Package ‘regioneReloaded’

May 30, 2024

Type Package
Title RegioneReloaded: Multiple Association for Genomic Region Sets
Version 1.6.0
URL https://github.com/RMalinverni/regioneReload

Description RegioneReloaded is a package that allows simultaneous analysis of associations between genomic region sets, enabling clustering of data and the creation of ready-to-publish graphs. It takes over and expands on all the features of its predecessor regioneR. It also incorporates a strategy to improve p-value calculations and normalize z-scores coming from multiple analysis to allow for their direct comparison. RegioneReloaded builds upon regioneR by adding new plotting functions for obtaining publication-ready graphs.

License Artistic-2.0
Encoding UTF-8
RoxygenNote 7.2.1
Roxygen list(markdown = TRUE)

Depends R (>= 4.2), regioneR
Imports stats, RColorBrewer, Rtsne, umap, ggplot2, ggrepel, reshape2, methods, scales, cluster, grid, grDevices

Suggests rmarkdown, BiocStyle, GenomeInfoDb, knitr, testthat (> = 3.0.0)

biocViews Genetics, ChIPSeq, DNASeq, MethylSeq, CopyNumberVariation, Clustering, MultipleComparison

VignetteBuilder knitr

Config/testthat/edition 3
git_url https://git.bioconductor.org/packages/regioneReloaded
git_branch RELEASE_3_19
git_last_commit 6bd799a
git_last_commit_date 2024-04-30
Repository Bioconductor 3.19
Contents

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlienGenome</td>
<td>3</td>
</tr>
<tr>
<td>AlienRSList_broad</td>
<td>3</td>
</tr>
<tr>
<td>AlienRSList_narrow</td>
<td>4</td>
</tr>
<tr>
<td>chooseHclustMet</td>
<td>4</td>
</tr>
<tr>
<td>cleanCrosswiseMatrix</td>
<td>5</td>
</tr>
<tr>
<td>createUniverse</td>
<td>6</td>
</tr>
<tr>
<td>crosswiseMatrix</td>
<td>7</td>
</tr>
<tr>
<td>crosswisePermTest</td>
<td>7</td>
</tr>
<tr>
<td>cw_Alien</td>
<td>9</td>
</tr>
<tr>
<td>cw_Alien_RaR</td>
<td>9</td>
</tr>
<tr>
<td>cw_Alien_ReG</td>
<td>10</td>
</tr>
<tr>
<td>cw_Alien_ReG_no_Square</td>
<td>10</td>
</tr>
<tr>
<td>cw_Alien_ReR</td>
<td>11</td>
</tr>
<tr>
<td>DFfromLZ</td>
<td>11</td>
</tr>
<tr>
<td>genoMatriXeR-class</td>
<td>12</td>
</tr>
<tr>
<td>getHClust</td>
<td>12</td>
</tr>
<tr>
<td>getMatrix</td>
<td>13</td>
</tr>
<tr>
<td>getMultiEvaluation</td>
<td>14</td>
</tr>
<tr>
<td>getParameters</td>
<td>15</td>
</tr>
<tr>
<td>gmxrMatrix</td>
<td>15</td>
</tr>
<tr>
<td>gmxrMatrix<-</td>
<td>16</td>
</tr>
<tr>
<td>gmxrMultiOverlaps</td>
<td>16</td>
</tr>
<tr>
<td>gmxrParam</td>
<td>17</td>
</tr>
<tr>
<td>makeCrosswiseMatrix</td>
<td>17</td>
</tr>
<tr>
<td>makeLZMatrix</td>
<td>19</td>
</tr>
<tr>
<td>mlzsMatrix</td>
<td>20</td>
</tr>
<tr>
<td>mlzsMatrix<-</td>
<td>20</td>
</tr>
<tr>
<td>mlzsMultiLocalZscores</td>
<td>21</td>
</tr>
<tr>
<td>mlzsParam</td>
<td>21</td>
</tr>
<tr>
<td>mlzsParam<-</td>
<td>22</td>
</tr>
<tr>
<td>mLZ_regA_ReG</td>
<td>22</td>
</tr>
<tr>
<td>mLZ_regA_ReG_br</td>
<td>23</td>
</tr>
<tr>
<td>mLZ_regD_ReG</td>
<td>23</td>
</tr>
<tr>
<td>multiLocalZscore</td>
<td>24</td>
</tr>
<tr>
<td>multiLocalZScore-class</td>
<td>25</td>
</tr>
<tr>
<td>multiPermTest</td>
<td>26</td>
</tr>
<tr>
<td>plotCrosswiseDimRed</td>
<td>27</td>
</tr>
<tr>
<td>plotCrosswiseMatrix</td>
<td>29</td>
</tr>
<tr>
<td>plotLocalZScoreMatrix</td>
<td>30</td>
</tr>
</tbody>
</table>
Description

The Alien Genome is an artificial genomic coordinates system for the purposes of testing and demonstrating the functions of `regioneReload` with a low computing time.

Usage

```r
data(cw_Alien)
```

Format

An objects of class `GRanges`.

Details

The Alien Genome consists of four chromosomes and is generated by the following code:

```r
AlienGenome <-
toGRanges(data.frame(
  chr = c("AlChr1", "AlChr2", "AlChr3", "AlChr4"),
  start = c(rep(1, 4)),
  end = c(2e6, 1e6, 5e5, 1e5)
))
```

Description

List of region sets (as `GRanges`) on the `AlienGenome`.

Usage

```r
data(cw_Alien)
```
chooseHclustMet

Format

A list of GRanges objects.

Details

This region sets are generated for the purpose of demonstrating the functions of RegioneReloaded with a low computing time and "predictable" associations. The regions are generated with by combining createRandomRegions() and similarRegionSet() so that there is a known overlap between certain region sets. To see a full description of this sample data and the code used to generate it, see the RegioneReloaded vignette.

data(cw_Alien)

Format

A list of GRanges objects.

Details

This region sets are generated for the purpose of demonstrating the functions of RegioneReloaded with a low computing time and "predictable" associations. The regions are generated with by combining createRandomRegions() and similarRegionSet() so that there is a known overlap between certain region sets. To see a full description of this sample data and the code used to generate it, see the RegioneReloaded vignette.

chooseHclustMet

Description

Evaluate and choose the best method for clustering a matrix using the hclust() function.

Usage

chooseHclustMet(GM, scale = FALSE, vecMet = NULL, distHC = "euclidean")
Arguments

GM matrix, numerical matrix.

scale logical, if TRUE, the clustering will be performed using the scaled matrix. (default = FALSE)

vecMet character, vector of methods that will be tested in the function. If NULL, the following methods will be tested: "complete", "average", "single", "ward.D2", "median", "centroid" and "mcquitty. (default = NULL)

distHC character, the distance measure to be used from those available in dist(). (default = "euclidean")

Value

An object of class hclust

See Also

hclust()

Examples

M1 <- matrix(1:18, nrow = 6, ncol = 3)
set.seed(42)
M2 <- matrix(sample(100, 18), nrow = 6, ncol = 3)
GM <- cbind(M1, M2)
chooseHclustMet(GM)

cleanCrosswiseMatrix cleanCrosswiseMatrix

description

Clean and scale a matrix from a genoMatriXeR object

Usage

cleanCrosswiseMatrix(GM, GM_pv, pvcut, scale, subEX)

Arguments

GM matrix, numerical matrix of z-scores.

GM_pv matrix, numerical matrix of pvalues.

pvcut numeric, the z-score value is substituted by subEX (0 by default) for all the associations with an adj.pvalue (as calculated in crosswisePermTest()) higher than pvcut. (default = 0.05)

createUniverse

scale logical, if TRUE the matrix will be scaled. (default = FALSE)

subEX numeric, value used to substitute the z-score values when the associated pvalue is higher than pvcut. (default = 0)

Value

a matrix filtered for a matrix of pvalue

See Also

makeCrosswiseMatrix()

Description

Create the universe parameter for `regioneR::resampleRegions()` using all unique regions present in Alist.

Usage

createUniverse(Alist, joinR = TRUE)

Arguments

Alist list of regions set in a format accepted for regioneR

joinR logical, if TRUE all the regions will be joined using the function `regioneR::joinRegions()` (default == TRUE)

Value

A list of GRanges objects

Examples

data("cw_Alien")

universe <- createUniverse(AlienRSList_narrow)
crosswiseMatrix

Description
Create a matrix from a genoMatriXeR object.

Usage
crosswiseMatrix(mPT, zs.type='norm_zscore', ...)

Arguments
mPT an object of class genoMatriXeR.
zs.type character, z-score type to use to generate the matrix, either raw z-score ("zs-core") or normalized z-score ("norm_zscore"). (default = "norm_zscore")
... further arguments to be passed to other methods.

Value
a numeric matrix

crosswisePermTest

Description
Perform multiple permutation tests between each element in two lists of region sets.

Usage
crosswisePermTest(Alist, Blist = NULL, sampling = FALSE, fraction = 0.15, min_sampling = 5000, ranFUN = "randomizeRegions", evFUN = "numOverlaps", ntimes = 100, universe = NULL, adj_pv_method = "BH", genome = "hg19", ...)

Arguments
Alist, Blist GRangesList or list of region sets in any accepted formats by regioneR package (GRanges, data.frame etc.).
sampling logical, if TRUE the function will use only a sample of each element of Alist to perform the test as specified in fraction. (default = FALSE)
fraction logical, if sampling=TRUE, defines the fraction of the region sets used to perform the test. (default = 0.15)
crosswisePermTest

min_sampling numeric, minimum number of regions accepted after sampling is performed with the specified fraction. If the number of sampled regions is less than min_sampling, the number specified by min_sampling will be used as number of regions sampled instead. (default = 5000)

ranFUN character, the randomization strategy used for the test, see regioneR. (default = "randomizeRegions")

evFUN character, the evaluation strategy used for the test, see regioneR. (default = "numOverlaps")

ntimes numeric, number of permutations used in the test. (default = 100)

universe region set to use as universe, used only when regioneR::resampleRegions() function is selected. (default = NULL)

adj_pv_method character, the method used for the calculation of the adjusted p-value, to choose between the options of p.adjust(). (default = "BH")

genome character or GRanges, genome used to compute the randomization. (default = "hg19")

... further arguments to be passed to other methods.

Details

This function performs multiple permutation tests for all pairwise combinations of the elements in two lists of region sets. Essentially, it uses the regioneR::permTest() function and its associated randomization and evaluation functions. It creates and returns a genoMatriXeR object with the result of the permutation tests stored in the multiOverlaps slot. In addition, all the parameters used for the test are stored in the parameters slot.

Value

A object of class genoMatriXeR containing three slots

- @parameters
- @multiOverlaps
- @matrix

See Also

genoMatriXeR, regioneR, regioneR::permTest(), regioneR::overlapPermTest()
vectorPerc = seq(0.1, 0.3, by = 0.1))
ABList <- c(regAs, regBs)
cw_ptAB <- crosswisePermTest(ABList, genome = fakeGenome, ntimes = 10)
print(cw_ptAB)

Description

Alien Genome crosswise matrix using regioneR::randomizeRegions, regioneR::circularRandomizeRegions, regioneR::resampleRegions, regioneR::resampleGenome functions as permutation strategies.

Usage

data(cw_Alien)

Format

An objects of class genoMatriXeR; see makeCrosswiseMatrix().

Description

Alien Genome crosswise matrix using regioneR::randomizeRegions() function a permutation strategy. Alist = AlienRSLList_narrow, Blist = AlienRSLList_narrow

Usage

data(cw_Alien)

Format

An objects of class genoMatriXeR; see makeCrosswiseMatrix().
Description

Alien Genome crosswise matrix using `regioneR::resampleGenome()` function as permutations strategy. Alist = AlienRSList_narrow, Blist = AlienRSList_narrow

Usage

data(cw_Alien)

Format

An objects of class `genoMatriXeR`; see `makeCrosswiseMatrix()`.

Description

Alien Genome crosswise matrix using `regioneR::resampleGenome()` function as permutations strategy. Alist = AlienRSList_narrow, Blist = AlienRSList_broad

Usage

data(cw_Alien)

Format

An objects of class `genoMatriXeR`; see `makeCrosswiseMatrix()`.
Description

Alien Genome crosswise matrix using `regioneR::resampleRegions()` function a permutation strategy. Alist = AlienRSList_narrow, Blist = AlienRSList_narrow

Usage

data(cw_Alien)

Format

An objects of class `genoMatriXeR`; see `makeCrosswiseMatrix()`.

Description

Dataframe from MultiLocalZScore object

Usage

`DFfromLZ(mLZ, RS)`

Arguments

- `mLZ` object class MultilocalZScore
- `RS` string name of single region set present in the mLZ object

Value

a data.frame from `multiLocalZScore`
getHClust

genMatriXeR-class genoMatriXeR Class

Description
An S4 class for "genoMatriXeR" object.

Slots
parameters List of parameters used to create the object.
multiOverlaps Results of multiple pairwise permutation tests generated with crosswisePermTest().
matrix List of numerical matrices containing z-score, p-values and correlation values generated with makeCrosswiseMatrix().

Examples

data("cw_Alien")
AlienRSList_narrow_small <- AlienRSList_narrow[c("regA","regB","regC")]
cw_test <- crosswisePermTest(Alist = AlienRSList_narrow_small,Blist = AlienRSList_narrow_small,
sampling = FALSE, genome = AlienGenome, per.chromosome = TRUE,
ranFUN = "resampleGenome", evFUN = "numOverlaps",
ntimes = 10, mc.cores = 2)
class(cw_test)

gewithClust

description
get Object of class hclust from genoMatriXeR or multiLocalZScore

Usage
getHClust(rR, hctype = "rows")

Arguments
rR A genoMatriXeR or multiLocalZScore object.
hctype character. Can be "rows" or "cols". (default= "cols")
getMatrix

Value

an object of class hclust

See Also

genMatriXeR, multiLocalZScore, hclust

Examples

data("cw_Alien")

cw_Alien_ReG <- makeCrosswiseMatrix(cw_Alien_ReG)
hc <- getHClust(cw_Alien_ReG)

plot(hc)

data("cw_Alien")

cw_Alien_ReG <- makeCrosswiseMatrix(cw_Alien_ReG)
mtx <- getMatrix(cw_Alien_ReG)

mtx
getMultiEvaluation

data("cw_Alien")
cw_Alien_RaR <- makeCrosswiseMatrix(cw_Alien_RaR)
GM <- getMatrix(cw_Alien_RaR)
GM

description

Get multiEvaluation slot from genoMatriXeR or multiLocalZScore class.

Usage

getMultiEvaluation(rR, namesRS = NULL)

Arguments

- rR: A genoMatriXeR or multiLocalZScore object.
- namesRS: a vector of names. (default = NA)

Value

If rR is a genoMatriXeR object, a list of data frames resuming the associations results. If rR is a multiLocalZScore object, a list of two elements: "resumeTable" that is a data frame summarizing the associations and "shifts", a list of shifts computed from multiLocalZscore() function for the elements indicated in the nameRS vector.

See Also

genoMatriXeR, multiLocalZScore

Examples

data("cw_Alien")
mevs <- getMultiEvaluation(cw_Alien_ReG, names = "regA")
mevs
getParameters

Description
Get parameters from a genoMatriXeR or multiLocalZScore class object.

Usage
getParameters(rR, show_err = FALSE)

Arguments
- rR: A genoMatriXeR or multiLocalZScore class object.
- show_err: logical, if TRUE the function returns a list with two dataframes: one containing the parameter values and one with any error messages that have been generated during the permutation test iterations when running crosswisePermTest.

Value
A dataframe with parameters and values, or a list with two dataframes with parameters and errors information.

See Also
genoMatriXeR, multiLocalZScore

Examples
data("cw_Alien")
prm <- getParameters(cw_Alien_ReG)
prm

gmxrMatrix
Export matrix slot from genoMatriXeR objects

Description
Export matrix slot from genoMatriXeR objects

Usage
gmxrMatrix(x)
Arguments

x A genoMatriXeR object.

Value

matrix slot of a genoMatriXeR object.

See Also

genoMatriXeR

gmxrMatrix<- Set matrix slot value of a genoMatriXeR object

Description

Set matrix slot value of a genoMatriXeR object

Usage

gmxrMatrix(x) <- value

Arguments

x A genoMatriXeR object.
value Value to assign to the matrix slot.

Value

A genoMatriXeR object.

gmxrMultiOverlaps Export multiOverlaps slot from genoMatriXeR objects

Description

Export multiOverlaps slot from genoMatriXeR objects

Usage

gmxrMultiOverlaps(x)

Arguments

x A genoMatriXeR object.
gmxrParam

Value

multiOverlaps slot of a genoMatriXeR.

See Also

genoMatriXeR

gmxrParam
Export parameters from genoMatriXeR objects

Description

Export parameters from genoMatriXeR objects

Usage

```r
gmxrParam(x)
```

Arguments

- `x` A genoMatriXeR object.

Value

Parameters slot of a genoMatriXeR object.

See Also

genoMatriXeR

makeCrosswiseMatrix
makeCrosswiseMatrix

Description

Populate the matrix slot in a genoMatriXeR object.

Usage

```r
makeCrosswiseMatrix(mPT, clusterize = TRUE, hc.method = NULL, dist.method = "euclidean", transform = FALSE, scale = FALSE, zs.type = 'norm_zscore', symm_matrix = TRUE, selectRow = NULL, selectCol = NULL, pvcut = 1, subEX = 0, GM_diag = TRUE, ...)
```
Arguments

- **mPT**: an object of class `genoMatriXeR`.
- **clusterize**: logical, if TRUE the matrix will be clustered using the method specified by `hc.method` (default = TRUE)
- **hc.method**: character, select the `hclust()` method to use for clustering the matrix. If NULL, the clustering method will be automatically selected by the function `chooseHclustMet()`. (default = NULL)
- **dist.method**: character, the distance measure to be used from those available in `dist()` . (default = "euclidean")
- **transform**: logical, if TRUE the matrix will be transformed using the function `t()`. (default = FALSE)
- **scale**: logical, if TRUE the matrix will be scaled. (default = FALSE)
- **zs.type**: character, z-score type to use to generate the matrix, either raw z-score ("zs-core") or normalized z-score ("norm_zscore"). (default = "norm_zscore")
- **symm_matrix**: logical, if TRUE the matrix will be treated as symmetrical (same clustering for rows and columns). (default = TRUE)
- **selectRow, selectCol**: vector, the matrix will be reduced selecting the rows and/or columns in this vector. (default = NULL)
- **pvcut**: numeric, the z-score value is substituted by subEX (0 by default) for all the associations with an adj.pvalue (as calculated in `crosswisePermTest()`) higher than pvcut. (default = 0.05)
- **subEX**: numeric, value used to substitute the z-score values when the associated pvalue is higher than pvcut. (default = 0)
- **GM_diag**: logical, if FALSE the values of the diagonal will be set to 0. (default = TRUE)
- **...**: further arguments to be passed to other methods.

Details

This function will create a series of matrices of z-scores, adj.pvalues and pearson correlation values from all the pairwise permutation tests stored in the `multiOverlaps` slot of a `genoMatriXeR` as calculated with `multiPermTest()`. These matrices will then be stored in the `matrix` slot of the `genoMatriXeR` object. In addition, clustering will be performed on the association matrices using `hclust`.

Value

An object of class `genoMatriXeR` containing three slots, with a populated `matrix` slot.

- `@parameters`
- `@multiOverlaps`
- `@matrix`

See Also

`crosswisePermTest(), chooseHclustMet(), plotCrosswiseMatrix()`
Examples

data("cw_Alien")

cw_Alien_ReG <- makeCrosswiseMatrix(cw_Alien_ReG)

summary(cw_Alien_ReG)

Description

Create a local z-score matrix from a `multiLocalZScore` object and save it in its `matrix` slot.

Usage

```r
makeLZMatrix(mlZA, normalize = TRUE, clusterize = TRUE,
              centralize = NA, hc.method = NULL, dist.method = "euclidean",
              scale = FALSE, ...)
```

Arguments

- `mlZA`: an object of class `multiLocalZScore` or a numerical matrix.
- `normalize`: logical, if TRUE the z-score values in the matrix will be normalized. (default = FALSE)
- `clusterize`: logical, if TRUE the matrix will be clustered using the method specified by `hc.method` (default = TRUE)
- `centralize`: numeric, only z-score values in a number of steps (defined by `centralize`) around the center of the local association will be used for clustering. If NA, all the values in the matrix will be used for clustering. (default = NA)
- `hc.method`: character, select the `hclust()` method to use for clustering the matrix. If NULL, the clustering method will be automatically selected by the function `chooseHclustMet()`. (default = NULL)
- `dist.method`: character, the distance measure to be used from those available in `dist()`. (default = "euclidean")
- `scale`: logical, if TRUE the matrix will be scaled. (default = FALSE)
- `...`: further arguments to be passed to other methods.

Value

A object of class `multiLocalZScore` containing three slots, with a populated `matrix` slot.

- `@parameters`
- `@multiLocalZscores`
- `@matrix`
See Also

localZScore

Examples

data("cw_Alien")

mlzsMatrix<-

Export matrix from multiLocalZScore objects

Description

Export matrix from multiLocalZScore objects

Usage

mlzsMatrix(x)

Arguments

x
A multiLocalZScore object.

Value

A printed output for multiLocalZScore matrix slot.

See Also

multiLocalZScore

mlzsMatrix<-

Set matrix slot value of a multiLocalZScore object.

Description

Set matrix slot value of a multiLocalZScore object.

Usage

mlzsMatrix(x) <- value
Arguments

- **x**: A multiLocalZScore object.
- **value**: Value to assign to the multiLocalZScore slot.

Value

A multiLocalZScore object.

Description

Export multiLocalZscores slot from multiLocalZScore objects

Usage

`mlzsMultiLocalZscores(x)`

Arguments

- **x**: A multiLocalZScore object.

Value

multiLocalZscores slot of a multiLocalZScore object.

See Also

- `multiLocalZScore`

Description

Export parameters from multiLocalZScore objects

Usage

`mlzsParam(x)`

Arguments

- **x**: A multiLocalZScore object.
Value
parameters slot of a multiLocalZScore object.

See Also
multiLocalZScore

Description
Set parameters slot value of a multiLocalZScore object

Usage
mlzsParam(x) <- value

Arguments
- **x**: A multiLocalZScore object.
- **value**: Value to assign to the parameters slot.

Value
A multiLocalZScore object.

Description
Alien Genome multiLocalZScore calculated for regA regionset from AlienRSList_narrow using regioneR::resampleGenome() function as permutation strategy.

Usage
data(cw_Alien)

Format
An objects of class multiLocalZScore; see makeLZMatrix().
mLZ_regA_ReG_br

Description
Alien Genome multiLocalZScore calculated for regA regionset from AlienRSList_broad using regioneR::resampleGenome() function as permutation strategy.

Usage
data(cw_Alien)

Format
An object of class multiLocalZScore

mlZ_regD_ReG

Description
Alien Genome multiLocalZScore calculated for regD regionset from AlienRSList_narrow using regioneR::resampleGenome() function as permutation strategy.

Usage
data(cw_Alien)

Format
An object of class multiLocalZScore
Description

Perform multiple permutation tests between a region set and each element in a list of region sets using shifted positions to calculate a local z-score.

Usage

multiLocalZscore(A, Blist = NULL, sampling = FALSE, fraction = 0.15, min_sampling = 5000, ranFUN = "randomizeRegions", evFUN = "numOverlaps", ntimes = 100, adj_pv_method = "BH", genome = "hg19", universe = NULL, window = 1000, step = 100, ...)

Arguments

A query region set for which to estimate local z-score values.
Blist GRangesList or list of region sets in any accepted formats by regioneR package (GRanges, data.frame etc.).
sampling logical, if TRUE the function will use only a sample of each element of Blist to perform the test as specified in fraction. (default = FALSE)
fraction logical, if sampling=TRUE, defines the fraction of the region sets used to perform the test. (default = 0.15)
min_sampling numeric, minimum number of regions accepted after sampling is performed with the specified fraction. If the number of sampled regions is less than min_sampling, the number specified by min_sampling will be used as number of regions sampled instead. (default = 5000)
ranFUN character, the randomization strategy used for the test, see regioneR. (default = "randomizeRegions")
evFUN character, the evaluation strategy used for the test, see regioneR. (default = "numOverlaps")
ntimes numeric, number of permutations used in the test. (default = 100)
adj_pv_method character, the method used for the calculation of the adjusted p-value, to choose between the options of p.adjust(). (default = "BH")
genome character or GRanges, genome used to compute the randomization. (default = "hg19")
universe region set to use as universe, used only when regioneR::resampleRegions() function is selected. (default = NULL)
window numeric, window (number of base pairs) in which the local z-score will be calculated. (default = NULL)
step numeric, step (number of base pairs) by which will be estimated the local Z-score. (default = 100)
... further arguments to be passed to other methods.
Details

This function performs multiple permutation tests between a single region set and each element in a list of region sets. For every pairwise combination, the evaluation step is repeated each time shifting the position of all the regions in the query region set by a fixed step inside a defined window (using `regioneR::localZScore()`). This produces a "local z-score" profile that can be indicative of the nature of the association between region sets. For example, an association can occur "centrally" if the z-score value drops sharply when sifting the region set. On the other hand, two region sets may have a peak of local z-score away from the central position if they happen to occur often at a regular distance, showing a "lateral" association.

Value

A object of class `multiLocalZScore` containing three slots

- `@parameters`
- `@multiLocalZscores`
- `@matrix`

See Also

`regioneR::localZScore()`

Examples

```r
fakeGenome <- regioneR::toGRanges("chrF",1,1000)
regA <- regioneR::createRandomRegions(nregions = 10, length.mean = 10, length.sd = 2, genome = fakeGenome)
regB <- regioneR::createRandomRegions(nregions = 10, length.mean = 10, length.sd = 2, genome = fakeGenome)
regAs <- similarRegionSet(GR = regA, genome = fakeGenome, name = "A", vectorPerc = seq(0.1,0.3,by =0.1))
regBs <- similarRegionSet(GR = regB, genome = fakeGenome, name = "B", vectorPerc = seq(0.1,0.3,by =0.1))
ABList <- c(regAs,regBs)

mlz_ptAB <- multiLocalZscore(A = regA, Blist = ABList, genome = fakeGenome, ntimes = 10)
summary(mlz_ptAB)
```

multiLocalZScore-class

multiLocalZScore Class

Description

An S4 class for "multiLocalZScore" object.
multiPermTest

Slots

- `parameters` List of parameters used to create the object
- `multiLocalZscores` Results of multiple pairwise permutation tests on shifted region sets generated with `multiLocalZscore()`.
- `matrix` List of numerical matrices containing local z-scores and correlation values generated with `makeLZMatrix()`.

Examples

data("cw_Alien")

AlienRSList_narrow_small <- AlienRSList_narrow[,c("regA","regB","regC")]

mlz_test <- multiLocalZscore(A = AlienRSList_narrow_small$regA, Blist = AlienRSList_narrow_small,
 sampling = FALSE, genome = AlienGenome, per.chromosome = TRUE,
 ranFUN = "resampleGenome", evFUN = "numOverlaps",
 ntimes = 10, mc.cores = 2)

class(mlz_test)

multiPermTest multiPermTest

Description

multiPermTest

Usage

multiPermTest (A, Blist, ranFUN, evFUN, uni, genome, rFUN, ntimes, adj_pv_method, ...)

Arguments

- `A` Genomic Ranges or any accepted formats by `regioneR` package (GRanges, data.frame etc.).
- `ranFUN` character, the randomization strategy used for the test, see `regioneR`. (default = "randomizeRegions")
- `evFUN` character, the evaluation strategy used for the test, see `regioneR`. (default = "numOverlaps")
- `uni` region set to use as universe, used only when `regioneR::resampleRegions()` function is selected. (default = NULL)
- `genome` character or GRanges, genome used to compute the randomization. (default = "hg19")
- `ntimes` numeric, number of permutations used in the test. (default = 100)
- `adj_pv_method` character, the method used for the calculation of the adjusted p-value, to choose between the options of `p.adjust()`. (default = "BH")
- `...` further arguments to be passed to other methods.
Description

Plot a visualization of a genoMatriXeR object (or matrix) using different dimensional reduction algorithms (PCA, tSNE and UMAP).

Usage

plotCrosswiseDimRed(mPT, type = "PCA", GM_clust = NA, clust_met = "hclust", nc = 5, listRS = NULL, main = "", labSize = 2, emphasize = FALSE, labAll = FALSE, labMaxOverlap = 100, ellipse = TRUE, colPal = NULL, perplexity = 10, theta = 0.1, return_table = FALSE, return_plot = TRUE, ...)

Arguments

mPT an object of class genoMatriXeR or a numerical matrix.
type character, dimensional reduction algorithm to use ("PCA", "tSNE", "UMAP"). (default = "PCA")
GM_clust numeric, vector of assigned clusters used to cluster the matrix. If NA, the matrix will be clustered using the method defined by clust_met. (default = NA)
clust_met character, unsupervised cluster strategy used (hclust, kmeans or pam). (default = "hclust")
nc numeric, number of clusters to define if using the default "kmeans" method. (default = 5)
listRS list, a list of names of region sets of interest to be highlighted in the graph. (default = NULL)
main character, title for the plot. (default = "")
labSize numeric, size for point labels in the plot. If 0, no labels will be plotted. (default = 2)
emphasize logical, if TRUE, only the cluster in which the elements of listRS are present will be highlighted. (default = FALSE)
labAll logical, if TRUE all data points are labelled, even if not in listRS when emphasize = TRUE. (default = FALSE)
labMaxOverlap numeric, max.overlaps for geom_text_repel. (default = 100)
elipse logical, if TRUE ellipses will be drawn around the clusters. (default = FALSE)
colPal character, colors to use as palette for the plot. If NULL, default colors will be used. (default = NULL)
perplexity, theta numeric, if type = "tSNE" values of perplexity and theta for the function Rtsne(). (default = 10)
return_table logical, if TRUE a table with the cluster assigned to each region is returned. (default = FALSE)
return_plot logical, if TRUE a plot is returned. (default = TRUE)

Details

This function generates a plot with a two-dimensional representation of the association data stored in a genoMatriXeR object by using either PCA, tSNE or UMAP transformations of the data. This function incorporates a clustering step and allows to highlight specific region sets of interest and the clusters they belong to. In addition to generating a plot, a table with the cluster assignments can be retrieved.

Value

A ggplot object or a table with cluster assignments is returned.

See Also

crosswisePermTest()

Examples

data("cw_Alien")
cw_Alien_ReG <- makeCrosswiseMatrix(cw_Alien_ReG)
plotCrosswiseDimRed(cw_Alien_ReG, type = "PCA")
CDR_clust <- plotCrosswiseDimRed(cw_Alien_ReG, type = "UMAP", return_table = TRUE)
print(CDR_clust)
Description

Plot matrix of associations/correlations stored in a genoMatriXeR object.

Usage

plotCrosswiseMatrix(mPT, lineColor = NA, interpolate = FALSE, colMatrix = "default", matrix_type = "association", cor = "row", maxVal = NA, main = "", ord_mat = NULL)

Arguments

mPT an object of class genoMatriXeR or a numerical matrix.
lineColor logical, color for the line grid delineating the tiles of the matrix plot. If NA, no line will be drawn. (default = NA)
interpolate logical, if TRUE the image will be interpolated using the function geom_raster(). (default = FALSE)
colMatrix character or vector of colors, if "default" will be used a default selection see..
matrix_type character, type of matrix to be plotted, either "association" or "correlation". (default = "association")
cor character, if matrix_type is "correlation", choose if the function cor() will be executed on each "row" or "col" of the matrix. (default = "row")
maxVal numeric, maximum absolute value displayed by the plot. If "max", the maximum values in the matrix are used. If NA, the 0.95 quantile of all absolute values is used. (default = NA)
main character, title of the plot. (default = "")
ord_mat numeric, list with two numeric vectors that represent the ordering of rows and column of the matrix to be used in the plot. If NULL, the order of the matrix is preserved as is. (default = NULL)

Details

This functions creates a graphical representation of the matrix of associations stored in a genoMatriXeR object. The values plotted and clustering options can be controlled when creating the matrix with the function makeCrosswiseMatrix.

Value

Returns a ggplot object.

See Also
crosswisePermTest makeCrosswiseMatrix
Examples

```r
data("cw_Alien")
cw_Alien_ReG <- makeCrosswiseMatrix( cw_Alien_ReG)
plotCrosswiseMatrix(cw_Alien_ReG, matrix_type = "association")
plotCrosswiseMatrix(cw_Alien_ReG, matrix_type = "correlation")
```

plotLocalZScoreMatrix **Plot Local Z-Score Matrix**

Description

Plot Local Z-Score Matrix of associations/correlations stored in a `multiLocalZScore` object.

Usage

```r
plotLocalZScoreMatrix (mLZ, lineColor = NA, colMatrix = "default", matrix_type = "association", maxVal = "max", main = "", labSize = 6, revert = FALSE, highlight = NULL, highlight_size = 2.5, highlight_max = FALSE, smoothing = FALSE, ...)
```

Arguments

- `mLZ`: an object of class `multiLocalZScore` or a matrix
- `lineColor`: logical, color for the line grid delineating the tiles of the matrix plot. If NA, no line will be drawn. (default = NA)
- `colMatrix`: character or vector of colors, if "default" will be used a default selection see..
- `matrix_type`: character, type of matrix to be plotted, either "association" or "correlation". (default = "association")
- `maxVal`: numeric, maximum absolute value displayed by the plot. If "max", the maximum values in the matrix are used. If NA, the 0.95 quantile of all absolute values is used. (default = NA)
- `main`: character, title of the plot. (default = "")
- `labSize`: numeric, size for the plot labels. (default = 6)
- `revert`: logical, if TRUE reverts the order of the plotted elements. (default = FALSE)
- `highlight`: character, vector indicating the region set names to highlight by adding labels pointing to the 0 shift position (default = NULL)
- `highlight_size`: numeric, size of the highlight labels. (default = 2.5)
- `highlight_max`: logical, if TRUE the highlight labels are placed at the maximum local z-score value instead of the 0 shift position. (default = FALSE)
- `smoothing`: logical, if TRUE the `stats::smooth.spline` function will be applied to the local z-score profile. (default = FALSE)
- `...`: further arguments to be passed to other methods.
plotSingleLZ

Value
Returns a ggplot object.

See Also
multiLocalZscore makeLZMatrix multiLocalZScore

Examples

data("cw_Alien")

plotSingleLZ

Description
Plot the result of specific local Z-Score tests from a multiLocalZScore object in the form of line plot profiles.

Usage
plotSingleLZ(mLZ, RS, xlab = "", normZS = TRUE, ylim = NULL, main = NA, colPal = NULL, labValues = TRUE, labSize = 2.5, labMax = FALSE, smoothing = FALSE, ...)

Arguments
- mLZ: an object of class multiLocalZScore.
- RS: character, vector of region set names for which to plot the local Z-score results.
- xlab: character, label for the x axis. (default = NA)
- normZS: logical, indicates whether the normalized Z-score values should be plotted. If FALSE, the raw Z-score is used. (default = TRUE)
- ylim: numeric, vector with two elements: minimum and maximum Y values of the plot. If NULL, the plot limits are set by default so all data points can be plotted. (default = NULL)
- main: character, title for the plot. If NA, the name of the query region set in the multiLocalZScore object will be used. (default = NA)
- colPal: character, colors to use as palette for the plot. If NULL, default colors will be used. (default = NULL)
- labValues: logical, if TRUE each local Z-score profile is labelled at position 0 with the name of the region set and its Z-score value at the central position. (default = TRUE)
- labSize: numerical, size of the labels from labValues in the plot. (default = 2.5)
labMax logical, if TRUE the labels are placed at the maximum value of each local Z-score profile instead of the center. (default = FALSE)

smoothing logical, if TRUE the smooth.spline() function will be applied to the localZ-score profile. (default = FALSE)

... further arguments to be passed to other methods.

Details

This function generates a line plot with the local Z-score profiles of selected region sets from a multiLocalZScore object. This type of plot complements the local Z-score matrix (generated by plotLocalZScoreMatrix, since it allows to visualize in detail the local Z-score profile of just the region sets of interest.

This plot is well suited for a single or a few region sets, but will get busy if attempting to plot many different profiles. For the latter, the full matrix generated by plotLocalZScoreMatrix is usually a better visualization option.

Value

Returns a ggplot object.

See Also

multiLocalZscore(), makeLZMatrix()

Examples

data("cw_Alien")

plotSingleLZ(mLZ_regA_ReG, RS = c("regD", "regD_02", "regA", "regAB_04"), labMax = TRUE, smoothing = TRUE)
Arguments

- `mPT` an object of class `genoMatriXeR`.
- `RS1`, `RS2` character, names of region sets in a genoMatriXeR object for which to represent the pairwise permutation test results.
- `xlab` character, label for x axis. (default = NA)
- `main` title for the plot, if NA the name of the genoMatriXeR object is used (default = NA)

Details

This function generates a plot representing the result of a single permutation test stored in a `genoMatriXeR` object. This includes a plot of the density distribution of the randomized evaluations and a vertical line showing the observed evaluation in the original region set. The values of the mean randomized evaluations and the value of the observed evaluation are shown, in addition to the calculated Z-score, normalized Z-score and adjusted p-value.

Value

Returns a ggplot object.

See Also

crosswisePermTest makeCrosswiseMatrix

Examples

data("cw_Alien")
plotSinglePT(cw_Alien_ReG, RS1 = "regA", RS2 = "regA_05")
plotSinglePT(cw_Alien_ReG, RS1 = "regA", RS2 = "regC")
randomizeRegionsPerc

Description
Create a random region set similar to a reference region set.

Usage
randomizeRegionsPerc(GR, genome = "hg19", frac = 0.2, ...)

Arguments
- GR: a GRanges object with the input region set.
- genome: genome of reference to generate the similar region sets. (default = "hg19")
- frac: fraction of the original region set to randomize. (default = 0.2)
- ... further arguments to be passed to other methods.

Details
This function takes an input region set and generates a region set where a fraction of the regions has been randomized.

Value
a GRanges object

See Also
similarRegionSet()

Examples
```r
data("cw_Alien")
nreg <- 100
regA <-
createRandomRegions(
nregions = nreg,
```
```r
length.mean = 100,
length.sd = 10,
non.overlapping = TRUE,
genome = AlienGenome
)

regA_02 <- randomizeRegionsPerc(GR = regA, genome = AlienGenome, frac = 0.2)
```

similarRegionSet

Create a list of similar region sets to a reference region set.

Description

Create a list of similar region sets to a reference region set.

Usage

`similarRegionSet(GR, name, genome, vectorPerc)`

Arguments

- **GR**: a GRanges object with the input region set.
- **name**: character, name for the output region sets. The names will be generated by adding an underscore and the fraction of similarity after the name of each region set generated. (default = "A")
- **genome**: genome of reference to generate the similar region sets. (default = "hg19")
- **vectorPerc**: numeric, vector of desired randomized fractions. (default = seq(.1,.9,.1))

Details

This function takes a region set as an input and a vector of desired randomized fractions. For each fraction value, a new region set will be generated where that fraction of the original regions in the input region set has been randomized. In effect, this creates region sets that are "similar" to a controlled degree to the original region set. This tool can be useful for validation purposes and its use in the demonstration of the usage of this package can be seen in the RegioneReloaded vignette.

Value

A list of GRanges objects.

See Also

GRanges
Examples

data("cw_Alien")

A <- createRandomRegions(nregions = 20, length.mean = 1000, length.sd = 100, genome = AlienGenome)

similAList <- similarRegionSet(GR = A, genome = AlienGenome, vectorPerc = seq(0.1, 0.9, 0.2), name = "test")

summary(similAList)

data("cw_Alien")

regA <- createRandomRegions(
 nregions = 100,
 length.mean = 10,
 length.sd = 5,
 genome = AlienGenome
)

listRegA <- similarRegionSet(GR = regA, genome = AlienGenome)
summary(listRegA)

subList

Sub List from region set list

Description

create a samples sublist starting from a list of Region Set

Usage

subList(Alist, min_sampling, fraction)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alist</td>
<td>GRangesList or list of Region Set of any accepted formats by regioneR package</td>
</tr>
<tr>
<td>min_sampling</td>
<td>numeric, minimum number of regions for each element of the list, if the number of regions is less than min_sampling as subsampling will be take the entire regionset</td>
</tr>
<tr>
<td>fraction</td>
<td>numeric, percentage of regions selected for the subsampling</td>
</tr>
</tbody>
</table>

Value

a sublist of GenomicRanges from an original GenomicRanges list
Index

* datasets
 - AlienGenome, 3
 - AlienRSList_broad, 3
 - AlienRSList_narrow, 4
 - cw_Alien, 9
 - cw_Alien_RaR, 9
 - cw_Alien_ReG, 10
 - cw_Alien_ReG_no_Square, 10
 - cw_Alien_ReR, 11
 - mLZ_regA_ReG, 22

* function
 - multiPermTest, 26

* internal
 - cleanCrosswiseMatrix, 5
 - crosswiseMatrix, 7
 - DFfromLZ, 11
 - gmxrMatrix, 15
 - gmxrMatrix<-, 16
 - gmxrMultiOverlaps, 16
 - gmxrParam, 17
 - mlzsMatrix, 20
 - mlzsMatrix<-, 20
 - mlzsMultiLocalZscores, 21
 - mlzsParam, 21
 - mlzsParam<-, 22
 - multiPermTest, 26
 - print, genoMatrixeR-method, 33
 - subList, 36

AlienGenome, 3, 4
AlienRSList_broad, 3
AlienRSList_narrow, 4

crosswisePermTest, 7, 15, 29, 33
crosswisePermTest(), 5, 12, 18, 28
cw_Alien, 9
cw_Alien_RaR, 9
cw_Alien_ReG, 10
cw_Alien_ReG_no_Square, 10
cw_Alien_ReR, 11
data.frame, 7, 24, 26
DFfromLZ, 11
dist(), 5, 18, 19
genMatrixeR, 7–18, 27–29, 33, 34
genMatrixeR-class, 12
gm_raster(), 29
gm_text_repel, 28
getHClust, 12
getMatrix, 13
getMultiEvaluation, 14
getParameters, 15
gMXR(genoMatrixeR-class), 12
gm Matrix, 15
gmxrMatrix<-, 16
gmxrMultiOverlaps, 16
gm xrParam, 17
GRanges, 3, 4, 6–8, 24, 26, 34, 35
GRangesList, 7, 24
hclust, 5, 12, 13, 18, 27
hclust(), 4, 5, 18, 19
kmeans, 27
localZScore, 20
makeCrosswiseMatrix, 13, 17, 29, 33
makeCrosswiseMatrix(), 6, 9–12
makeLZMatrix, 13, 19, 31
makeLZMatrix(), 22, 26, 32
mLZ_regA_ReG, 22
mLZ_regA_ReG_br, 23
mLZ_regD_ReG, 23
mLZS(multiLocalZScore-class), 25
mlzsMatrix, 20
mlzsMatrix<-, 20
mlzsMultiLocalZscores, 21
mlzsParam, 21
mlzsParam<-, 22
multiLocalZScore, 11–15, 19–23, 25, 30–32
multiLocalZScore, 24, 31
multiLocalZscore(), 14, 26, 32
multiLocalZScore-class, 25
multiPermTest, 26
multiPermTest(), 18

p.adjust(), 8, 24, 26
pam, 27
plotCrosswiseDimRed, 27
plotCrosswiseMatrix, 29
plotCrosswiseMatrix(), 18
plotLocalZScoreMatrix, 30, 32
plotSingleLZ, 31
plotSinglePT, 32
print, genoMatriXeR-method, 33

randomizeRegionsPerc, 34
regioneR::circularRandomizeRegions, 9
regioneR::joinRegions(), 6
regioneR::localZScore(), 25
regioneR::overlapPermTest(), 8
regioneR::permTest(), 8, 27
regioneR::randomizeRegions, 9
regioneR::randomizeRegions(), 9
regioneR::resampleGenome, 9
regioneR::resampleGenome(), 10, 22, 23
regioneR::resampleRegions, 9
regioneR::resampleRegions(), 6, 8, 11, 24, 26
Rtsne(), 28

similarRegionSet, 35
similarRegionSet(), 4, 34
smooth.spline(), 32
stats::smooth.spline, 30
subList, 36

t(), 18