Package ‘scDDboost’

April 4, 2024

Type Package

Title A compositional model to assess expression changes from single-cell rna-seq data

Version 1.4.0

Date 2018-10-31

Description
scDDboost is an R package to analyze changes in the distribution of single-cell expression data between two experimental conditions. Compared to other methods that assess differential expression, scDDboost benefits uniquely from information conveyed by the clustering of cells into cellular subtypes. Through a novel empirical Bayesian formulation it calculates gene-specific posterior probabilities that the marginal expression distribution is the same (or different) between the two conditions. The implementation in scDDboost treats gene-level expression data within each condition as a mixture of negative binomial distributions.

License GPL (>= 2)

Imports Rcpp (>= 0.12.11), RcppEigen (>= 0.3.2.9.0), EBSeq, BiocParallel, mclust, SingleCellExperiment, cluster, Oscope, SummarizedExperiment, stats, methods

biocViews SingleCell, Software, Clustering, Sequencing, GeneExpression, DifferentialExpression, Bayesian

Depends R (>= 4.2), ggplot2

LinkingTo Rcpp, RcppEigen, BH

Suggests knitr, rmarkdown, BiocStyle, testthat

SystemRequirements c++11

Roxygen list(wrap=FALSE)

RoxygenNote 7.1.2

VignetteBuilder knitr

BugReports https://github.com/wiscstatman/scDDboost/issues

URL https://github.com/wiscstatman/scDDboost

git_url https://git.bioconductor.org/packages/scDDboost

git_branch RELEASE_3_18
scDDboost-package

A compositional model to assess expression changes from single-cell rna-seq data
scDDboost is an R package to analyze changes in the distribution of single-cell expression data between two experimental conditions. Compared to other methods that assess differential expression, scDDboost benefits uniquely from information conveyed by the clustering of cells into cellular subtypes. Through a novel empirical Bayesian formulation it calculates gene-specific posterior probabilities that the marginal expression distribution is the same (or different) between the two conditions. The implementation in scDDboost treats gene-level expression data within each condition as a mixture of negative binomial distributions.

Details

The DESCRIPTION file: This package was not yet installed at build time.

Index: This package was not yet installed at build time.

Package used to score evidence of differential distribution in single-cell RNA-seq data

Author(s)

Xiuyu Ma [cre, aut], Michael A. Newton [ctb]
Maintainer: Xiuyu Ma <watsonforfun@gmail.com>

References

See Also

https://github.com/wiscstatman/scDDboost/blob/master/DESCRIPTION

Examples

data(sim_dat)
dat = extractInfo(sim_dat)
data_counts = dat$count_matrix
cd = dat$condition
bp <- BiocParallel::MulticoreParam(4)
D_c = calD(data_counts,bp)
pDD = pdd(data_counts,cd,bp,D_c)

calD

Description

calculate distance matrix

calD

Description

calculate distance matrix
Usage

calD(data, bp)

Arguments

data transcripts
bp bioc parallel parameter

Value
distance matrix

Examples

data(sim_dat)
dat <- extractInfo(sim_dat)
data_counts <- dat$count_matrix
bp <- BiocParallel::MulticoreParam(4)
D_c <- calD(data_counts, bp)

Description

function to get intra and inter distance for clusters

Usage

clusHelper(D, i)

Arguments

D distance matrix
i number of clusters

Value

vector of intra and inter distance
detK

determine the number of clusters

Description
determine the number of clusters

Usage
detK(D, epi = 1)

Arguments

D distance matrix
epi threshold for cutting off

Value
number of clusters

Examples

data(sim_dat)
dat <- extractInfo(sim_dat)
data_counts <- dat$count_matrix
bp <- BiocParallel::MulticoreParam(4)
D_c <- calD(data_counts, bp)
detK(D_c)

EBS
accelerated empirical bayesian

Description
accelerated empirical bayesian

Usage
EBS(data, conditions, gclus, sf, iter = 10, hyper, PP, stp1, stp2)
Arguments

- data: single cell expression matrix, row as genes column as cells
- conditions: partition of cells
- gclus: partition of genes
- sf: size factors
- iter: maximum iteration step of EM
- hyper: hyper parameters for beta distributions
- PP: pattern of partitions
- stp1: step size of hyperparameter alpha (shared by all units) in one step EM
- stp2: step size of hyperparameter beta (unit specific) in one step EM

Value

posterior probability of mean expression pattern

Description

extract count matrix from SingleCellExperiment object

Usage

extractInfo(data)

Arguments

- data: SingleCellExperiment object

Value

list of count matrix and condition vector

Examples

data(sim_dat)
dat <- extractInfo(sim_dat)
gCl

Description

gene_level cluster

Usage

gCl(data, bp)

Arguments

data transcripts
bp bioc parallel parameter

Value

return a matrix whose row represent gene specific cluster

genRClus

Description

generate random clusterings

Usage

genRClus(D, a, K)

Arguments

D distance matrix of cells
a parameter for weights
K number of subtypes

Value

random generated clustering of cells
getDD

index of DD genes under FDR control

Description

index of DD genes under FDR control

Usage

getDD(pDD, FDR = 0.01)

Arguments

- **pDD**: probability of genes being DD
- **FDR**: fdr to be controlled

Value

index of positive genes

Examples

```r
p_dd <- c(0.01, 0.99, 0.7, 0.5)
getDD(p_dd)
```

getSizeofDD

number of DD genes under FDR control

Description

number of DD genes under FDR control

Usage

getSizeofDD(pDD, FDR = 0.01)

Arguments

- **pDD**: estimated probability of being DD
- **FDR**: fdr to be controlled

Value

number of positive genes
Examples

```r
p_dd <- c(0.1, 0.99, 0.01, 0.05, 0.05)
getSizeofDD(p_dd)
```

Description

function to get counts of cluster sizes at two conditions

Usage

```r
getZ1Z2(ccl, cd)
```

Arguments

- `ccl`: clustering label
- `cd`: condition label

Value

return list of counts

gRef

generate reference matrix

Description

generate reference matrix

Usage

```r
gRef(Posp)
```

Arguments

- `Posp`: possible partition of data

Value

return a matrix indicate the refinement relation between different partitions.
isRef
check refinement relation between two clusters

Description
check refinement relation between two clusters

Usage
isRef(x, y)

Arguments
x a cluster
y a cluster

Value
whether x refines y

LL
likelihood function for hyperparameters estimation

Description
likelihood function for hyperparameters estimation

Usage
LL(param, x, d0)

Arguments
param parameters to be determined by MLE
x distance matrix of cells
d0 rate parameter of prior of 1 / true distance

Value
return hyperparameters a.
lpt1t2

log likelihood of z1,z2 given t1,t2

Description
log likelihood of z1,z2 given t1,t2

Usage
lpt1t2(z1, z2, pp, alpha1, alpha2)

Arguments
z1 counts of each group in condition 1
z2 counts of each group in condition 2
pp a partition
alpha1 parameter of double dirichlet prior
alpha2 parameter of double dirichlet prior

Value
log likelihood of z1,z2 given t1,t2

lpzgt

log likelihood of aggregated multinomial counts z given aggregated proportions t

Description
log likelihood of aggregated multinomial counts z given aggregated proportions t

Usage
lpzgt(z, pp, alpha)

Arguments
z counts of each group in one condition
pp a partition
alpha parameter of double dirichlet prior

Value
log likelihood of aggregated multinomial counts z given aggregated proportions t
\textbf{mdd} \hspace{1cm} \textit{posterior of proportion change given mixture double dirichlet prior}

\textbf{Description}
posterior of proportion change given mixture double dirichlet prior

\textbf{Usage}
\[\text{mdd}(z_1, z_2, \text{pat}, \alpha_1, \alpha_2) \]

\textbf{Arguments}
\begin{itemize}
 \item \texttt{z1} \hspace{1cm} counts of each group in condition 1
 \item \texttt{z2} \hspace{1cm} counts of each group in condition 2
 \item \texttt{pat} \hspace{1cm} partition patterns
 \item \texttt{alpha1} \hspace{1cm} parameter of double dirichlet prior
 \item \texttt{alpha2} \hspace{1cm} parameter of double dirichlet prior
\end{itemize}

\textbf{Value}
posterior of proportion change

\textbf{pat} \hspace{1cm} \textit{generating partition patterns}

\textbf{Description}
generating partition patterns

\textbf{Usage}
\[\text{pat}(K) \]

\textbf{Arguments}
\begin{itemize}
 \item \texttt{K} \hspace{1cm} number of elements
\end{itemize}

\textbf{Value}
all possible partition of \texttt{K} elements

\textbf{Examples}
\begin{itemize}
 \item \texttt{pat(3)}
\end{itemize}
\texttt{pdd}

\begin{quote}
\textit{calculate posterior probabilities of a gene to be differential distributed}
\end{quote}

\section*{Description}

\texttt{pdd}\newline
\texttt{data, cd, bp, D, random = TRUE, norm = TRUE, epi = 1, Upper = 1000, nrandom = 50, iter = 20, reltol = 0.001, stp1 = 1e-06, stp2 = 0.01, K = 0)}

\section*{Arguments}

\begin{itemize}
\item \texttt{data} \hspace{1cm} normalized preprocessed transcripts
\item \texttt{cd} \hspace{1cm} conditions label
\item \texttt{bp} \hspace{1cm} bioc parallel parameter
\item \texttt{D} \hspace{1cm} distance matrix of cells or cluster of cells or a given clustering
\item \texttt{random} \hspace{1cm} boolean indicator of whether randomization has been implemented on distance matrix
\item \texttt{norm} \hspace{1cm} boolean indicator of whether the input expression data is normalized
\item \texttt{epi} \hspace{1cm} tol for change of validity score in determining number of clusters
\item \texttt{Upper} \hspace{1cm} bound for hyper parameters optimization
\item \texttt{nrandom} \hspace{1cm} number of random generated distance matrix
\item \texttt{iter} \hspace{1cm} max number of iterations for EM
\item \texttt{reltol} \hspace{1cm} relative tolerance for optim on weighting parameters
\item \texttt{stp1} \hspace{1cm} step size of hyperparameter alpha (shared by all units) in one step EM
\item \texttt{stp2} \hspace{1cm} step size of hyperparameter beta (unit specific) in one step EM
\item \texttt{K} \hspace{1cm} number of subtypes, could be user specified or determined internally(set to 0)
\end{itemize}
Value
posterior probabilities of a gene to be differential distributed

Examples
data(sim_dat)
dat <- extractInfo(sim_dat)
data_counts <- dat$count_matrix
cd <- dat$condition
bp <- BiocParallel::MulticoreParam(4)
D_c <- calD(data_counts,bp)
pDD <- pdd(data_counts,cd,bp,D_c)

pddAggregate function to aggregate intermediate results and get prob of DD

Description
function to aggregate intermediate results and get prob of DD

Usage
pddAggregate(z1, z2, Posp, DE, K, REF)

Arguments
z1 counts of cluster sizes in condition 1
z2 counts of cluster sizes in condition 2
Posp partition of cells
DE posterior probabilities of DE patterns
K number of clusters
REF reference matrix indicating relation of nested partitions

Value
return vector of prob of DD
pddRandom

calculate PDD when add random noise in distance matrix

Description

calculate PDD when add random noise in distance matrix

Usage

```
pddRandom(data, cd, K, D, a, sz, hp, Posp, iter, REF, stp1, stp2)
```

Arguments

- **data**: normalized preprocessed transcripts
- **cd**: condition label
- **K**: number of subgroups
- **D**: distance matrix of cells
- **a**: shape param for weights
- **sz**: size factors
- **hp**: hyper parameters for EBSeq
- **Posp**: parition patterns
- **iter**: max number of iterations for EM in EBSeq
- **REF**: refinement relation matrix
- **stp1**: step size of hyperparameter alpha (shared by all units) in one step EM
- **stp2**: step size of hyperparameter beta (unit specific) in one step EM

Value

posterior probabilities under random distance matrix

rwMle

MLE for random weighting parameter

Description

MLE for random weighting parameter

Usage

```
rwMle(D, reltol)
```
Arguments

- `D`, distance matrix of cells
- `reltol`, tolerance of convergence

Value

MLE of random weighting parameter

Description

simulated data for demonstration, data are mixture negative binomial distributed

Usage

`data(sim_dat)`

Format

An object of class "list".

Examples

`data(sim_dat)"
Index

* Empirical Bayes, clustering, random
 weighting, local false discovery
 rate
 *scDDboost-package, 2
* datasets
 *sim_dat, 16
* internal
 *pddRandom, 15

 *calD, 3
 *clusHelper, 4

 *detK, 5
 *EBS, 5
 *extractInfo, 6

 *gCl, 7
 *genRClus, 7
 *getDD, 8
 *getSizeofDD, 8
 *getZ1Z2, 9
 *gRef, 9

 *isRef, 10

 *LL, 10
 *lpt1t2, 11
 *lpzgt, 11

 *mdd, 12

 *pat, 12
 *pdd, 13
 *pddAggregate, 14
 *pddRandom, 15

 *rwMle, 15

 *scDDboost (scDDboost-package), 2
 *scDDboost-package, 2
 *sim_dat, 16