matrix (generated by `plotLocalZScoreMatrix`, since it allows to visualize in detail the local Z-score profile of just the region sets of interest.

This plot is well suited for a single or a few region sets, but will get busy if attempting to plot many different profiles. For the latter, the full matrix generated by `plotLocalZScoreMatrix` is usually a better visualization option.

Value

Returns a ggplot object.

See Also

`multiLocalZscore()`, `makeLZMatrix()`

Examples

data("cw_Alien")

plotSingleLZ(mLZ_regA_ReG, RS = c("regD", "regD_02", "regA", "regAB_04"),
labMax = TRUE, smoothing = TRUE)

Description

Plot the result of a single pairwise permutation test from a genoMatriXeR object.

Usage

`plotSinglePT(mPT, RS1, RS2, xlab = NA, main = NA)`
Arguments

- `mPT`: an object of class `genoMatriXeR`.
- `RS1, RS2`: character, names of region sets in a `genoMatriXeR` object for which to represent the pairwise permutation test results.
- `xlab`: character, label for x axis. (default = NA)
- `main`: title for the plot, if NA the name of the `genoMatriXeR` object is used (default = NA)

Details

This function generates a plot representing the result of a single permutation test stored in a `genoMatriXeR` object. This includes a plot of the density distribution of the randomized evaluations and a vertical line showing the observed evaluation in the original region set. The values of the mean randomized evaluations and the value of the observed evaluation are shown, in addition to the calculated Z-score, normalized Z-score and adjusted p-value.

Value

Returns a ggplot object.

See Also

crosswisePermTest, makeCrosswiseMatrix

Examples

data("cw_Alien")
plotSinglePT(cw_Alien_ReG, RS1 = "regA", RS2 = "regA_05")
plotSinglePT(cw_Alien_ReG, RS1 = "regA", RS2 = "regC")

Description

Print method for `genoMatriXeR` class

Usage

```r
## S4 method for signature 'genoMatriXeR'
print(x)
```

Arguments

- `x`: A `genoMatriXeR` object.
randomizeRegionsPerc

Description
Create a random region set similar to a reference region set.

Usage
randomizeRegionsPerc(GR, genome = "hg19", frac = 0.2, ...)

Arguments
- **GR**: a GRanges object with the input region set.
- **genome**: genome of reference to generate the similar region sets. (default = "hg19")
- **frac**: fraction of the original region set to randomize. (default = 0.2)
- **...**: further arguments to be passed to other methods.

Details
This function takes an input region set and generates a region set where a fraction of the regions has been randomized.

Value
a GRanges object

See Also
similarRegionSet()

Examples
```r
data("cw_Alien")
nreg <- 100
regA <-
    createRandomRegions(  
        nregions = nreg,
```
```
length.mean = 100,
length.sd = 10,
non.overlapping = TRUE,
genome = AlienGenome
)

regA_02 <- randomizeRegionsPerc(GR = regA, genome = AlienGenome, frac = 0.2)
```

similarRegionSet

Create a list of similar region sets to a reference region set.

Usage

```
similarRegionSet(GR, name, genome, vectorPerc)
```

Arguments

- **GR**: a GRanges object with the input region set.
- **name**: character, name for the output region sets. The names will be generated by adding an underscore and the fraction of similarity after the name of each region set generated. (default = "A")
- **genome**: genome of reference to generate the similar region sets. (default = "hg19")
- **vectorPerc**: numeric, vector of desired randomized fractions. (default = seq(.1,.9,.1))

Details

This function takes a region set as an input and a vector of desired randomized fractions. For each fraction value, a new region set will be generated where that fraction of the original regions in the input region set has been randomized. In effect, this creates region sets that are "similar" to a controlled degree to the original region set. This tool can be useful for validation purposes and its use in the demonstration of the usage of this package can be seen in the RegioneReloaded vignette.

Value

A list of GRanges objects.

See Also

- GRanges
Examples

data("cw_Alien")
A<-createRandomRegions(nregions = 20, length.mean = 1000, length.sd = 100, genome = AlienGenome)
similAList <- similarRegionSet(GR = A, genome = AlienGenome, vectorPerc = seq(0.1,0.9,0.2), name = "test")
summary(similAList)

data("cw_Alien")
regA <- createRandomRegions(
 nregions = 100,
 length.mean = 10,
 length.sd = 5,
 genome = AlienGenome
)
listRegA <- similarRegionSet(GR = regA, genome = AlienGenome)
summary(listRegA)

subList

Sub List from region set list

description
create a samples sublist starting from a list of Region Set

Usage

subList(Alist, min_sampling, fraction)

Arguments

Alist, GRangesList or list of Region Set of any accepted formats by regioneR package
min_sampling numeric, minimum number of regions for each element of the list, if the number of regions is less than min_sampling as subsampling will be take the entire regionset
fraction numeric, percentage of regions selected for the subsampling

Value

a sublist of GenomicRanges from an original GenomicRanges list
Index

* datasets
 AlienGenome, 3
 AlienRSList_broad, 3
 AlienRSList_narrow, 4
 cw_Alien, 9
 cw_Alien_RaR, 9
 cw_Alien_ReG, 10
 cw_Alien_ReG_no_Square, 10
 cw_Alien_ReR, 11
 mLZ_regA_ReG, 22

* function
 multiPermTest, 26

* internal
 cleanCrosswiseMatrix, 5
 crosswiseMatrix, 7
 DFfromLZ, 11
 gmxrMatrix, 15
 gmxrMatrix<-.16
 gmxrMultiOverlaps, 16
 gmxrParam, 17
 mlzsMatrix, 20
 mlzsMatrix<-.20
 mlzsMultiLocalZscores, 21
 mlzsParam, 21
 mlzsParam<-.22
 multiPermTest, 26
 print,genoMatriXeR-method, 33
 subList, 36

AlienGenome, 3, 3, 4
AlienRSList_broad, 3
AlienRSList_narrow, 4

chooseHclustMet, 4
chooseHclustMet(), 18, 19
makeCrosswiseMatrix, 5
cor(), 29
createRandomRegions(), 4
createUniverse, 6
crosswiseMatrix, 7
crosswisePermTest, 7, 15, 29, 33
crosswisePermTest(), 5, 12, 18, 28
cw_Alien, 9
cw_Alien_RaR, 9
cw_Alien_ReG, 10
cw_Alien_ReG_no_Square, 10
cw_Alien_ReR, 11
data.frame, 7, 24, 26
DFfromLZ, 11
dist()., 5, 18, 19
genoMatriXeR, 7–18, 27–29, 33, 34
genoMatriXeR-class, 12
gem_raster(), 29
gem_text_repel, 28
getHClust, 12
getMatrix, 13
getMultiEvaluation, 14
getParameters, 15
gMXR(genoMatriXeR-class), 12
gmxrMatrix, 15
gmxrMatrix<-, 16
gmxrMultiOverlaps, 16
gmxrParam, 17
GRanges, 3, 4, 6–8, 24, 26, 34, 35
GRangesList, 7, 24
hclust, 5, 12, 13, 18, 27
hclust(), 4, 5, 18, 19
kmeans, 27
localZScore, 20
makeCrosswiseMatrix, 13, 17, 29, 33
makeCrosswiseMatrix(), 6, 9–12
makeLZMatrix, 13, 19, 31
makeLZMatrix(), 22, 26, 32
mLZ_regA_ReG, 22
mLZ_regA_ReG_br, 23
INDEX

mLZ_regD_ReG, 23
mLZS(multiLocalZScore-class), 25
mlzsMatrix, 20
mlzsMatrix<-, 20
mlzsMultiLocalZscores, 21
mlzsParam, 21
mlzsParam<-, 22
multiLocalZScore, 11–15, 19–23, 25, 30–32
multiLocalZScore, 24, 31
multiLocalZscore(), 14, 26, 32
multiLocalZScore-class, 25
multiPermTest, 26
multiPermTest(), 18

p.adjust(), 8, 24, 26
pam, 27
plotCrosswiseDimRed, 27
plotCrosswiseMatrix, 29
plotCrosswiseMatrix(), 18
plotLocalZScoreMatrix, 30, 32
plotSingleLZ, 31
plotSinglePT, 32
print, genoMatriXeR-method, 33

randomizeRegionsPerc, 34
regioneR::circularRandomizeRegions, 9
regioneR::joinRegions(), 6
regioneR::localZScore(), 25
regioneR::overlapPermTest(), 8
regioneR::permTest(), 8, 27
regioneR::randomizeRegions, 9
regioneR::randomizeRegions(), 9
regioneR::resampleGenome, 9
regioneR::resampleGenome(), 10, 22, 23
regioneR::resampleRegions, 9
regioneR::resampleRegions(), 6, 8, 11, 24,
26
Rtsne(), 28

similarRegionSet, 35
similarRegionSet(), 4, 34
smooth.spline(), 32
stats::smooth.spline, 30
subList, 36

t(), 18