Package ‘scTensor’

February 3, 2024

Type Package

Title Detection of cell-cell interaction from single-cell RNA-seq dataset by tensor decomposition

Version 2.12.0

Depends R (>= 4.1.0)

Imports methods, RSQLite, igraph, S4Vectors, plotly, reactome.db, AnnotationDbi, SummarizedExperiment, SingleCellExperiment, nnTensor (>= 1.1.5), ccTensor (>= 1.0.2), rTensor (>= 1.4.8), abind, plotrix, heatmaply, tagcloud, rmarkdown, BiocStyle, knitr, AnnotationHub, MeSHDbi (>= 1.29.2), grDevices, graphics, stats, utils, outliers, Category, meshr (>= 1.99.1), GOstats, ReactomePA, DOSE, crayon, checkmate, BiocManager, visNetwork, schex, ggplot2

Suggests testthat, LRBaseDbi, Seurat, scTGIF, Homo.sapiens

Description The algorithm is based on the non-negative tucker decomposition (NTD2) of nnTensor.

License Artistic-2.0

biocViews DimensionReduction, SingleCell, Software, GeneExpression

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/scTensor

git_branch RELEASE_3_18

git_last_commit 40a43b3

git_last_commit_date 2023-10-24

Repository Bioconductor 3.18

Date/Publication 2024-02-02

Author Koki Tsuyuzaki [aut, cre], Kozo Nishida [aut]

Maintainer Koki Tsuyuzaki <k.t.the-answer@hotmail.co.jp>
scTensor-package

Detection of cell-cell interaction from single-cell RNA-seq dataset by tensor decomposition

Description

The algorithm is based on the non-negative tucker decomposition (NTD2) of nnTensor.

Details

The DESCRIPTION file: This package was not yet installed at build time.

Index: This package was not yet installed at build time.

Author(s)

Koki Tsuyuzaki [aut, cre], Kozo Nishida [aut]

Maintainer: Koki Tsuyuzaki <k.t.the-answer@hotmail.co.jp>

See Also

GermMale,labelGermMale,tsneGermMale,cellCellSetting,cellCellDecomp,cellCellReport

Examples

ls("package:scTensor")
CCSParams-class

Class "CCSParams"

Description

The parameter object to be specified against cellCellSimulate function.

Objects from the Class

Objects can be created by calls of the form new("CCSParams", ...).

Slots

- **nGene**: The number of genes.
- **nCell**: The number of cells.
- **cciInfo**: The parameter to describe the CCI.
- **lambda**: The parameter for dropout simulation.
- **seed**: The seed for using random numbers.

Methods

- **newCCSParams** Generator of CCSParams object.
- **getParam** Getter function of the slot in CCSParams object.
- **setParam<-** Setter function of the slot in CCSParams object.

See Also

newCCSParams, getParam, setParam<-

cellCellDecomp

Performing scTensor

Description

All parameters is saved to metadata slot of SingleCellExperiment object.

Usage

cellCellDecomp(sce, algorithm=c("ntd2", "ntd", "nmf", "cx", "pearson",
"spearman", "distance", "pearson.lr", "spearman.lr", "distance.lr",
"pcomb", "label.permutation", "cabello.aguilar", "halpern"), ranks=c(3,3), rank=3, thr1=log2(5), thr2=25, thr3=0.95, L1_A=0, L2_A=0,
centering=TRUE, mergeas=c("mean", "sum"), outerfunc=c("*", "+"),
comb=c("random", "all"), num.sampling=100, num.perm=1000, assayNames = "counts", decomp=TRUE)
Arguments

- **sce**
 The object generated by instantiation of `SingleCellExperiment`-class.

- **algorithm**
 Algorithm for constructing cell-cell similarity matrix. "ntd2", "ntd", "nmf", "cx",
 "pearson", "spearman", "distance", "pearson.lr", "spearman.lr", "distance.lr",
 "pcomb" or "label.permutation" can be specified (Default: ntd2).

- **ranks**
 The size of the core tensor decomposed by NTD. Each element means (Number
 of Ligand-Cell Pattern, Number of Receptor-Cell Pattern, Number of LR-pairs
 Pattern) (Default: c(3,3)).

- **rank**
 The number of low dimension of NMF (Default: 3).

- **thr1**
 The threshold used by pcomb (Default: log2(5)).

- **thr2**
 The threshold used by cx (Default: 0.95).

- **L1_A**
 The parameter to control the sparseness (Default: 0).

- **L2_A**
 The parameter to control the outlier (Default: 0).

- **verbose**
 The verbose parameter for `nntensor::NTD` (Default: FALSE).

- **centering**
 When the value is TRUE, input matrix is summarized as celltype-level vectors
 (Default: TRUE).

- **mergeas**
 When the centering is TRUE, "sum" (celltype-level sum vector) or "mean" (celltype-
 level average vector) is calculated (Default: "sum").

- **outerfunc**
 When the centering is TRUE, "+" (Kronecker sum) or "*" (Kronecker product)
 is calculated (Default: "+").

- **comb**
 When the centering is FALSE, "random" (random cell-cell pairing) or "all" (all
 possible cell-cell pairing) is calculated (Default: "random").

- **num.sampling**
 The number of random sampling used (Default: 100).

- **num.perm**
 The number of the permutation in label permutation test (Default: 1000).

- **assayNames**
 The unit of gene expression for using scTensor (e.g. normcounts, cpm...etc)
 (Default: "counts").

- **decomp**
 When the value is TRUE, cell-cell interaction tensor is decomposed (Default:
 TRUE).

Value

The result is saved to metadata slot of `SingleCellExperiment` object.

Author(s)

Koki Tsuyuzaki

See Also

`SingleCellExperiment`.

Examples

showMethods("cellCellDecomp")
cellCellRanks

Rank estimation of the CCI-tensor

Description

SVD is performed in each mode.

Usage

```r
cellCellRanks(sce, centering=TRUE, 
mergeas=c("mean", "sum"), outerfunc=c("*", "+"), comb=c("random", "all"), 
um.sampling=100, num.perm=1000, assayNames = "counts", verbose=FALSE, 
um.iter1=5, num.iter2=5, num.iter3=NULL)
```

Arguments

- **sce**: A object generated by instantization of SingleCellExperiment-class.
- **centering**: When the value is TRUE, input matrix is summarized as celltype-level vectors (Default: TRUE).
- **mergeas**: When the centering is TRUE, "mean" (celltype-level mean vector) or "sum" (celltype-level sum vector) is calculated (Default: "mean").
- **outerfunc**: When the centering is TRUE, "+" (Kronecker product) or "*" (Kronecker sum) is calculated (Default: "+").
- **comb**: When the centering is FALSE, "random" (random cell-cell pairing) or "all" (all possible cell-cell pairing) is calculated (Default: "random").
- **num.sampling**: The number of random sampling used (Default: 100).
- **num.perm**: The number of the permutation in label permutation test (Default: 1000).
- **assayNames**: The unit of gene expression for using scTensor (e.g. normcounts, cpm...etc) (Default: "counts").
- **verbose**: The verbose parameter for nnTensor::NTD (Default: FALSE).
- **num.iter1**: The number of iteration to estimate the rank of mode-1 matricised data tensor (Default: 5).
- **num.iter2**: The number of iteration to estimate the rank of mode-2 matricised data tensor (Default: 5).
- **num.iter3**: The number of iteration to estimate the rank of mode-3 matricised data tensor (Default: NULL).

Value

- **RSS**: A list with three elements, in which each element means the average reconstructed error in each rank.
- **selected**: A vector with three elements, in which each element means the estimated ranks in mode-1, 2 and 3 matricization.
Author(s)
Koki Tsuyuzaki

See Also
SingleCellExperiment.

Examples
showMethods("cellCellRanks")

cellCellReport

Description
The result is saved as HTML report which contains with multiple files.

Usage
cellCellReport(sce, reducedDimNames,
 out.dir=tempdir(), html.open=FALSE,
 title="The result of scTensor",
 author="The person who runs this script", assayNames = "counts", thr=100,
 top="full", p=0.05, upper=20,
 goenrich=TRUE, meshenrich=TRUE, reactomeenrich=TRUE,
 doenrich=TRUE, ncgenrich=TRUE, dgnenrich=TRUE, nbins=40)

Arguments

sce A object generated by instantiation of SingleCellExperiment-class.
reducedDimNames The name of two-dimentional data saved in reducedDimNames slot of SingleCellExperiment object.
out.dir The output directory for saving HTML report (out.dir: tempdir()).
html.open Whether the result of HTML report is opened when the calculation is finished (Default: FALSE).
title The title of HTML report (Default: "The result of scTensor").
author The author of HTML report (Default: "The person who runs this script").
assayNames The unit of gene expression for using scTensor (e.g. normcounts, cpm...etc) (Default: "counts").
thr The threshold for selection of top percentage of core tensor elements (Default: 100 (1 to 100)).
top top genes in each (*,* *)-pattern which are selected and summarized in the report (Default: "full")
cellCellReport

p The threshold of p-value of the enrichment analysis (Default: 1E-2)
upper The maximum number of HTML reports generates (Default: 20)
goenrich Whether GO-Enrichment analysis is performed (Default: TRUE)
 meshenrich Whether MeSH-Enrichment analysis is performed (Default: TRUE)
reactomeenrich Whether Reactome-Enrichment analysis is performed (Default: TRUE)
doenrich Whether DO-Enrichment analysis is performed (Default: TRUE)
ncgenrich Whether NCG-Enrichment analysis is performed (Default: TRUE)
dgnenrich Whether DGN-Enrichment analysis is performed (Default: TRUE)
nbins The number of bins used for the two dimensional plot of schex (Default: 40)

Value
The result is saved as HTML report which contains with multiple files.

Author(s)
Koki Tsuyuzaki

See Also
SingleCellExperiment.

Examples
if(interactive()){
 # Package Loading
 library("SingleCellExperiment")
 library("AnnotationHub")
 if(!require(LRBaseDbi)){
 BiocManager::install("LRBaseDbi")
 library(LRBaseDbi)
 }
 ah <- AnnotationHub()
 dbfile <- query(ah, c("LRBaseDb", "Homo sapiens", "v002"))[[1]]
 LRBase.Hsa.eg.db <- LRBaseDbi::LRBaseDb(dbfile)

 # Data Loading
 data(GermMale)
 data(labelGermMale)
 data(tsneGermMale)

 # SingleCellExperiment Object
 sce <- SingleCellExperiment(assays=list(counts = GermMale))
 reducedDims(sce) <- SimpleList(TSNE=tsneGermMale$Y)

 # User's Original Normalization Function
 CPMED <- function(input){
 libsize <- colSums(input)
 median(libsize) * t(t(input) / libsize)
```r
# Normalization
normcounts(sce) <- log10(CPMED(counts(sce)) + 1)

# Registration of required information into metadata(sce)
cellCellSetting(sce, LRBase.Hsa.eg.db, names(labelGermMale))

# Rank Estimation
rks <- cellCellRanks(sce, assayNames="normcounts")

# CCI Tensor Decomposition
set.seed(1234)
cellCellDecomp(sce, ranks=rks$selected, assayNames="normcounts")

# HTML Report
options(device.ask.default = FALSE)
cellCellReport(sce, reducedDimNames="TSNE", out.dir=tempdir(), html.open=FALSE,
title="The result of scTensor", author="The person who runs this script",
assayNames="counts", thr=100,
top="full", p=0.05, upper=20,
goenrich=TRUE, meshenrich=TRUE, reactomeenrich=TRUE,
doenrich=TRUE, nogenrich=TRUE, dgenrich=TRUE, nbins=40)

else{
  showMethods("cellCellReport")
}
```

cellCellSetting
Parameter setting for scTensor

Description

All parameters is saved to metadata slot of SingleCellExperiment object.

Usage

```r
cellCellSetting(sce, lrbase, label, lr.evidence="known", color=NULL)
```

Arguments

- **sce**: A object generated by instantiation of SingleCellExperiment-class.
- **lrbase**: Ligand-Receptor database (LRBase.XXX.eg.db-type package).
- **label**: Cellular label information for distinguishing which cells belong to common celltypes.
- **lr.evidence**: The evidence code for L-R pair list (Default: "known"). When you specify "known", DLRP, IUPHAR, HPMR, CELLPHONEDB, SINGLECELLSIGNALR are searched, and other databases are searched, when you specify "putative". You can also specify multiple databases at once (e.g. c("SWISSPROT_STRING", "TREMBL_STRING")). cf. https://github.com/rikenbit/lrbase-workflow
cellCellSimulate

- **color**
 Color scheme for adding color against the cells (Default: NULL). If the value is not specified, automatically the color vector is generated.

Value

The result is saved to metadata slot of SingleCellExperiment object.

Author(s)

Koki Tsuyuzaki

See Also

SingleCellExperiment.

Examples

```r
showMethods("cellCellSetting")
```

cellCellSimulate
Parameter Simulate for scTensor

Description

All parameters is saved to metadata slot of SingleCellExperiment object.

Usage

```r
cellCellSimulate(params = newCCSParams(), verbose = TRUE)
```

Arguments

- **params**
 A parameter object generated by newCCSParams().
- **verbose**
 Whether the message is outputted or not (Default: TRUE).

Value

A list object containing simcount, LR, and celltype. simcount is the synthetic count matrix, LR is the synthetic ligand-receptor pair list, and celltype is the vector to specify the celltype of each column of simcount.

Author(s)

Koki Tsuyuzaki

Examples

```r
showMethods("cellCellSimulate")
```
GermMale

The matrix which is used as test data of scTensor.

Description

A matrix with 242 rows (genes) * 852 columns (cells).

Usage

data(GermMale)

Details

Only male data is extracted and then the gene symbol is converted to NCBI Gene ID by Homo.sapiens package.

For saving the package size, the number of genes are strictly reduced by the standard of highly variable genes with threshold of p-value is 1E-300.

References

See Also

labelGermMale, tsneGermMale.

Examples

data(GermMale)

getParam

Get a parameter

Description

Accessor function for getting parameter values.

Usage

getParam(object, name)

S4 method for signature 'CCSParams'
getParam(object, name)
Arguments

 object object to get parameter from.
 name name of the parameter to get.

Value

 The extracted parameter value

Examples

 params <- newCCSParams()
 getParam(params, "nGene")
 getParam(params, "nCell")
 getParam(params, "CCIInfo")
 getParam(params, "lambda")
 getParam(params, "seed")

labelGermMale The vector contains the celltype information and color scheme of GermMale

Description

 A vector with 852 length (cells).

Usage

 data(labelGermMale)

Details

 The Cluster label is downloaded from original paper page of Cell Stem Cell (https://www.sciencedirect.com/science/article/pii/S1934590917300784)

References

See Also

 GermMale, tsneGermMale.

Examples

 data(labelGermMale)
m

The gene-wise mean vector of Quartz-Seq data.

Description
This data is internally used in cellCellSimulate function.

Usage
data(m)

Examples
data(m)

newCCSPrams

New Params

Description
Create a new CCSPrams object.

Usage
newCCSPrams()

Arguments
Nothing.

Value
New Params object.

Examples
params <- newCCSPrams()
setParam

Set a parameter

Description
Function for setting parameter values.

Usage

setParam(object, name) <- value
S4 method for signature 'CCSPrams'
setParam(object, name, value)

Arguments

object object to set parameter in.
name name of the parameter to set.
value value to set the parameter to.

Value
Object with new parameter value.

Examples

params <- newCCSPrams()

setParam(params, "nGene") <- 20000
setParam(params, "nCell") <- c(12, 43, 323)
setParam(params, "cciInfo") <- list(nPair=2000,
 CCI1=list(
 LPattern=c(1,0,0),
 RPATTERN=c(0,1,1),
 nGene=100,
 fc="E10"),
 CCI2=list(
 LPATTERN=c(0,0,1),
 RPATTERN=c(1,1,1),
 nGene=200,
 fc="E10"),
 CCI3=list(
 LPATTERN=c(1,1,1),
 RPATTERN=c(1,0,1),
 nGene=300,
 fc="E10")
)
setParam(params, "lambda") <- 0.1
setParam(params, "seed") <- 111
tsneGermMale
The result of Rtsne against GermMale

Description

A List contains some parameters and the result of Rtsne function.

Usage

```r
data(tsneGermMale)
```

Details

Rtsne is performed as follows.
```
library(Rtsne) set.seed(123) tsneGermMale <- Rtsne(dist(t(GermMale)), is_distance=TRUE, perplexity=40)
```

References

See Also

`labelGermMale`, `GermMale`.

Examples

```r
data(tsneGermMale)
```

v
The gene-wise variance vector of Quartz-Seq data.

Description

This data is internally used in cellCellSimulate function.

Usage

```r
data(v)
```

Examples

```r
data(v)
```
Index

* classes
 CCSParams-class, 3

* datasets
 GermMale, 10
 labelGermMale, 11
 m, 12
 tsneGermMale, 14
 v, 14

* methods
 cellCellDecomp, 3
 cellCellRanks, 5
 cellCellReport, 6
 cellCellSetting, 8
 cellCellSimulate, 9

* package
 scTensor-package, 2
 CCSParams-class, 3
 cellCellDecomp, 2, 3
 cellCellDecomp,SingleCellExperiment-method
 (cellCellDecomp), 3
 cellCellRanks, 5
 cellCellRanks,SingleCellExperiment-method
 (cellCellRanks), 5
 cellCellReport, 2, 6
 cellCellReport,SingleCellExperiment-method
 (cellCellReport), 6
 cellCellSetting, 2, 8
 cellCellSetting,SingleCellExperiment-method
 (cellCellSetting), 8
 cellCellSimulate, 9
 cellCellSimulate,SingleCellExperiment-method
 (cellCellSimulate), 9

 GermMale, 2, 10, 11, 14
 getParam, 3, 10
 getParam,CCSParams-method (getParam), 10

 labelGermMale, 2, 10, 11, 14
 m, 12
 newCCSParams, 3, 12
 scTensor (scTensor-package), 2
 scTensor-package, 2
 setParam, 13
 setParam,CCSParams,ANY-method
 (setParam), 13
 setParam,CCSParams-method (setParam), 13
 setParam<-,CCSParams,ANY-method
 (setParam), 13
 setParam<-,CCSParams-method (setParam),
 13
 SingleCellExperiment, 4, 6, 7, 9
 tsneGermMale, 2, 10, 11, 14
 v, 14