Package ‘rexposome’

May 30, 2024

Version 1.26.0
Title Exposome exploration and outcome data analysis
Maintainer Xavier Escribà Montagut <xavier.escriba@isglobal.org>
Description Package that allows to explore the exposome and to perform association analyses between exposures and health outcomes.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 7.2.1
VignetteBuilder knitr
Depends R (>= 3.5), Biobase
Imports methods, utils, stats, lsr, FactoMineR, stringr, circlize, corrplot, ggplot2, ggridges, reshape2, pryr, S4Vectors, imputeLCMD, scatterplot3d, glmnet, gridExtra, grid, Hmisc, gplots, gtools, scales, lme4, grDevices, graphics, ggrepel, mice
Suggests mclust, flexmix, testthat, BiocStyle, knitr, formatR, rmarkdown
biocViews Software, BiologicalQuestion, Infrastructure, DataImport, DataRepresentation, BiomedicalInformatics, ExperimentalDesign, MultipleComparison, Classification, Clustering
git_url https://git.bioconductor.org/packages/rexposome
git_branch RELEASE_3_19
git_last_commit b60227d
git_last_commit_date 2024-04-30
Repository Bioconductor 3.19
Date/Publication 2024-05-29
Author Carles Hernandez-Ferrer [aut, cre], Juan R. Gonzalez [aut], Xavier Escribà-Montagut [aut]
Contents

classification ... 3
clustering .. 4
correlation .. 5
expo .. 6
expos .. 7
ExposomeClust .. 7
ExposomeCorr .. 8
ExposomePCA ... 10
ExposomeSet ... 12
exposureNames ... 17
expo_c ... 18
extact .. 19
ExWAS .. 19
exwas .. 21
ex_imp ... 23
familyNames .. 23
get_robust_sd .. 24
highAndLow ... 25
ilod .. 26
imExposomeSet ... 27
imputation ... 30
imputeLOD .. 31
invExWAS ... 32
loadExposome .. 33
loadExposome_plain .. 34
loadImputed ... 36
me .. 37
mExWAS ... 38
mexwas ... 39
ndim .. 40
normalityTest ... 41
pca .. 42
phenoTypeNames ... 42
plot3PCA ... 43
plotClassification ... 44
plotCorrelation ... 45
plotEffect ... 45
plotEXP ... 46
plotExwas ... 47
plotFamily ... 48
plotHistogram ... 49
plotLOD ... 50
plotMissings .. 51
plotPHE ... 52
plotVolcano .. 54
Method to get the classification of the samples from an ExposomeClust.

Usage

classification(object)

Arguments

object An ExposomeClust to get the samples’ classification.

Value

A labelled vector with the classification of each exposure.

See Also

clustering as a constructor for ExposomeClust, plotClassification to plot the groups

Examples

data("eclust")
tt <- classification(expo_c)
table(tt)
clustering

Method to perform clustering on the samples of an ExposomeSet

Description

This method allows to create an ExposomeClust object from an ExposomeSet object by clustering samples through the exposure levels. The method is flexible to accept any clustering method (method) that allows to obtain a classification (cmethod) of the samples. The function assigned to argument method must have an argument called data, waiting for the matrix of exposures (samples as rows, exposures as columns). If the result object of the method has no accessor $classification, then a cmethod is required and will be applied on the result of method to obtain a labelled vector with the samples’ classification.

Usage

clustering(object, method, cmethod, ..., warnings = TRUE)

Arguments

object ExposomeSet containing the exposures used for the clustering process
method Function applied to the exposures of object. This function must has an argument named as data that will receive the matrix of exposures.
cmethod (optional) Function to obtain the classification from the object generated with method.
... Passed to content of method.
warnings (default TRUE) If set to FALSE warnings will not be displayed.

Value

ExposomeClust with the original exposures and the classification of each exposure.

Note

The function assigned to cmethod will be directly applied to the result of the method as: cmethod(model); being model the result of method.

See Also

classification to see how to obtain the classification of the samples from an ExposomeClust, plot-Classification to plot the groups
Examples

data("exposome")

EXAMPLE 1: Clustering with mclust
library(mclust)
c <- clustering(expo[12:32,], method = Mclust, G = 2)
table(classification(c)) # This works since the result of Mclust has an accessor
 # $classification

EXAMPLE 2: Clustering with flexmix
library(flexmix)
First we carete a function to apply flexmix to the ExposomeSet
flexmix_clust <- function(data, ...) {
 data <- as.matrix(data)
 flexmix(formula = data-1, ...)
}

Then if we apply the method to the ExposomeSet it will crash:
c <- clustering(expo[12:32,], method = flexmix_clust, k = 2, model = FLXMCmvnorm())
Because the method does not know how to obtain the classification for the result
since flexmix has not an accessor called $classification

We create a function to get the classification
flexmix_clas <- function(model, ...) {
 return(clusters(model))
}

We put it to the ExposomeClust
c <- clustering(expo[12:32,], method = flexmix_clust, cmethod = flexmix_clas,
 k = 2, model = FLXMCmvnorm())
classification(c) # This works because the ExposomeClust has a way to get
 # the classification

correlation

Description

Method to calculate the correlation between the exposures of an ExposomeSet. The correlation
method takes into account the nature of each pair of exposures: continuous vs. continuous uses
cor function from R base, categorical vs. categorical uses cramerV function from lsr R package
and categorical vs. continuous exposures correlation is calculated as the square root of the adjusted
r-square obtained from fitting a lineal model with the categorical exposures as dependent variable
and the continuous exposure as independent variable. The function creates and returns an ExposomeCorr
object.

Usage

correlation(object, ..., warnings = TRUE)
Arguments

object ExposomeSet which exposures will be used to calculate their correlation
... Other arguments passed to cor, cramersV or to lm.
warnings (default TRUE) If set to FALSE warnings will not be displayed.

Value

ExposomeCorr with the correlation between the selected exposures and their description

See Also

plotCorrelation to plot the correlations of an ExposomeCorr, clustering to see how the exposures can cluster samples, pca to compute PCA on exposures

Examples

data("exposome")
expo.c <- correlation(expo)
expo.c
expo.c.table <- extract(expo.c)

Description

ExposomeSet with full set of 104 exposures, 1200 simulated samples and 4 phenotypes (asthma status, BMI measure, sex, and age).

Usage

data("exposome")

Format

An object of class ExposomeSet of dimension 104 x 1200 x 4.

Value

An ExposomeSet object.

Examples

data("exposome")
dim(expo)
exposureNames(expo)
familyNames(expo)
sampleNames(expo)
phenotypeNames(expo)
Returns the exposures matrix of an ExposomeSet.

Description
Given an ExposomeSet it returns the inner matrix of exposures, having the exposures as columns and the samples as rows.

Usage
```r
expos(object)
```

Arguments
- `object` An ExposomeSet.

Value
A matrix of exposures

Examples
```r
data("exposome")
expos(expo)[1:3, 1:3]
```

Class ExposomeClust

Description
Class ExposomeClust obtained from clustering on an ExposomeSet object, represents the groups of samples created applying a clustering method on the ExposomeSet’ exposures.

Usage
```r
## S4 method for signature 'ExposomeClust,ANY'
plot(x, y, ...)

## S4 method for signature 'ExposomeClust'
classification(object)

## S4 method for signature 'ExposomeClust'
plotClassification(object, type = "heatmap", ...)

## S4 method for signature 'ExposomeClust'
sampleNames(object)
```
Arguments

x Object of class ExposomeClust
y NOT USED
... Argument given to heatmap.2
object An object of class ExposomeClust
type (default "heatmap") Type of plot.

Value

An object of class ExposomeClust

Methods (by generic)

• plot(x = ExposomeClust, y = ANY): Wrapper for plotClassification method.
• classification(ExposomeClust): Return classe assigned to each sample
• plotClassification(ExposomeClust): Draws a heatmap for the samples' classification.
• sampleNames(ExposomeClust): Method to obtain samples' names

Slots

model Result obtained on applying method on the exposures.
method Function used to perform the clustering of the exposures.
call Call used to create this object.
samples Name of the exposures after the clustering process.

See Also

clustering to apply a clustering on an ExposomeSet and create an ExposomeClust.

ExposomeCorr Class ExposomeCorr

Description

Class ExposomeCorr contains a matrix of correlations between continuous exposures calculated using cor. It also contains the description of each exposures (fData of the original ExposomeSet) in order to maintain a coherence with the original source. It extends eSet-class.
Usage

S4 method for signature 'ExposomeCorr,ANY'
plot(x, y, ...)

S4 method for signature 'ExposomeCorr'
dim(x)

S4 method for signature 'ExposomeCorr'
extract(object, sort, ...)

S4 method for signature 'ExposomeCorr'
plotCorrelation(object, type = c("circos", "matrix"), ...)

Arguments

x Object of class ExposomeCorr

y NOT USED

... Arguments passed to corrplot when type="matrix".

object An ExposomeCorr object.

sort NOT USED

type To choose between "circos" and "matrix".

Value

An object of class ExposomeCorr

Methods (by generic)

- plot(x = ExposomeCorr, y = ANY): Wrapper for plotClassification method.
- dim(ExposomeCorr): Return the dimension of the internat matrix of correlation.
- extract(ExposomeCorr): Return the raw correlation matrix
- plotCorrelation(ExposomeCorr): Draws both a matrix of circos plot of correlations

Slots

assayData Contains the correlation matrix (see eSet, AssayData).

featureData Contains the description of the exposures including the family where they belong
(see eSet, AnnotatedDataFrame).

See Also

pca to study the behavioud between samples and exposures in an ExposomeSet
Class `ExposomePCA`

Description

Class `ExposomePCA` contains a matrix of exposures used to compute the PCA, also a table of phenotypes and a set containing the multiple results of computing the PCA.

Usage

```r
## S4 method for signature 'ExposomePCA,ANY'
plot(x, y, ...)

## S4 method for signature 'ExposomePCA'
exposureNames(object)

## S4 method for signature 'ExposomePCA'
extract(object, table = "exposures", ...)

## S4 method for signature 'ExposomePCA'
ndim(object)

## S4 method for signature 'ExposomePCA'
phenotypeNames(object)

## S4 method for signature 'ExposomePCA'
plot3PCA(
  object,
  cmpX,
  cmpY,
  cmpZ,
  phenotype,
  main,
  angle = 35,
  pch = 16,
  legend = TRUE,
  plines = TRUE
)

## S4 method for signature 'ExposomePCA'
plotEXP(object, exposure)

## S4 method for signature 'ExposomePCA'
plotPCA(
  object,
  set,
  cmpX = 1,
```
S4 method for signature 'ExposomePCA'

`plotPHE(object, phenotype, exp2fac = 5)`

Arguments

- `x`: Object of class `ExposomePCA`
- `y`: NOT USED
- `...`: NOT USED
- `object`: An `ExposomePCA` object
- `table`: Can takes values "exposures" or "individuals".
- `cmpX`: PC to place in X-axis
- `cmpY`: PC to place in Y-axis
- `cmpZ`: PC to place in Z-axis
- `phenotype`: (when set="samples") A phenotype can be selected so the samples are coloured by its value.
- `main`: Title
- `angle`: Point of view
- `pch`: Size of the dots
- `legend`: Boolean to show or hide the legend
- `plines`: Boolean to show of hide the dotted lines that helps to place the dots in the X/Y axes
- `exposure`: Vector of exposures to be shown in the plot
- `set`: Can take values "exposures", "samples" or "all"
- `show.exposures`: When set to TRUE, labels for exposures are shown
- `show.samples`: When set to TRUE, labels for samples are shown
- `exp2fac`: Number of different values to considere an exposures continuous

Value

An object of class `ExposomePCA`

Methods (by generic)

- `plot(x = ExposomePCA, y = ANY)`: Wrapper for `plotPCA` method.
- `exposureNames(ExposomePCA)`: Getter to obtain the exposures’s names.
- `extract(ExposomePCA)`: Method to extract the raw results of the PCA.
- `ndim(ExposomePCA)`: Number of principal components in an ExposomePCA.
- `phenotypeNames(ExposomePCA)`: Getter to obtain the phenotype's names.
- `plot3PCA(ExposomePCA)`: Method to draw a 3D plot for PCA
- `plotEXP(ExposomePCA)`: Plot correlation between exposures and PCA
- `plotPCA(ExposomePCA)`: Method to draw a 2D plot for PCA
- `plotPHE(ExposomePCA)`: Plot association score between phenotypes and PCA

Slots

- `pca` list containing all elements of the PCA
- `phenoData` Contains the phenotypes or variables experimenter-supplied (see eSet, AnnotatedDataFrame).
- `featureData` Contains the description of the exposures including the family where they belong (see eSet, AnnotatedDataFrame).

See Also

correlation to study the correlation between exposures in a ExposomeSet

ExposomeSet

Class ExposomeSet

Description

Class ExposomeSet contains the exposure levels, the exposure's description and the samples phenotype. It is the starting object for rexposome package and extends eSet.

Usage

```r
## S4 method for signature 'ExposomeSet,ANY'
plot(x, y, ...)

## S4 method for signature 'ExposomeSet'
clustering(object, method, cmethod, ..., warnings = TRUE)

correlation(object, ..., warnings = TRUE)

dim(x)

expos(object)
exposureNames(object)
```

S4 method for signature 'ExposomeSet'
exwas(
 object,
 formula,
 filter,
 family,
 ...,
 baselevels,
 tef = TRUE,
 verbose = FALSE,
 warnings = TRUE,
 robust = FALSE
)

S4 method for signature 'ExposomeSet'
familyNames(object, by.exposure = FALSE)

S4 method for signature 'ExposomeSet'
highAndLow(
 object,
 ngroups = 3,
 intervals = c("standard", "extreme"),
 select,
 drop = FALSE,
 warnings = TRUE
)

S4 method for signature 'ExposomeSet'
ilod(
 object,
 seed = 1234,
 lod.col = "LOD",
 pNA = 0.2,
 tLog = FALSE,
 method = "QRILC",
 warnings = TRUE,
 ...
)

S4 method for signature 'ExposomeSet'
imputation(object, select, ..., messages = FALSE)

S4 method for signature 'ExposomeSet'
invExWAS(object, formula, filter, tef = TRUE, verbose = FALSE, warnings = TRUE)

S4 method for signature 'ExposomeSet'
mexwas(object, phenotype, family, warnings = TRUE)
normalityTest(
 object,
 exposure,
 th = 0.05,
 min.val = 5,
 na.rm = TRUE,
 warnings = TRUE
)

pca(object, npc = 10, pca = FALSE, ...)

phenotypeNames(object)

plotFamily(x, family, group, group2, scatter = TRUE, na.omit = TRUE)

plotHistogram(x, select, density = TRUE, show.trans = FALSE)

plotLOD(object, lod.col = "LOD", x.max = 100, sort = TRUE)

plotMissings(
 object,
 set = c("exposures", "phenotypes"),
 x.max = 100,
 sort = TRUE
)

standardize(object, select, method = "normal", na.rm = TRUE, warnings = TRUE)

Summary(x, set = c("exposures", "phenotypes"), select, ..., na.rm = FALSE)

tableLOD(object, output = "n", lod.col = "LOD", sort = TRUE)

tableMissings(
 object,
 set = c("exposures", "phenotypes"),
 output = "n",
 sort = TRUE)
Arguments

x An ExposomeSet object.
y NOT USED
... Arguments to be passed to imputeFAMD
object An ExposomeSet object.
method Method to be used.
cmethod Function implementing a system to retrieve classification from clustering output
warnings If set to TRUE it prints the warning messages.
formula Formula, not including exposures, to be tested. No need to provide response (left term)
filter Expression to be used to filter ExposomeSet
family Family describing the nature of the health outcome
baselevels Labeled vector with the default base level for categorical exposures.
tef If TRUE it computed the threshold for effective tests.
verbose If set to TRUE is shows messages on progression.
by.exposure If set to TRUE it returns the family which each exposure belongs
ngroups Number of intervals to be used
intervals If “standard” all levels are kept, if “extreme” intermediate levels are set to NA.
select Vector selecting the exposures to be used.
drop If set to TRUE exposures are replaced
seed Numeric seed
lod.col Indicator of the column where the LOD is located
pNA Maximum percentage allowed of values under LOD
tLog If set to TRUE it transforms all the exposures to lod before the imputation.
messages If set to TRUE messages from mice’s function will be displayed.
phenotype Health outcome to be used as dependent variable.
exposure Vector of exposures to be used.
th Threshold of P-Value used to consider normality
min.val Minimum number of observations to perform test
na.rm If set to TRUE removes NA values
npc Number of PC to be kept pca Perform PCA (only numerical variables) or FAMD (numerical and categorical)
ExposomeSet

- group: Phenotype to group exposures
- group2: Phenotype to group exposures
- scatter: If set to true it shows the samples value in the plot
- na.omit: If set to TRUE, NA values are discarded
- density: If set to TRUE a density plot is drawn on the histogram
- show.trans: If set to TRUE, three extra plots are drawn with usual transformations
- x.max: Threshold for x axis (in %)
- sort: If set to TRUE, results are ordered
- set: Can take values "exposures" or "phenotypes"
- output: Can take values "n" (count) or "p" (percentage)
- fun: Function to be used in the transformation process

Value

An object of class ExposomeSet

Methods (by generic)

- plot(x = ExposomeSet, y = ANY): Wrapper for plotFamily method.
- clustering(ExposomeSet): Performs clustering on samples based on exposure levels.
- correlation(ExposomeSet): Computes correlation on exposures.
- dim(ExposomeSet): Returns the number of exposures, samples and phenotypes.
- expos(ExposomeSet): Returns a data.frame with exposures.
- exposureNames(ExposomeSet): Getter to obtain the exposures’s names.
- exwas(ExposomeSet): Performs an EXposome-Wide Association Study
- familyNames(ExposomeSet): Getter to obtain the families’s names of the family of each exposure.
- highAndLow(ExposomeSet): Performs a discretization of continuous exposures.
- ilod(ExposomeSet): Imputation of under-LOD values of exposures.
- imputation(ExposomeSet): Imputation of missing values of exposures.
- invExWAS(ExposomeSet): Performs an EXposome-Wide Association Study (modelling the exposures as response)
- mexwas(ExposomeSet): Performs a Multiple-EXposure-Wide Association Study.
- normalityTest(ExposomeSet): Test the normality of each exposure.
- pca(ExposomeSet): Performs a PCA
- phenotypeNames(ExposomeSet): Getter to obtain the phenotypes’s names.
- plotFamily(ExposomeSet): Draws a boxplot or accumulated-bar plot for each exposure in a given family.
- plotHistogram(ExposomeSet): Draws an histogram of a given continuous exposure or a pie chart if a given categorical exposure.
exposureNames

- plotLOD(ExposomeSet): Draws a barchart with the amount of under-LOD values.
- plotMissings(ExposomeSet): Draws a bar-plot with the amount of missing values.
- standardize(ExposomeSet): Standardization of exposures.
- Summary(ExposomeSet): Summary of both continuous and categorical exposures.
- tableLOD(ExposomeSet): Returns a vector with the number of under-LOD values per exposure.
- tableMissings(ExposomeSet): Returns a vector with the number of missing values per exposure.
- trans(ExposomeSet): Transformation of exposures.

Slots

- assayData: Contains the exposures matrix with column number equal to nrow(phenoData) (see eSet, AssayData).
- featureData: Contains the description of the exposures including the family where they belong (see eSet, AnnotatedDataFrame).
- phenoData: Contains the phenotypes or variables experimenter-supplied (see eSet, AnnotatedDataFrame).

See Also

readExposome to create an ExposomeSet from files, loadExposome to create an ExposomeSet from data.frames

exposureNames

Getter to obtain the exposures’s names of an ExposomeSet or ExposomePCA

Description

Getter to obtain the exposures’s names of an ExposomeSet or ExposomePCA

Usage

exposureNames(object)

Arguments

- object: ExposomeSet that will be queried for the exposures’s names.

Value

The name of the exposures as a character vector.

Warning

exposureNames collides with featureNames of eSet. Although in rexposome 1.0.0 both function can be used as synonyms, this usage is discouraged and it is not assured.
See Also

phenotypeNames to get the phenotypes, familyNames to get the families of exposures

Examples

data("exposome")
exposureNames(expo)

dim(expo_c)
table(classification(expo_c))

Description

ExposomeClust created from an ExposomeSet with full set of 104 exposures, 1200 simulated samples and 4 phenotypes (asthma status, BMI measure, sex, and age). The clustering was done using hclust and cutree with k = 3.

Usage

data("eclust")

Format

An object of class ExposomeClust of dimension 99 x 1200 x 5.

Value

An ExposomeSet object.

Examples

data("eclust")

dim(expo_c)
table(classification(expo_c))
extract

extract

Raw data from ExWAS, ExposomeClust and ExposomeCorr.

Description

Returns internal table of results of objects of class ExWAS, ExposomeClust and ExposomeCorr.

Usage

```r
extract(object, ...)
```

Arguments

- `object` Object of class ExWAS, ExposomeClust or ExposomeCorr
- `...` NO USED

Value

A data.frame containing the raw result from PsyGeNET or a data.frame with the result Jaccard Index for each disease.

ExWAS

Class ExWAS

Description

Class ExWAS obtained from `exwas` method of an **ExposomeSet** object, contains the result of testing the association of exposures of an ExposomeSet to its phenotypes. "ExWAS" is the acronym of "Exposome-Wide Association Study". The function can be applied to one of to many phenotypes in the ExposomeSet object.

Usage

```r
## S4 method for signature 'ExWAS,ANY'
plot(x, y, ...)

## S4 method for signature 'ExWAS'
extract(object, sort = TRUE, ...)

## S4 method for signature 'ExWAS'
get_robust_sd(object, sort = TRUE, ...)

## S4 method for signature 'ExWAS'
names(x)
```
S4 method for signature 'ExWAS'
plotEffect(x, y, select, labels, xlab, ylab)

S4 method for signature 'ExWAS'
plotExwas(
 object,
 ...,
 subtitles,
 color,
 exp.order,
 labels,
 show.effective = TRUE
)

S4 method for signature 'ExWAS'
plotVolcano(x, p.value = -log10(0.001), labels, show.effect = FALSE)

S4 method for signature 'ExWAS'
tef(object)

Arguments

- **x**: An `ExWAS` object
- **y**: An `ExWAS` object
- **...**: NOT USED
- **object**: An object of class `ExWAS`, `mExWAS` or `nExWAS`.
- **sort**: If TRUE, the results are ordered by pvalue.
- **select**: (optional) Vector with the selected exposures
- **labels**: (optional) Character vector with the labels for each exposure. It must be labeled vector.
- **xlab**: (optional) Label for x-axis
- **ylab**: (optional) Label for y-axis
- **subtitles**: Character vector with the "subtitle" for each plot when given more than one `ExWAS`.
- **color**: (optional) A vector of colors. The vector must have length equal to the number of families. The vector must be names with the name of the families.
- **exp.order**: (optional) Order of the exposures.
- **show.effective**: (default TRUE) draws a brown line on the threshold given by the effective number of tests.
- **p.value**: (default -log10(0.001)) Is the threshold from where the exposures can be taken as significants.
- **show.effect**: (default false) Apply exp to obtained beta.

Value

An object of class `ExWAS`
Methods (by generic)

- `plot(x = ExWAS, y = ANY)`: Wrapper for `plotExwas` method.
- `extract(ExWAS)`: Method to obtain the matrix of association scores
- `get_robust_sd(ExWAS)`: Method to obtain the matrix of association scores
- `names(ExWAS)`: Method to obtain the Threshold for effective tests (TEF)
- `plotEffect(ExWAS)`: Draws a plot with the confidence interval of each exposure. Allows to compare two ExWAS instances.
- `plotExwas(ExWAS)`: Method to plot a manhatan plot for association between exposures and phenotypes
- `plotVolcano(ExWAS)`: Method to plot a volcano plot for association between exposures and phenotypes
- `tef(ExWAS)`: Method to obtain the Threshold for effective tests (TEF)

Slots

effective Number containing the effective number of tests.
formula Tested formula.
comparison Result of performing the test to find association between levels of exposures and phenotype.
description Description of the exposures used in the ExWAS. (in description file).

See Also

`exwas` to perform an Exposome-Wide Association Study and to create an `ExWAS`, `mexwas` to perform a Multivariate Exposome-Wide Association Study and to create a `mExWAS`

Description

The `exwas` method performs an "Exposome-Wide Association Study" (ExWAS) using the exposures in `ExposomeSet` and one of its phenotype.

Usage

```r
exwas(
  object,
  formula,
  filter,
  family,
  ..., 
  baselevels,
)```
tef = TRUE,
verbose = FALSE,
warnings = TRUE,
robust = FALSE
)

Arguments

object ExposomeSet that will be used for the ExWAS.
formula formula indicating the test to be done. If any exposure is included it will be
 used as covariate. exwas method will perform the test for each exposure.
filter expression to be used to filter the individuals included into the test.
family Family of the distribution followed by the health outcome to be tested (gaussian,
bionomal, ... check glm).
... NOT USED
baselevels (optional) If set, must be a labeled vector with the default base level for categor-
ic exposures.
tef (default TRUE) If TRUE it computed the effective number of tests and the threshold
for the effective number of tests. Usually it needs imputed data.
verbose (default FALSE) If set to true messages along the tests are shown.
warnings (default TRUE) If set to FALSE warnings will not be displayed.

Value

An codeExWAS object with the result of the association study

References

An Environment-Wide Association Study (ExWAS) on Type 2 Diabetes Mellitus. Chirag J. Patel,
Jayanta Bhattacharya, Atul J. Butte. May 20, 2010 Plos One
Evaluating the effective numbers of independent tests and significant p-value thresholds in commer-
cial genotyping arrays and public imputation reference datasets. Miao-Xin Li, Juilian M. Y. Yeung,

See Also

extract to obtain a table with the result of the ExWAS, plotExwas to plot the results of the ExWAS

Examples

data(exposome)
w1 <- exwas(expo[1:5, ], asthma~1, family = "binomial")
w2 <- exwas(expo[1:5, ], asthma~sex+age, family = "binomial")
w3 <- exwas(expo[1:5, ], asthma~age, family = "binomial", filter = sex="boy")
Description

`imExposomeSet` created from the raw data included in the package. The creation process is illustrated in the vignette.

Usage

data("ex_imp")

Format

An object of class `imExposomeSet` of dimension 47 x 109 x 10.

Value

An `imExposomeSet` object.

Examples

data("ex_imp")
ex_imp

familyNames

Getter to obtain the exposures’s names of an ExposomeSet.

Description

This method returns the name of the families in an `ExposomeSet`, but it can return a vector, labeled with the exposures in the `ExposomeSet`, containing the family belonging to each exposure.

Usage

familyNames(object, by.exposure = FALSE)

Arguments

object ExposomeSet that will be queried for the exposures’s family-names.
by.exposure (default FALSE) If TRUE a vector labeled with each exposure name will be returned with the family of each exposures. If FALSE a vector with the (unique) name of the families of exposures will be returned.
get_robust_sd

Value

The families of the exposures into the ExposomeSet, or the family of each exposure into the ExposomeSet.

See Also

exposureNames to get the name of the exposures, phenotypeNames to get the phenotypes

Examples

data("exposome")
# Get families
familyNames(expo)
# Get the family of each exposure
familyNames(expo, by.exposure = TRUE)

---

get_robust_sd | Raw data from ExWAS

Description

Returns internal table of robust SD of objects of class ExWAS

Usage

get_robust_sd(object, ...)

Arguments

- `object` Object of class ExWAS
- `...` NO USED

Value

A data.frame containing the raw result from robust SD
### highAndLow

**Function to convert continuous exposures to categorical exposures**

<table>
<thead>
<tr>
<th>highAndLow</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>This method allows to convert continuous exposures of an ExposomeSet to categorical exposures using the n-percentile groups, defined by ngroups argument. By default, all levels are kept but if intervals is set to &quot;extrem&quot;, the levels between the extremes (aka. lowes and highest) are discarded and their values set to NA.</td>
<td></td>
</tr>
</tbody>
</table>

#### Usage

```r
highAndLow(
 object, # An object of class ExposomeSet.
 ngroups = 3, # (default 3) Number of intervals to be created.
 intervals = "standard", # (default "standard") If set to "sstandard" all levels are set. If set to "extreme" obly lowes and highest levels are kept (others are set to NA).
 select, # (optional) Subset of exposures where the discretization is applied. If missing, all exposures are used.
 drop = FALSE, # (default FALSE) If set to FALSE original exposures are kept and discretized exposures are add to ExposomeSet. If set to TRUE, original exposures are replaced by categorical exposures.
 warnings = TRUE # (default TRUE) If set to FALSE warnings are not shown.
)
```

#### Arguments

<table>
<thead>
<tr>
<th>object</th>
<th>ngroups</th>
<th>intervals</th>
<th>select</th>
<th>drop</th>
<th>warnings</th>
</tr>
</thead>
<tbody>
<tr>
<td>An object of class ExposomeSet.</td>
<td>(default 3) Number of intervals to be created.</td>
<td>(default &quot;standard&quot;) If set to &quot;sstandard&quot; all levels are set. If set to &quot;extreme&quot; obly lowes and highest levels are kept (others are set to NA).</td>
<td>(optional) Subset of exposures where the discretization is applied. If missing, all exposures are used.</td>
<td>(default FALSE) If set to FALSE original exposures are kept and discretized exposures are add to ExposomeSet. If set to TRUE, original exposures are replaced by categorical exposures.</td>
<td>(default TRUE) If set to FALSE warnings are not shown.</td>
</tr>
</tbody>
</table>

#### Value

A new ExposomeSet with categorical exposures.

#### See Also

- `trans` to transform exposures, `standardize` to standardize exposures.
Examples

```r
No drop
data("exposome")
exp.hl <- highAndLow(expo, intervals = "standard", select = "ldde_lip")
dim(exp.hl)
exposures samples phenotypes
105 1200 4
dim(expo)
exposures samples phenotypes
104 1200 4
exps.hl has 107 exposures: the original 104 plus the new
3 factored exposures

Drop
exp.hl <- highAndLow(expo, intervals = "standard",
 select = "ldde_lip", drop = TRUE)
dim(exp.hl)
exposures samples phenotypes
104 1200 4
dim(expo)
exposures samples phenotypes
104 1200 4
```

---

### ilod

*Function to impute under-LOD values from an ExposomeSet*

### Description

This function is a wrapper of the functions `impute.MinProb` from the package `imputeLCMD`.

### Usage

```r
ilod(
 object,
 seed = 1234,
 lod.col = "LOD",
 pNA = 0.2,
 tLog = FALSE,
 method = "QRILC",
 warnings = TRUE,
 ...
)
```

### Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>ExposomeSet which exposures will be imputed.</td>
</tr>
<tr>
<td>seed</td>
<td>(default 1234) Seed to make the imputation reproducible.</td>
</tr>
<tr>
<td>lod.col</td>
<td>(default &quot;LOD&quot;) Name of the column in <code>fData</code> with the threshold of the LOD.</td>
</tr>
</tbody>
</table>
imExposomeSet

Arguments

pNA (default 0.2) Maximum percentage allowed of values under LOD
tLog (default FALSE) If set to TRUE it transforms all the exposures to lod before the imputation.
method (default "QRILC") Method to be used to impute the under-LOD values. Two allowed: QRILC method (value "QRILC") and stochastic minimal value approach (value "MinProb").
warnings (default TRUE) If set to FALSE warnings will not be displayed.
... Arguments passed to impute.QRILC or impute.MinProb from imputeLCMD.

Value

A new ExposomeSet with the imputed exposures.

See Also

plotMissings to plot the missing data of an ExposomeSet, tableMissings to get a table with the missing data of an ExposomeSet

Examples

## Not run:
#Being x an ExposomeSet
x <- ilod(x)
## End(Not run)

imExposomeSet

Class imExposomeSet

Description

Class imExposomeSet was designed to store the exposures obtained after a multiple imputation process done using mice. The data.frame obtained from mice has the particularity to contain the columns .imp and .id joint to phenotypes and exposures. The slots assayData, featureData, and phenoData are coordinated.

Usage

## S4 method for signature 'imExposomeSet,ANY'
plot(x, y, ...)

## S4 method for signature 'imExposomeSet'
dim(x)

## S4 method for signature 'imExposomeSet'
expos(object)
## S4 method for signature 'imExposomeSet'
exposureNames(object)

## S4 method for signature 'imExposomeSet'
extract(object, rid = -1, ...)

## S4 method for signature 'imExposomeSet'
exwas(
  object,
  formula,
  filter,
  family,
  ...,
  baselevels,
  tef = TRUE,
  verbose = FALSE,
  warnings = TRUE,
  robust = FALSE
)

## S4 method for signature 'imExposomeSet'
familyNames(object, by.exposure = FALSE)

## S4 method for signature 'imExposomeSet'
phenotypeNames(object)

## S4 method for signature 'imExposomeSet'
plotFamily(x, family, group, group2, scatter = FALSE, na.omit = TRUE)

## S4 method for signature 'imExposomeSet'
sampleNames(object)

## S4 method for signature 'imExposomeSet'
x[[i]]

## S4 method for signature 'imExposomeSet',ANY,ANY,ANY'
x[i, j, k, ..., drop = FALSE]

## S4 method for signature 'imExposomeSet'
toES(object, rid = 1)

### Arguments

- `x`: An `imExposomeSet` object.
- `y`: NOT USED
- `...`: Other used arguments
- `object`: An object of class `imExposomeSet`
- `rid`: Number of the imputation to be extracted
formula         Formula, not including exposures, to be tested.
filter          Expression to be used to filter ExposomeSet
family          Family describing the nature of the health outcome
baselevels      Labeled vector with the base-level of the categorical exposures
tef             If set to TRUE the threshold for effective test is computed.
verbose         If set to TRUE it shows messages on progression.
warnings        If set to TRUE it shows warnings on progression.
by.exposure     If set to TRUE ir returns the family which each exposure belongs
group           Phenotype to group exposures
group2          NOT USED
scatter         If set to true it shows the samples value in the plot
na.omit         NOT USED
i               Character corresponding to selected exposures.
j               Character corresponding to selected sample names.
k               Character corresponding to selected phenotypes.
drop            NOT USED

Value

An object of class imExposomeSet

Methods (by generic)

• plot(x = imExposomeSet, y = ANY): Wrapper for plotFamily method.
• dim(imExposomeSet): Returns the number of exposures, samples and phenotypes.
• expos(imExposomeSet): Returns a data.frame with exposures.
• exposureNames(imExposomeSet): Method to obtain samples' names
• extract(imExposomeSet): Method to extract exposures for a single imputation
• exwas(imExposomeSet): Performs an EXposome-Wide Association Study
• familyNames(imExposomeSet): Getter to obtain the families's names of the family of each exposure.
• phenotypeNames(imExposomeSet): Getter to obtain the families's names of the family of each exposure.
• plotFamily(imExposomeSet): Draws a boxplot or accumulated-bar plot for each exposure in the all imputed sets.
• sampleNames(imExposomeSet): Method to obtain samples' names
• [: Get an ExposomeSet with the selected imputation
• x[i: Subset an imExposomeSet
• toES(imExposomeSet): Returns an ExposomeSet with the given imputation.
Function to impute missing values from an ExposomeSet

Description

This function is a wrapper of the functions `mice` and `complete` from the package `mice`. Also to the `impute` from the package `Hmisc`. The function is designed to use those functions to impute missing values on exposures (not in phenotypes).

Usage

```r
imputation(object, select, ..., messages = FALSE)
```

Arguments

- `object` ExposomeSet which exposures will be imputed.
- `select` Exposures to be imputed. If missing, all exposes will be imputed.
- `...` Argument given to function `mice` of package `mice` (printFlag is set from messages).
- `messages` (default FALSE) If set to TRUE messages from mice’s function will be displayed.

Value

A new ExposomeSet with the imputed exposures.

See Also

- `plotMissings` to plot the missing data of an ExposomeSet, `tableMissings` to get a table with the missing data of an ExposomeSet
Examples

## Not run:
#Being x an ExposomeSet
x <- imputation(x)

## End(Not run)

imputeLOD Function to impute values under limit of detection

Description

Homologous function to the ilod method of ExposomeSet for a given data.frame of exposures and a vector of threshold. The use of this function is related to HELIX Project.

Usage

imputeLOD(
  x,  
  lod,  
  description = NULL,  
  pNA = 0.2,  
  pLOD = 0,  
  log = TRUE,  
  seed = NULL
)

Arguments

x data.frame containing the exposures as columns and the samples as rows.

lod vector containing the

description 1 means values under LOD while 2 means quantifiable value, 3

pNA (default: 0.2) maximum percentage of allowed missing data

pLOD (default: 0) minimum percentage of values under LOD

log (default: NA) log transformation to normalize data

seed (default: NULL)

Value

A new data.frame with the imputed exposures.

Examples

## Not run:
inma.imp <- imputeLOD(x = raw, lod = lod, description = desc,  
  pNA = pNA, pLOD = pLOD, log = log, seed = seed)

## End(Not run)
invExWAS

Testing the association between an exposure and a phenotype of an ExposomeSet (modelling the exposures as response)

Description

The `invExWAS` method performs an "Exposome-Wide Association Study" (ExWAS) using the exposures in ExposomeSet and one of its phenotype. (modelling the exposures as response)

Usage

```r
invExWAS(object, formula, filter, tef = TRUE, verbose = FALSE, warnings = TRUE)
```

Arguments

- `object` ExposomeSet that will be used for the ExWAS.
- `formula` formula indicating the test to be done. If any exposure is included it will be used as covariate. exwas method will perform the test for each exposure.
- `filter` expression to be used to filter the individuals included into the test.
- `tef` (default `TRUE`) If `TRUE` it computed the effective number of tests and the threshold for the effective number of tests. Usually it needs imputed data.
- `verbose` (default `FALSE`) If set o true messages along the tests are shown.
- `warnings` (default `TRUE`) If set to `FALSE` warnings will not be displayed.

Value

An codeExWAS object with the result of the association study

See Also

`extract` to obtain a table with the result of the ExWAS, `plotExwas` to plot the results of the association

Examples

```r
data(exposome)
w1 <- invExWAS(expo, ~BMI)
w2 <- invExWAS(expo, ~BMI + sex)
plotExwas(w1, w2)
```
loadExposome

Creation of an ExposomeSet from data.frames

Description

Given three data.frames that defines the exposome (measures of exposome, exposome description and individuals phenotype) it loads them and creates an object of type ExposomeSet.

Usage

loadExposome(
  exposures,
  description,
  phenotype,
  description.famCol = "family",
  exposures.asFactor = 5,
  warnings = TRUE
)

Arguments

exposures data.frame of exposures.
description data.frame with the description of the exposures (relation between exposures and exposure-family).
phenotype data.frame with the phenotypes of interest.
description.famCol (default "family") Index where the family’s name (per exposures) if found in file "description". It can be both numeric or character.
exposures.asFactor (default 5) The exposures with more than this number of unique items will be considered as "continuous" while the exposures with less or equal number of items will be considered as "factor".
warnings (default TRUE) If TRUE shows useful information/warnings from the process of loading the exposome.

Details

The rows of the exposure’s data.frames, that corresponds to samples’ names, must be the same than the phenotype’s data.frames. In the same way, the columns in exposure’s data.frames must be the same in description data.frame.

Value

An object of class ExposomeSet.
Note

ExposomeSet's fData will contain some inner columns called .std, .trn, .fct and .type in order to trace the transformations an exposure suffers and to know, at any moment, if an exposure is categorical or continuous. The "description" file can contain a column called type with values "factor" and "numeric" to specify how an exposure needs to be understood. If given, this column will be renamed to .type. If not given, it will be created using exposures.asFactor value.

See Also

ExposomeSet for class description, readExposome for constructor from txt/csv files.

Examples

```r
path <- file.path(path.package("rexposome"), "extdata")
description <- file.path(path, "description.csv")
phenotype <- file.path(path, "phenotypes.csv")
exposures <- file.path(path, "exposures.csv")
dd <- read.csv(description, header=TRUE)
ee <- read.csv(exposures, header=FALSE)
pp <- read.csv(phenotype, header=FALSE)
rownames(dd) <- dd[, 2]
dd <- dd[, -2]
rownames(ee) <- ee[, 1]
ee <- ee[, -1]
rownames(pp) <- pp[, 1]
pp <- pp[, -1]
exp <- loadExposome(
exposures = ee,
description = dd,
phenotype = pp,
description.famCol = "Family"
)
```

Description

Creation of an ExposomeSet from single data.frame

Usage

```r
loadExposome_plain(
data,
data_id,
sep = ",",
pheno_cols,
na.strings = c("NA", "-", "?", " ", ""),
```
families = NULL,
exposures.asFactor = 5,
warnings = TRUE
)

Arguments

data data.frame With the exposures and phenotypes (in no particular order!) or string with the path to a file (.csv, .tsv, .txt) with the table of exposures and phenotypes

data_id character Name of the column on the selected table that contains the ID

sep character (default ",") Separator used by read.table to load the files "exposures", "description" and "phenotype". Only applies when providing a path on the data argument

pheno_cols character Character vector of the phenotype columns (all the other columns are considered exposures)

na.strings character (default c("NA", ",", "?", ",", ",")) Character defining the NA values in expsome's files.

families list (default NULL) List to specify the families of the exposures, construct it as:

list(Family1 = c("exposure_1_1", "exposure_1_2", "exposure_1_n"), Family2 = c("exposure_2_1", "exposure_2_2", "exposure_2_n"), FamilyM = c("exposure_M_1", "exposure_M_2", "exposure_M_n")) All the exposures on the data table have to be on this provided list with their respective families. The family classification is optional, input NULL to bypass the family classifier

exposures.asFactor numeric (default 5) The exposures with more than this number of unique items will be considered as "continuous" while the exposures with less or equal number of items will be considered as "factor".

warnings (default TRUE) If TRUE shows useful information/warnings from the process of loading the exposome.

Value

An object of class ExposomeSet.

Examples

path <- file.path(path.package("rexposome"), "extdata")
phenotype <- file.path(path, "phenotypes.csv")
exposures <- file.path(path, "exposures.csv")
ee <- read.csv(exposures, header=TRUE)
pp <- read.csv(phenotype, header=TRUE)
# Create fake dataset with exposures and phenotypes combined
data <- cbind(ee, pp)

loadExposome_plain <- function(data, data_id = "idnum",
pheno_cols = c("rhinitis", "wheezing", "sex", "age", "cbmi", "blood_pre", "whistling_chest", "flu"))
loadImputed

Creation of an imExposomeSet from data.frames

Description

Given a data.frame from code with the multiple imputations of both exposures and phenotypes, join with a data.frame with exposures’ description, and object of class imExposomeSet is created.

Usage

loadImputed(
  data, 
  description, 
  description.famCol = "family", 
  description.expCol = "exposure", 
  exposures.asFactor = 5, 
  warnings = TRUE 
)

Arguments

data
  The data.frame of both exposures and phenotypes obtained from mice.
description
  data.frame with the description of the exposures (relation between exposures and exposure-family).
description.famCol
  (default "family") Index where the family’s name (per exposures) if found in file "description". It can be both numeric or character.
description.expCol
  (default "exposures") Index where the exposure’s name if found in file "description". It can be both numeric or character.

exposures.asFactor
  (default 5) The exposures with more than this number of unique items will be considered as "continuous" while the exposures with less or equal number of items will be considered as "factor".

warnings
  (default TRUE) If TRUE shows useful information/warnings from the process of loading the exposome.

Details

The coordination of the information is based in the columns .imp and .id from the data.frame obtained from mice. The division of exposures and phenotypes is based in description data.frame, that are the exposures. Hence, the elements in the main data.frame that are not in the description, are the phenotypes.

Value

An object of class imExposomeSet.
me

See Also

imExposomeSet for class description

Examples

data("me") # me is an imputed matrix of exposure and phenotypes
path <- file.path(path.package("rexposome"), "extdata")
description <- file.path(path, "description.csv")
dd <- read.csv(description, header=TRUE, stringsAsFactors=FALSE)
dd <- dd[dd$Exposure %in% colnames(me), ]
ex_imp <- loadImputed(data = me, description = dd,
description.famCol = "Family",
description.expCol = "Exposure")

Description

data.frame created with mice used to test and illustrate the creation of imExposomeSet.

Usage

data("me")

Format

An object of class data.frame with 654 rows and 57 columns.

Value

A data.frame.

Examples

data("me")
dim(me)
colnames(me)
Class \texttt{mExWAS}

\texttt{mExWAS} is obtained from \texttt{mexwas} method of an \texttt{ExposomeSet} object, contains the result of testing the multiple models of exposures of an \texttt{ExposomeSet} to a set of given phenotypes. "mExWAS" is the # acronym of "Multivariate Exposome-Wide Association Study".

### Usage

```r
S4 method for signature 'mExWAS,ANY'
plot(x, y, ...)

S4 method for signature 'mExWAS'
extract(object, type = "test", sort = TRUE)

S4 method for signature 'mExWAS'
plotExwas(
 object,
 ..., # Other used arguments.
 subtitles,
 color,
 exp.order,
 labels,
 show.effective = TRUE
)
```

### Arguments

- \texttt{x}
  - Object of class \texttt{mExWAS}
- \texttt{y}
  - NOT USED
- \texttt{...}
  - NOT USED
- \texttt{object}
  - NOT USED
- \texttt{type}
  - (default "test"). Can take "test" or "raw" to obtain a data.frame of \texttt{glmnet} result.
- \texttt{sort}
  - NOT USED
- \texttt{subtitles}
  - NOT USED
- \texttt{color}
  - NOT USED
- \texttt{exp.order}
  - NOT USED
- \texttt{labels}
  - NOT USED
- \texttt{show.effective}
  - NOT USED
mexwas

Value
An object of class mExWAS

Methods (by generic)
- plot(x = mExWAS, y = ANY): Wrapper for plotExwas method.
- extract(mExWAS): Method to obtain the generated model
- plotExwas(mExWAS): Method to plot a heap-map with the coefficient of each exposure

Slots
result klist with the fitted model and result.
phenotype Name of the phenotype used in the analysis.
description feature data from original ExposomeSet.

See Also
mexwas to perform a Multivariate Exposome-Wide Association Study and to create a mExWAS, exwas to perform an Exposome-Wide Association Study and to create an ExWAS

mexwas
Testing the association between an exposure and a phenotype of an ExposomeSet using a multivariate approach.

Description
The mexwas method performs an "Multi Exposome-Wide Association Study" (m-ExWAS) using the exposures in ExposomeSet and one of its phenotype. It uses the packages glmnet and partDSA.

Usage
mexwas(object, phenotype, family, warnings = TRUE)

Arguments
object ExposomeSet that will be used for the ExWAS.
phenotype Target phenotype used for the study. If missing all the phenotypes in the ExposomeSet will be used.
family It must describe the nature of the outcome. Can take values "gaussian", "binomial", "poisson", "multinomial", "cox" or "mgaussian".
warnings (default TRUE) If set to FALSE warnings will not be displayed.

Value
Returns an object of class mExWAS
See Also

extract to obtain a table with the result of the ExWAS, plotExwas to plot the results of the ExWAS

Examples

data("exposome")
wt <- mexwas(expo[3:7, 1:100], phenotype = "asthma", family = "binomial")

ndim

Number of principal components in an ExposomePCA.

Description

Number of principal components in an ExposomePCA.

Usage

ndim(object)

Arguments

object ExposomePCA to obtain the number of components.

Value

The number of components in the ExposomePCA.

See Also

plotPCA to plot the PCA values of an ExposomePCA, clustering to see how the exposures can cluster samples, correlation to compute the correlation between exposures

Examples

data("exposome")
epca <- pca(expo[3:7, 1:100])
ndim(epca)
normalityTest

It creates a data.frame of boolean indicating if the exposures follows a normal distribution or not.

Description

This function uses shapiro.test to test the normality of the exposures and returns a data.frame with a boolean value and a p-value for each exposure.

Usage

normalityTest(
  object,             # ExposomeSet with the exposome to be tested.
  exposure,           # Name of the exposure to be tested, if missing all the exposures will be tested.
  th = 0.05,          # (by default 0.05) Threshold to considere an exposure to follow a normal distribution.
  min.val = 5,       # (by default 5) Minimum number of values not missings to test the exposures.
  na.rm = TRUE,      # (by default TRUE) Removes the NA values to test the normality on the exposure.
  warnings = TRUE    # (by default: TRUE) Show warnings if required.
)

Arguments

- object: ExposomeSet with the exposome to be tested.
- exposure: Name of the exposure to be tested, if missing all the exposures will be tested.
- th: (by default 0.05) Threshold to consider an exposure to follow a normal distribution.
- min.val: (by default 5) Minimum number of values not missings to test the exposures.
- na.rm: (by default TRUE) Removes the NA values to test the normality on the exposure.
- warnings: (by default: TRUE) Show warnings if required.

Value

A data.frame with three columns: exposure, normality and p.value. "exposure" column contains the name of each exposure. "normality" column contains a logical value indicating if the obtained p-value is under the given threshold. "p.value" column contains the obtained p-value from shapiro.test.

See Also

plotHistogram to draw the shape of an exposure, plotMissings to draw a plot with the missing data an ExposomeSet, imputation to impute missing data on the exposures of an ExposomeSet

Examples

data("exposome")
normalityTest(expo)
**pca**

*Creation of an ExposomePCA from an ExposomeSet.*

**Description**

Method to calculate a PCA based on the exposures of an `ExposomeSet`. Only numerical-exposures (non categorical) will be computed. The function returns an `ExposomePCA` object. This PCA is performed by using `FactoMineR` package.

**Usage**

```r
pca(object, npc = 10, pca = FALSE, ...)
```

**Arguments**

- `object`: ExposomeSet which exposures will be used for the PCA
- `npc`: (by default 10) number of dimensions kept in the results
- `pca`: (default `FALSE`) Set to `TRUE` to Perform PCA (only numerical variables) or `FALSE` to perform FAMD (numerical and categorical)
- `...`: Arguments to be passed to `imputeFAMD`

**Value**

An `ExposomePCA` with the values of the PCA.

**See Also**

- `plotPCA` to plot the PCA values of an `ExposomePCA`, `clustering` to see how the exposures can cluster samples, `correlation` to compute the correlation between exposures

**Examples**

```r
data("exposome")
epca <- pca(expo[12:20,])
```

---

**phenotypeNames**

*Getter to obtain the phenotype's names of an ExposomeSet or ExposomePCA.*

**Description**

Getter to obtain the phenotype's names of an ExposomeSet or ExposomePCA.

**Usage**

```r
phenotypeNames(object)
```
plot3PCA

Arguments

object ExposomeSet that will be queried for the phenotype’s names.

Value

The name of the phenotypes as a character vector.

See Also

exposureNames to get the name of the exposures, familyNames to get the families of exposures

Examples

data("exposome")
phenotypeNames(expo)

Description

Method to draw a plot for samples using three PC contained in an ExposomePCA

Usage

plot3PCA(
  object,
  cmpX,
  cmpY,
  cmpZ,
  phenotype,
  main,
  angle = 35,
  pch = 16,
  legend = TRUE,
  plines = TRUE
)

Arguments

object An object of class ExposomePCA
cmpX Component to be placed at X axis
cmpY Component to be placed at Y axis
cmpZ Component to be placed at Z axis
phenotype Used to color samples by phenotype
main Title for the plot
plotClassification

angle (default 35) angle between x and y axis.
pch (default 16) plotting "character", i.e. symbol to use.
legend (default TRUE) If TRUE shows the legend.
plines (default TRUE) If TRUE it draws the lines from each dot to the base plane.

Value
A list with different graphics option from scatterplot3d.

See Also

cpa to compile PCA on an ExposomeSet, plotPCA to plot the PCA, ExposomePCA as main class
data("exposome") ecpca <- pca(expo[3:7, 1:100]) plot3PCA(epcana, cmpX = 1, cmpY = 2, cmpZ = 3, phenotype = "sex")

plotClassification

Draw the profile of the levels exposures after a classification with a clustering method

Description
Draw the profile of the levels exposures after a classification with a clustering method

Usage
plotClassification(object, type = "heatmap", ...)

Arguments

object Object of class Exposomeclust
type Two types are available: "heatmap" or "valuemap".
... NOT USED

Value
A list with different graphics parameters.

See Also
clustering as a constructor for ExposomeClust, classification to see how to obtain the classification of the samples from an ExposomeClust

Examples
## Not run:
data("eclust")
plotClassification(expo_c)

## End(Not run)
plotCorrelation

It draws both circos or matrix plot for the correlation in ExposomeCorr

Description

While the circos plot can be used to see the general behaviours intra and extra families of exposures, the matrix plot allows for a detailed view of the correlations within an ExposomeCorr object.

Usage

plotCorrelation(object, type = "circos", ...)

Arguments

object ExposomeCorr which correlations will be plotted.
type (default "circos") Can take both "circos" or "matrix".
... Arguments given to corrplot of package corrplot if a matrix is draw. Moreover extra arguments are can be passed to inner functions to draw both the matrix and the circos of correlations.

Value

A list with different graphics parameters.

See Also

correlation as a constructor for ExposomeCorr objects, pca to compute PCA on exposures

Examples

data("exposome")
expo.c <- correlation(expo)
plotCorrelation(expo.c, type="circos")
plotCorrelation(expo.c, type="matrix")

plotEffect

Function to draw a plot of the pvalues stored in an ExWAS object

Description

This function draws a sort of manhattan plots using the p-value of the association of the exposures with phenotypes of an ExWAS object.

Usage

plotEffect(x, y, select, labels, xlab, ylab)
Arguments

- **x**: An ExWAS object which effect will be plotted.
- **y**: (optional) Another ExWAS object. If provided its effects will be plotted in Y-axis.
- **select**: (optional) Character with exposures to be shown.
- **labels**: (optional) Character vector with the labels for each exposure. It must be labeled vector.
- **xlab**: (optional) Label for X-axis.
- **ylab**: (optional) Label for Y-axis.

Value

An object of class `ggplot`.

See Also

- `exwas` as a constructor for ExWAS objects, `extract` to obtain a table with the result of the ExWAS

Examples

```r
data(exposome)
w1 <- exwas(expo[1:5,], asthma~1, family = "binomial")
w2 <- exwas(expo[1:5,], asthma~sex+age, family = "binomial")
plotEffect(w1, w2)
```

---

**plotEXP**

*Plot correlation between exposures and PCA*

Description

Function used to plot the correlation between the exposures in an ExposomePCA and the values for each component of the PCA in the same ExposomePCA.

Usage

```r
plotEXP(object, exposure)
```

Arguments

- **object**: An object of class ExposomePCA
- **exposure**: (optional) to select a set of exposures to be plotted. If not given all are used.

Value

An object of class `ggplot`.
plotExwas

See Also

pca to compute PCA on an ExposomeSet, plotPHE to plot the P-Value of association between phenotypes ans PCA, ExposomePCA as main class

Examples

data("exposome")
epca <- pca(expo[3:7, 1:100])
plotEXP(epca)

plotExwas Function to draw a plot of the pvalues stored in an ExWAS object

Description

This function draws a sort of manhattan plots using the p-value of the association of the exposures with phenotypes of an ExWAS object.

Usage

plotExwas(
  object,
  ..., 
  subtitles,
  color,
  exp.order,
  labels,
  show.effective = TRUE
)

Arguments

object An ExWAS object which p-values will be plotted.
... Other objects of class ExWAS.
subtitles (optional) Characters used as "subtitle" when more than one ExWAS is given.
color (optional) Character vector of HTML colors, labeled with family’s names. Used to colore the exposures.
exp.order (optional) Character vector of exposures used to order and subset the plot.
labels (optional) Character vector with the labels for each exposure. It must be labeled vector.
show.effective (default TRUE) If set to FALSE, line showing effective test threshold is not shown.

Value

An object of class ggplot.
plotFamily

See Also

exwas as a constructor for ExWAS objects, extract to obtain a table with the result of the ExWAS

Examples

data(exposome)
w1 <- exwas(expo[1:5, ], asthma~1, family = "binomial")
plotExwas(w1)

plotFamily
It draws the profile of the exposome in an ExposomeSet

Description

This function draw a profile of the full exposome into an ExposomeSet or the profile of the exposures in a specific family. For continuous families, box-plots are drawn; while for categorical families accumulative bar-charts.

Usage

plotFamily(x, family, group, group2, scatter = TRUE, na.omit = TRUE)

Arguments

x ExposomeSet which exposome will be plotted.
family Name of the family that will be drawn. 'all' is allowed to draw a grid with all the families.
group If set it displays the family grouped by the given phenotype.
group2 If set it displays the family grouped by the given phenotype.
scatter (default TRUE) If the family to be plotted is continuous, the samples will be shown.
na.omit (default TRUE) Do not show NA values.

Value

A ggplot object if a family was selected. invisible() if argument family was set to "all".

See Also

plotHistogram to draw the shape of an exposure, plotMissings to plot the missing data from an ExposomeSet
plotHistogram

It draws a histogram for each exposure in an ExposomeSet.

Description

It draws a grid with an histogram per exposure in an ExposomeSet.

Usage

plotHistogram(x, select, density = TRUE, show.trans = FALSE)

Arguments

x ExposomeSet which exposome will be plotted.
select Name fo the exposure to be plotted. If missing, all exposures will be used.
density (default TRUE) If TRUE a density plot is drawn overlapping the histogram.
show.trans (default FALSE) If set to TRUE it will draw a panel of auxiliar plots with the continuous exposure transformed with log and sqrt.

Value

A ggplot object.

See Also

plotFamily to draw the profile of a family of exposures, plotMissings to plot the missing data from an ExposomeSet

Examples

data("exposome")
plotHistogram(expo[1:3, ], select = "ldde_lip")
**plotLOD**

It draws a chart with the percentage of under-LOD values in an ExposomeSet

---

**Description**

This function can be used to draw the amount of under-LOD values in the exposures of an ExposomeSet.

**Usage**

```r
plotLOD(object, lod.col = "LOD", x.max = 100, sort = TRUE)
```

**Arguments**

- `object` ***ExposomeSet*** which exposome will be plotted.
- `lod.col` (default "LOD") Name of the column in `fData` containing the LOD thresholds.
- `x.max` (default 100) Fix the maximum value of the X-axis.
- `sort` (default TRUE) If TRUE the chart will be ordered from the features with less missing data to the ones with more under-LOD values.

**Value**

A ggplot object.

**See Also**

- `plotFamily` to draw the profile of a family of exposures, `plotHistogram` to draw the shape of an exposure, `tableMissings` to get a table with the missing data of an ExposomeSet, `imputation` to impute missing data on the exposures of an ExposomeSet

**Examples**

```r
data("exposome")
The included has no missing data
plotLOD(expo)
```
plotMissings

It draws a chart with the percentage of missing in an ExposomeSet

Description

This function can be used to draw the number of missing data in exposures and in phenotypes of an ExposomeSet.

Usage

plotMissings(object, set, x.max = 100, sort = TRUE)

Arguments

object          ExposomeSet which exposome will be plotted.
set             Can be set to "exposures" or to "phenotypes".
x.max           (default 100) Fix the maximum value of the X-axis.
sort            (default TRUE) If TRUE the chart will be ordered from the features with less missing data to the ones with more missing data.

Value

A ggplot object.

See Also

plotFamily to draw the profile of a family of exposures, plotHistogram to draw the shape of an exposure, tableMissings to get a table with the missing data of an ExposomeSet, imputation to impute missing data on the exposures of an ExposomeSet

Examples

```r
data("exposome")
The included has no missing data
plotMissings(expo, set = "exposures")
plotMissings(expo, set = "phenotypes")
```
plotPCA

Description

Method to draw a plot for PCA contained in an ExposomePCA

Usage

plotPCA(
  object,
  set,
  cmpX = 1,
  cmpY = 2,
  show.exposures = FALSE,
  show.samples = FALSE,
  phenotype
)

Arguments

  object An object of class ExposomePCA
  set Group ("all", "samples" or "exposures") that will be plotted.
  cmpX (default: 1) component to be placed at X axis
  cmpY (default: 2) component to be placed at Y axis
  show.exposures (default: FALSE) If set to true, labels indicating the exposures are shown.
  show.samples (default: FALSE) If set to true, labels indicating the samples are shown.
  phenotype If set is set to "samples" can be used to color samples by phenotype

Value

An object of class ggplot or an object of class gtable if argument set was set to "all".

See Also

pca to compute PCA on an ExposomeSet, plotPCA to plot the PCA, ExposomePCA as main class

Examples

data("exposome")
epca <- pca(expo[3:7, 1:100])
# A grid with exposures space, samples space and explained variance
plotPCA(epca, set = "all")
# Only exposures space
plotPCA(epca, set = "exposures") + ggplot2::theme(legend.position = "bottom")
# Only samples space
### plotPHE

Plot association score between phenotypes and PCA

#### Description

Function used to plot the association between the phenotypes in an ExposomePCA and the values for each component of the PCA in the same ExposomePCA.

#### Usage

```r
plotPHE(object, phenotype, exp2fac = 5)
```

#### Arguments

- `object`: An object of class `ExposomePCA`
- `phenotype`: (optional) to select a set of phenotypes to be plotted. If not given all are used.
- `exp2fac`: (default, 5) Threshold to consider a phenotype categorical (less or equal to) or continuous (more than).

#### Value

An object of class `ggplot`.

#### See Also

- `pca` to compute PCA on an `ExposomeSet`, `plotEXP` to plot the correlation between exposures and PCA, `ExposomePCA` as main class.

#### Examples

```r
data("exposome")
epca <- pca(expo[3:7, 1:100])
plotPHE(epca)
```
### plotVolcano

**Function to draw a plot of the pvalues stored in an ExWAS object**

**Description**

This function draws a sort of manhattan plots using the p-value of the association of the exposures with phenotypes of an ExWAS object.

**Usage**

```r
plotVolcano(x, p.value = -log10(0.001), labels, show.effect = FALSE)
```

**Arguments**

- `x`: An ExWAS object which effect will be plotted.
- `p.value`: (default "-log10(0.001)") Threshold for P-Value.
- `labels`: (optional) Character vector with the labels for each exposure. It must be labeled vector.
- `show.effect`: (default FALSE) Applyes an exponential transformation on the effects of the exposures.

**Value**

An object of class `ggplot`.

**See Also**

`exwas` as a constructor for ExWAS objects, `extract` to obtain a table with the result of the ExWAS, `plotEffect` to see or compare effects of one or two models.

---

### readExposome

**Creation of an ExposomeSet from files**

**Description**

Given the files that defines the exposome (measures of exposome, exposome description and individuals phentype) it loads them and creates an object of type ExposomeSet.
Usage

`readExposome(
  exposures,
  description,
  phenotype,
  sep = ",",
  na.strings = c("NA", ",", "?", ",", ","),
  exposures.samCol = "sample",
  description.expCol = "exposure",
  description.famCol = "family",
  phenotype.samCol = "sample",
  exposures.asFactor = 5,
  warnings = TRUE
)
```

Arguments

`exposures` String with the path to the file with the matrix of exposures.
`description` String with the path to the file with the description of the exposures (relation between exposures and exposure-family).
`phenotype` String with the path to the file with the phenotypes of interest.
`sep` (default ",") Separator used by `read.table` to load the files "exposures", "description" and "phenotype".
`na.strings` (default c("NA", ",", "?", ",", ",")) Character defining the NA values in exposome's files.
`exposures.samCol` (default "sample") Index where the samples' name are found in file "exposures". It can be both charatcer or numeric.
`description.expCol` (default "exposure") Index where the exposures' name are found in file "description". It can be both numeric or character.
`description.famCol` (default "family") Index where the family's name (per exposures) if found in file "description". It can be both numeric or character.
`phenotype.samCol` (default "sample") Index where the sample's name are found in file "phenotype". It can be both numeric or character.
`exposures.asFactor` (default 5) The exposures with more than this number of unique items will be considered as "continuous" while the exposures with less or equal number of items will be considered as "factor".
`warnings` (default TRUE) If TRUE shows useful information/warnings from the process of loading the exposome.
Details

The rows of the exposure’s file, that corresponds to samples’ names, must be the same than the phenotype’s file. In the same way, the columns in exposure’s file must be the same found as rows in description file.

Value

An object of class **ExposomeSet**.

Note

ExposomeSet's *fData* will contain some inner columns called .std, .trn, .fct and .type in order to trace the transformations an exposure suffers and to know, at any moment, if an exposure is categorical or continuous. The "description" file can contains a column called type with values "factor" and "numeric" to specify how an exposure needs to be understood. If given, this column will be renamed to .type. If not given, it will be created using `exposures.asFactor` value.

See Also

ExposomeSet for class description, **loadExposome** for constructor from loaded data.frames

Examples

```r
## Locate the data-files
path <- file.path(path.package("rexposome"), "extdata")
description <- file.path(path, "description.csv")
phenotype <- file.path(path, "phenotypes.csv")
exposures <- file.path(path, "exposures.csv")

## Create ExposomeSet from files
exp <- readExposome(
  exposures = exposures,
  description = description,
  phenotype = phenotype,
  exposures.samCol = 1,
  description.expCol = 2,
  description.famCol = 1,
  phenotype.samCol = 1
)
```

Description

```r
# @section exposures loading and exposures management: rexposome offers two methods to bring exposome data to R and Bioconductor. readExposome allows to read three txt-like files (.csv, .tsv, ...) while loadExposome is used with matrix and data.frames. The class obtained is an ExposomeSet, a class based in eSet for exposome data management.
```
exposures processing

The packages offers a wide set of functions to preprocess exposome data. Method `trans` allow to transforms the exposures, method `normalityTest` allows to check for normality in exposome, `standardize` allows to standardize the exposures, among others. Finally, `impute` and `ilod` allow tu use mice, Hmisc and imputeLCMD for exposure missing data and exposure under-lod data imputation.

exposures analyses

the two methods `exwas` and `mexwas` allows to test the association between exposures and health outcomes (phenotype data).

exposures plotting

The methods `plotFamily` allows to see how the exposures behaves within families. `plotCorrelation` helps to understand how exposures are related between themselves. `plotClassification` allos to visually detect clusters of samples that share the same pattern of levels of exposures.

standardize

```r
#' Summary of an ExposomeSet. 
#' #’ Given an ExposomeSet is shows a summary for its exposures or #’ its phenotypes. 
#' #’ @name Summary 
#' @rdname Summary-methods 
#' @aliases Summary 
#' @param object codeExposomeSet with 'set' will be summarized. 
#' @param set Set to be sumarized ("exposures" or "phenotypes"). 
#' @param select Subseting of exposures of phenotypes. 
#' @return A basic description of the exposures in the ExposomeSet 
#' @examples 
#' data("exposome") 
#' Summary(expo, set = "exposures")

Standardize of an ExposomeSet.

Description

Given an ExposomeSet it standardizes the exposures by using mean/sd if method is "normal" or by using median/mad if method is "robust".

Usage

standardize(object, select, method = "normal", na.rm = TRUE, warnings = TRUE)

Arguments

- **object**: ExposomeSet with exposures to be standardized.
- **select**: Subsetting of exposures of phenotypes.
- **method**: (default "normal") Character selecting the method to be applied ("normal", "iqr" or "robust").
- **na.rm**: (by default TRUE) Removes NA data to perform standardization.
- **warnings**: (default TRUE) If set to FALSE warnings are not shown.
Value

An ExposomeSet with the selected exposures standardized and keeping the others exposures as the original input object.

See Also

`highAndLow` to transform the continuous exposures to levelled factors, `trans` to transform the exposures

Examples

data("exposome")
exp.sn <- standardize(expo, method = "normal", select = "lbde100_lip")
exp.rs <- standardize(expo, method = "iqr", select = "lbde100_lip")
exp.rs <- standardize(expo, method = "robust", select = "lbde100_lip")

Description

This function can be used to obtain a table with the under-LOD data in exposures of an ExposomeSet.

Usage

tableLOD(object, output = "n", lod.col = "LOD", sort = TRUE)

Arguments

<table>
<thead>
<tr>
<th>object</th>
<th>ExposomeSet which exposome will be plotted.</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td>(default &quot;n&quot;) Can be &quot;n&quot; for number of values, and &quot;p&quot; for percentage.</td>
</tr>
<tr>
<td>lod.col</td>
<td>(default &quot;LOD&quot;) Name of the column in fData containing the LOD thresholds.</td>
</tr>
<tr>
<td>sort</td>
<td>(default TRUE) If TRUE the chart will be ordered from the features with less missing data to the ones with more under-LOD values.</td>
</tr>
</tbody>
</table>

Value

A numeric vector with number of under-LOD values per exposure. The vector is labeled with the exposure’s names.

See Also

`plotFamily` to draw the profile of a family of exposures, `plotHistogram` to draw the shape of an exposure, `plotMissings` to draw a plot with the missing data an ExposomeSet, `imputation` to impute missing data on the exposures of an ExposomeSet
**tableMissings**

It creates a vector with the amount of missing in an ExposomeSet

**Description**

This function can be used to obtain a table with the missing data in exposures and in phenotypes of an ExposomeSet.

**Usage**

```r
tableMissings(object, set, output = "n", sort = TRUE)
```

**Arguments**

- `object` - ExposomeSet which exposome will be plotted.
- `set` - Can be set to "exposures" or to "phenotypes".
- `output` - (default "n") Can be "n" for number of values, and "p" for percentage.
- `sort` - (default TRUE) If TRUE the chart will be ordered from the features with less missing data to the ones with more missing data.

**Value**

A numeric vector with number of missing values per exposure. The vector is labeled with the exposure’s names.

**See Also**

- `plotFamily` to draw the profile of a family of exposures, `plotHistogram` to draw the shape of an exposure, `plotMissings` to draw a plot with the missing data an ExposomeSet, `imputation` to impute missing data on the exposures of an ExposomeSet

**Examples**

```r
data("exposome")
The included has no missing data
tableLOD(expo, output = "n")

data("exposome")
The included has no missing data
tableMissings(expo, set = "exposures")
tableMissings(expo, set = "phenotypes")
```
Function to get the Threshold for effective tests (TEF)

Description

Function to get the Threshold for effective tests (TEF)

Usage

tef(object)

Arguments

object An ExWAS object

Value

A number indicating the effective threshold.

References


See Also

exwas as a constructor for ExWAS objects

Examples

data(exosome)
w1 <- exwas(expo[1:5, ], asthma~1, family = "binomial")
w2 <- exwas(expo[1:5, ], asthma~sex+age, family = "binomial")
tef(w1)
tef(w2)
**toES**

*Method to convert an imExposomeSet to an ExposomeSet*

**Description**

This method allows to select an imputed-set and use it to create an `ExposomeSet` from an `imExposomeSet`.

**Usage**

```r
toES(object, rid = 1)
```

**Arguments**

- `object`: An object of class `imExposomeSet`
- `rid` (default 1): Number of the imputation to be extracted

**Value**

An object of class `ExposomeSet`.

**Examples**

```r
data("ex_imp")
toES(ex_imp, rid = 1)
```

---

**trans**

*Function to apply a transformation to the exposures of an ExposomeSet*

**Description**

The exposures in an `ExposomeSet` can be transformed using this function. `trans` applies a function `fun` to the selected exposures.

**Usage**

```r
trans(object, fun, select, by.exposure = FALSE, ...)
```

**Arguments**

- `object`: ExposomeSet which exposures will be transformed.
- `fun`: Function to be applied on the exposures.
- `select`: If not set, receive the name of all exposures. It can takes a character vector to select specific exposures.
- `by.exposure` (default FALSE): If TRUE applies `fun` to each exposure (given as a vector). If FALSE the matrix of exposures is given to `fun`.
- `...`: Argument given to `fun`.
Value

A new ExposomeSet with selected exposures transformed with fun.

See Also

highAndLow to transform the continuous exposures to levelled factors, standardize to standardize by normal or robust methods the exposures

Examples

data("exposome")
exp.t <- trans(expo, fun = log, select = "1dde_lip")

---

**volcano_plot**  
*Function to draw a Volcano Plot*

Description

Function that takes two numeric vectors (P-Value and fold change) and draws a volcano plot using ggplot2

Usage

```r
volcano_plot(
pval, fc, names, size = 2, tFC = 2, tPV = -log10(0.001), show.effect = FALSE
)
```

Arguments

- **pval** numeric vector of P.Values
- **fc** numeric vector of fold change
- **names** character vector with the feature’s names.
- **size** (default 2) Sice of the labels in case they are placed.
- **tFC** (default 2) fold change threshold. It can be set to NULL to do not filter.
- **tPV** (default -log10(0.001)) P-Value threshold. It can be set to NULL to not filter.
- **show.effect** (default FALSE) If set to TRUE, the X-axis will should 2^logFC instead to teh default logFC.
Value

A ggplot object

Examples

data(exposome)
w1 <- extract(exwas(expo[1:20, ], asthma~1, family = "binomial"))
volcano_plot(w1$pvalue, w1$effect, rownames(w1))
Index

* datasets
  ex_imp, 23
  expo, 6
  expo_c, 18
  me, 37
[] (imExposomeSet), 27
[,] (imExposomeSet, ANY, ANY, ANY-method (imExposomeSet), 27
[[,(imExposomeSet-method (imExposomeSet), 27

AnnotatedDataFrame, 9, 12, 17
AssayData, 9, 17
classification, 3, 4, 44
classification, ExposomeClust-method (ExposomeClust), 7
clustering, 3, 4, 6–8, 40, 42, 44
cor, 6, 8
correlation, 5, 12, 40, 42, 45
correlation, ExposomeSet-method (ExposomeSet), 12
corrplot, 45
cramersV, 6
dim, ExposomeCorr-method (ExposomeCorr), 8
dim, ExposomeSet-method (ExposomeSet), 12
dim, imExposomeSet-method (imExposomeSet), 27
eSet, 9, 12, 17
eSet-class, 8
ex_imp, 23
expo, 6
expo_c, 18
expos, 7
expos, ExposomeSet-method (ExposomeSet), 12
expos, imExposomeSet-method (imExposomeSet), 27
ExposomeClust, 3, 4, 7, 8, 44
ExposomeClust-class (ExposomeClust), 7
ExposomeCorr, 5, 6, 8, 9, 45
ExposomeCorr-class (ExposomeCorr), 8
ExposomePCA, 10, 11, 40, 42–44, 46, 47, 52, 53
ExposomePCA-class (ExposomePCA), 10
ExposomeSet, 4, 5, 7–9, 12, 12, 15, 17, 19, 21, 23, 24, 29, 31–35, 38, 39, 41, 42, 44, 47–54, 56–59, 61
ExposomeSet-class (ExposomeSet), 12
exposureNames, 17, 17, 24, 43
exposureNames, ExposomePCA-method (ExposomePCA), 10
exposureNames, ExposomeSet-method (ExposomeSet), 12
exposureNames, imExposomeSet-method (imExposomeSet), 27
extract, 19, 22, 32, 40, 46, 48, 54
extract (get_robust_sd), 24
extract, ExposomeCorr-method (ExposomeCorr), 8
extract, ExposomePCA-method (ExposomePCA), 10
extract, ExWAS-method (ExWAS), 19
extract, imExposomeSet-method (imExposomeSet), 27
extract, mExWAS-method (mExWAS), 38
ExWAS, 19, 20, 21, 39, 46, 48, 54, 60
exwas, 19, 21, 21, 39, 46, 48, 54, 57, 60
exwas, ExposomeSet-method (ExposomeSet), 12
exwas, imExposomeSet-method (imExposomeSet), 27
ExWAS-class (ExWAS), 19
FactoMineR, 42
familyNames, 18, 23, 43
plotLOD, 50
plotLOD, ExposomeSet-method
  (ExposomeSet), 12
plotMissings, 27, 30, 41, 48, 49, 51, 58, 59
plotMissings, ExposomeSet-method
  (ExposomeSet), 12
plotPCA, 40, 42, 44, 52, 52
plotPCA, ExposomePCA-method
  (ExposomePCA), 10
plotPHE, 47, 53
plotPHE, ExposomePCA-method
  (ExposomePCA), 10
plotVolcano, 54
plotVolcano, ExWAS-method (ExWAS), 19
read.table, 35, 55
readExposome, 17, 34, 54, 56
texposome, 56
sampleNames, ExposomeClust-method
  (ExposomeClust), 7
sampleNames, imExposomeSet-method
  (imExposomeSet), 27
shapiro.test, 41
standardize, 25, 57, 57, 62
standardize, ExposomeSet-method
  (ExposomeSet), 12
Summary, ExposomeSet-method
  (ExposomeSet), 12
tableLOD, 58
tableLOD, ExposomeSet-method
  (ExposomeSet), 12
tableMissings, 27, 30, 50, 51, 59
tableMissings, ExposomeSet-method
  (ExposomeSet), 12
tef, 60
tef, ExWAS-method (ExWAS), 19
toES, 61
toES, imExposomeSet-method
  (imExposomeSet), 27
trans, 25, 57, 58, 61
trans, ExposomeSet-method (ExposomeSet), 12
volcano_plot, 62