Package ‘scds’

May 30, 2024

Type Package
Title In-Silico Annotation of Doublets for Single Cell RNA Sequencing Data
Version 1.20.0
Description In single cell RNA sequencing (scRNA-seq) data combinations of cells are sometimes considered a single cell (doublets). The scds package provides methods to annotate doublets in scRNA-seq data computationally.
License MIT + file LICENSE
Encoding UTF-8
biocViews SingleCell, RNASeq, QualityControl, Preprocessing, Transcriptomics, GeneExpression, Sequencing, Software, Classification
RoxygenNote 6.1.1
Depends R (>= 3.6.0)
Imports Matrix, S4Vectors, SingleCellExperiment, SummarizedExperiment, xgboost, methods, stats, dplyr, pROC
Suggests BiocStyle, knitr, rsvd, Rtsne, scater, cowplot, rmarkdown
VignetteBuilder knitr
git_url https://git.bioconductor.org/packages/scds
git_branch RELEASE_3_19
git_last_commit 2694892
git_last_commit_date 2024-04-30
Repository Bioconductor 3.19
Date/Publication 2024-05-29
Author Dennis Kostka [aut, cre], Bais Abha [aut]
Maintainer Dennis Kostka <kostka@pitt.edu>
Contents

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>bcds</td>
<td>2</td>
</tr>
<tr>
<td>cxds</td>
<td>3</td>
</tr>
<tr>
<td>cxds_bcds_hybrid</td>
<td>4</td>
</tr>
<tr>
<td>cxds_getTopPairs</td>
<td>4</td>
</tr>
<tr>
<td>get_dblCalls_ALL</td>
<td>5</td>
</tr>
<tr>
<td>get_dblCalls_dist</td>
<td>6</td>
</tr>
<tr>
<td>get_dblCalls_ROC</td>
<td>6</td>
</tr>
<tr>
<td>sce_chcl</td>
<td>7</td>
</tr>
</tbody>
</table>

Index

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>bcds</td>
<td>8</td>
</tr>
</tbody>
</table>

bcds

Find doublets/multiplets in UMI scRNA-seq data;

Description

Annotates doublets/multiplets using a binary classification approach to discriminate artificial doublets from original data.

Usage

```r
bcds(sce, ntop = 500, srat = 1, verb = FALSE, retRes = FALSE, 
     nmax = "tune", varImp = FALSE, estNdbl = FALSE)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sce</td>
<td>single cell experiment (SingleCellExperiment) object to analyze; needs counts in assays slot.</td>
</tr>
<tr>
<td>ntop</td>
<td>integer, indicating number of top variance genes to consider. Default: 500</td>
</tr>
<tr>
<td>srat</td>
<td>numeric, indicating ratio between orginal number of "cells" and simulated doublets; Default: 1</td>
</tr>
<tr>
<td>verb</td>
<td>progress messages. Default: FALSE</td>
</tr>
<tr>
<td>retRes</td>
<td>logical, should the trained classifier be returned? Default: FALSE</td>
</tr>
<tr>
<td>nmax</td>
<td>maximum number of training rounds; integer or "tune". Default: "tune"</td>
</tr>
<tr>
<td>varImp</td>
<td>logical, should variable (i.e., gene) importance be returned? Default: FALSE</td>
</tr>
<tr>
<td>estNdbl</td>
<td>logical, should the number of doublets be estimated from the data. Enables doublet calls. Default:FALSE. Use with caution.</td>
</tr>
</tbody>
</table>

Value

sce input sce object SingleCellExperiment with doublet scores added to colData as "bcds_score" column, and possibly more (details)
cxds

Find doublets/multiplets in UMI scRNA-seq data;

Description

Annotates doublets/multiplets using co-expression based approach

Usage

cxds(sce, ntop = 500, binThresh = 0, verb = FALSE, retRes = FALSE,
estNdbl = FALSE)

Arguments

- **sce**: single cell experiment (SingleCellExperiment) object to analyze; needs counts in assays slot.
- **ntop**: integer, indimessageing number of top variance genes to consider. Default: 500
- **binThresh**: integer, minimum counts to consider a gene "present" in a cell. Default: 0
- **verb**: progress messages. Default: FALSE
- **retRes**: logical, whether to return gene pair scores & top-scoring gene pairs? Default: FALSE.
- **estNdbl**: logical, should the numer of doublets be estimated from the data. Enables doublet calls. Default:FALSE. Use with caution.

Value

sce input sce object SingleCellExperiment with doublet scores added to colData as "cxds_score" column.

Examples

data("sce_chcl")
create small data set using only 100 cells
sce_chcl_small = sce_chcl[, 1:100]
sce_chcl_small = cxds(sce_chcl_small)

Examples

data("sce_chcl")
create small data set using only 100 cells
sce_chcl_small = sce_chcl[, 1:100]
sce_chcl_small = cxds(sce_chcl_small)
cxds_bcds_hybrid

Find doublets/multiples in UMI scRNA-seq data:

description
Annotates doublets/multiplets using the hybrid approach

Usage

cxds_bcds_hybrid(sce, cxdsArgs = NULL, bcdsArgs = NULL, verb = FALSE,
estNdbl = FALSE, force = FALSE)

Arguments

sce single cell experiment (SingleCellExperiment) object to analyze; needs counts in assays slot.
cxdsArgs list, arguments for cxds function in list form. Default: NULL
bcdsArgs list, arguments for bcds function in list form. Default: NULL
verb logical, switch on/off progress messages
estNdbl logical, should the number of doublets be estimated from the data. Enables doublet calls. Default: FALSE. Use with caution.
force logical, force a (re)run of cxds and bcds. Default: FALSE

Value

sce input sce object SingleCellExperiment with doublet scores added to colData as "hybrid_score" column.

Examples

data("sce_chcl")
create small data set using only 100 cells
sce_chcl_small = sce_chcl[, 1:100]
sce_chcl_small = cxds_bcds_hybrid(sce_chcl_small)

cxds_getTopPairs

Extract top-scoring gene pairs from an SingleCellExperiment where cxds has been run

description
Extract top-scoring gene pairs from an SingleCellExperiment where cxds has been run.
get_dblCalls_ALL

Usage

```r
cxds_getTopPairs(sce, n = 100)
```

Arguments

- `sce`: single cell experiment to analyze; needs "counts" in assays slot.
- `n`: integer. The number of gene pairs to extract. Default: 100

Value

matrix. Matrix with two columns, each containing gene indexes for gene pairs (rows).

get_dblCalls_ALL

Wrapper for getting doublet calls

Description

Wrapper for getting doublet calls

Usage

```r
get_dblCalls_ALL(scrs_real, scrs_sim, rel_loss = 1)
```

Arguments

- `scrs_real`: numeric vector, the scores for the real/original data
- `scrs_sim`: numeric vector, the scores for the artificial doublets
- `rel_loss`: numeric scalar, relative weight of a false positive classification compared with a false negative. Default: 1 (same loss for fp and fn).

Value

numeric, matrix containing the (estimated) number of doublets, the score threshold and the fraction of artificial doublets missed (false negative rate, of sorts) as columns and four types of estimating: "youden", "balanced" and a false negative rate of artificial doublets of 0.1 and 0.01, respectively.
get_dblCalls_dist

Derive doublet calls from doublet scores

Description

Given score vectors for real data and artificial doubles, derive doublet calls based on determining doublet score cutoffs.

Usage

get_dblCalls_dist(scrs_real, scrs_sim, type = "balanced")

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>scrs_real</td>
<td>numeric vector, the scores for the real/original data</td>
</tr>
<tr>
<td>scrs_sim</td>
<td>numeric vector, the scores for the artificial doublets</td>
</tr>
<tr>
<td>type</td>
<td>character or numeric, describes how the score threshold for calling doublets is determined. Either "balanced" or a number between zero and one that indicates the fraction of artificial doublets missed when making calls. Default: "balanced".</td>
</tr>
</tbody>
</table>

Value

numeric, vector containing the (estimated) number of doublets, the score threshold and the fraction of artificial doublets missed (false negative rate, of sorts)

get_dblCalls_ROC

Derive doublet calls from classification probabilities

Description

Given class probabilities (or scores) discriminating real data from artificial doublets, derive doublet calls. Based on selecting a ROC cutoff, see The Inconsistency of “Optimal” Cutpoints Obtained using Two Criteria based on the Receiver Operating Characteristic Curve, (doi).

Usage

get_dblCalls_ROC(scrs_real, scrs_sim, rel_loss = 1)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>scrs_real</td>
<td>numeric vector, the scores for the real/original data</td>
</tr>
<tr>
<td>scrs_sim</td>
<td>numeric vector, the scores for the artificial doublets</td>
</tr>
<tr>
<td>rel_loss</td>
<td>numeric scalar, relative weight of a false positive classification compared with a false negative. Default:1 (same loss for fp and fn).</td>
</tr>
</tbody>
</table>
Value

numeric, vector containing the (estimated) number of doublets, the score threshold and the fraction of artificial doublets missed (false negative rate, of sorts)

sce_chcl Example single cell experiment (SingleCellExperiment) object

Description

Example data set, created by randomly sampling genes and cells from a real data set (ch_cl, i.e., the cell lines data from https://satijalab.org/seurat/hashing_vignette.html). Contains raw counts in the counts assay slot.

Usage

sce_chcl

Format

a single cell experiment object (SingleCellExperiment) with raw counts in the counts in assays, and colData with experimental annotations.
Index

bcds, 2

cxds, 3
cxds_bcds_hybrid, 4
cxds_getTopPairs, 4

get_dblCalls_ALL, 5
get_dblCalls_dist, 6
get_dblCalls_ROC, 6

sce_chcl, 7