Package ‘retrofit’

May 30, 2024

Title RETROFIT: Reference-free deconvolution of cell mixtures in spatial transcriptomics

Version 1.4.0

Description RETROFIT is a Bayesian non-negative matrix factorization framework to decompose cell type mixtures in ST data without using external single-cell expression references. RETROFIT outperforms existing reference-based methods in estimating cell type proportions and reconstructing gene expressions in simulations with varying spot size and sample heterogeneity, irrespective of the quality or availability of the single-cell reference. RETROFIT recapitulates known cell-type localization patterns in a Slide-seq dataset of mouse cerebellum without using any single-cell data.

biocViews Transcriptomics, Visualization, RNASeq, Bayesian, Spatial, Software, GeneExpression, DimensionReduction, FeatureExtraction, SingleCell

License GPL-3

Encoding UTF-8

LazyData FALSE

URL https://github.com/qunhualilab/retrofit

BugReports https://github.com/qunhualilab/retrofit/issues

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

Depends R (>= 4.2), Rcpp

LinkingTo Rcpp

Suggests BiocStyle, knitr, rmarkdown, testthat, DescTools, ggplot2, corrplot, cowplot, grid, colorspace, png, reshape2, pals, RCurl

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/retrofit
git_branch RELEASE_3_19
git_last_commit 7d32b7d
git_last_commit_date 2024-04-30
annotateWithCorrelations

Repository Bioconductor 3.19

Date/Publication 2024-05-29

Author Adam Park [aut, cre], Roopali Singh [aut] (<https://orcid.org/0000-0001-6539-6622>), Xiang Zhu [aut] (<https://orcid.org/0000-0003-1134-6413>), Qunhua Li [aut] (<https://orcid.org/0000-0003-0675-7648>)

Maintainer Adam Park <akp6031@psu.edu>

Contents

- annotateWithCorrelations .. 2
- annotateWithMarkers .. 3
- decompose ... 4
- retrofit ... 6
- testSimulationData .. 7
- vignetteColonData .. 8
- vignetteSimulationData ... 8

Index 9

annotateWithCorrelations

RETROFIT matching algorithm

Description

Match cell types based on correlations with reference. `decomp_w` between matching algorithm description

Usage

```
annotateWithCorrelations(sc_ref, K, decomp_w, decomp_h)
```

Arguments

- **sc_ref**
 A Matrix or Array with two dimensions (GeneExpressions, Cell types).

- **K**
 integer: The number of cell types to be selected

- **decomp_w**
 Matrix(GeneExpressions, Components): Decomposed w matrix

- **decomp_h**
 Matrix(Components, Spots): Decomposed h matrix
annotateWithMarkers

Value

A list of selected components, cells, and correlations

- \(w \): Filtered 2d array with GeneExpressions, Cell types
- \(h \): Filtered 2d array with Cell types, Spots
- \(\text{ranked_cells} \): The list of cell names
- \(\text{ranked_correlations} \): The list of correlations

See Also

papers reference

Examples

```r
data("testSimulationData")
K = 10
sc_ref = testSimulationData$sc_ref
W = testSimulationData$decompose$w
H = testSimulationData$decompose$h
result = retrofit::annotateWithCorrelations(sc_ref=sc_ref, K=K,
                                           decomp_w=W, decomp_h=H)
H_annotated = result$h
W_annotated = result$w
ranked_cells = result$ranked_cells
```

Description

Match cell types based on correlations with reference. decomp_w between matching algorithm

Usage

`annotateWithMarkers(marker_ref, K, decomp_w, decomp_h)`

Arguments

- `marker_ref`: Key-value list: A dictionary of key: cell type, value: GeneExpression list
- `K`: integer: The number of cell types to be selected
- `decomp_w`: Matrix(GeneExpressions, Components): Decomposed w matrix
- `decomp_h`: Matrix(Components, Spots): Decomposed h matrix
decompose

Value

A list of

• w
• h

See Also

papers reference

Examples

data("testSimulationData")
K = 10
marker_ref = testSimulationData$marker_ref
W = testSimulationData$decompose$w
H = testSimulationData$decompose$h
result = retrofit::annotateWithMarkers(marker_ref=marker_ref, K=K, decomp_w=W, decomp_h=H)
H_annotated = result$h
W_annotated = result$w
ranked_cells = result$ranked_cells

decompose

RETROFIT decomposition algorithm

Description

Receiving the input with 2d spatial transcriptomics matrix, the function returns factorized W, H, Theta. This function fulfills Structured Stochastic Variational Inference Algorithm for RETROFIT. Since exact Bayesian inference is infeasible and considering the large number of spots and genes, variational inference was adopted to approximately estimate the parameters in performant manner.

Usage

decompose(
 x,
 L = 16,
 iterations = 4000,
 init_param = NULL,
 lambda = 0.01,
 kappa = 0.5,
 verbose = FALSE
)
decompose

Arguments

- **x**: matrix or array with dimension (GeneExpressions, Spots). This is the main spatial transcriptomics data.
- **L**: integer (default:16) The number of components to be decomposed
- **iterations**: integer (default:4000) The number of maximum iterations to be executed
- **init_param**: list Vatirational initial parameters
- **lambda**: double (default:0.01) Background expression profile control
- **kappa**: double (default:0.5) Learning rate factor
- **verbose**: boolean (default:FALSE)

Details

init_param specification

- **alpha_w_0** double (default:0.05)
- **beta_w_0** double (default:0.0001)
- **alpha_h_0** double (default:0.2)
- **beta_h_0** double (default:0.2)
- **alpha_th_0** double (default:1.25)
- **beta_th_0** double (default:10)
- **alpha_th_k** array (default:array with dim c(K))
- **beta_th_k** array (default:array with dim c(K)),
- **alpha_w_gk** array (default:array with dim c(G,K)),
- **beta_w_gk** array (default:array with dim c(G,K)),
- **alpha_h_ks** array (default:array with dim c(K,S)),
- **beta_h_ks** array (default:array with dim c(K,S))

Value

A list of decomposed vectors that contains

- **w**: 2d array with GeneExpressions, Components
- **h**: 2d array with Components, Spots
- **th**: an array with Components
- **durations**: (verbose) durations vector (unit: second)
- **relative_error**: (verbose) errors with pre-defined norm vector

See Also

papers reference
Examples

data("testSimulationData")
x = testSimulationData$extra5_x
res = retrofit::decompose(x, L=16, iterations=10, verbose=TRUE)
W = res$w
H = res$h
TH = res$th

retrofit RETROFIT

Description

The main algorithm

Usage

retrofit(
 x,
 sc_ref = NULL,
 marker_ref = NULL,
 L = 16,
 K = 8,
 iterations = 4000,
 init_param = NULL,
 lambda = 0.01,
 kappa = 0.5,
 verbose = FALSE
)

Arguments

x A matrix or array with dimension (GeneExpressions, Spots). This is the main spatial transcriptomics data.
sc_ref A matrix or array with two dimensions (GeneExpressions, Cell types).
marker_ref A list with (keys, values) = (cell types, an array of genes).
L integer (default:16) The number of components to be decomposed
K integer: The number of cell types to be selected
iterations integer (default:4000) The number of maximum iterations to be executed
init_param list Variational initial parameters
lambda double (default:0.01) Background expression profile control
kappa double (default:0.5) Learning rate factor
verbose boolean (default:FALSE)
Value

A list of decomposed vectors that contains

- **decompose:**
 - w: Decomposed 2d array with GeneExpressions, Components
 - h: Decomposed 2d array with Components, Spots
 - th: 1d array with Components
- **annotateWithCorrelations:**
 - w: Filtered 2d array with GeneExpressions, Cell types
 - h: Filtered 2d array with Cell types, Spots
- **annotateWithMarkers:**
 - w: Filtered 2d array with GeneExpressions, Cell types
 - h: Filtered 2d array with Cell types, Spots

See Also

papers reference

Examples

data("testSimulationData")
iterations = 10
L = 16
K = 8
x = testSimulationData$extra5_x
sc_ref = testSimulationData$sc_ref
res = retrofit::retrofit(x, sc_ref=sc_ref, L=L, K=K, iterations=iterations)
W = res$decompose$w
W_annotated = res$annotateWithCorrelations$w
ranked_cells= res$annotateWithCorrelations$ranked_cells

description

A dataset with input and output of retrofit functions for reproducibility tests.

Usage

data(testSimulationData)

Format

Includes input x, references and results with large iterations
• vignetteColonData

Description
A dataset supporting the colon vignette process

Usage
data(vignetteColonData)

Format
Includes colon scenario x, references, a large iterations results.

Details
• vignetteColonData

• vignetteSimulationData

Description
A dataset supporting the simulation vignette process

Usage
data(vignetteSimulationData)

Format
Includes n10m3 scenario x, references, a large iterations results.

Details
• vignetteSimulationData
Index

* datasets
 testSimulationData, 7
 vignetteColonData, 8
 vignetteSimulationData, 8

annotateWithCorrelations, 2
annotateWithMarkers, 3

decompose, 4

retrofit, 6

testSimulationData, 7

vignetteColonData, 8
vignetteSimulationData, 8