Package ‘scds’

March 7, 2024

Type Package

Title In-Silico Annotation of Doublets for Single Cell RNA Sequencing Data

Version 1.18.0

Description In single cell RNA sequencing (scRNA-seq) data combinations of cells are sometimes considered a single cell (doublets). The scds package provides methods to annotate doublets in scRNA-seq data computationally.

License MIT + file LICENSE

Encoding UTF-8

biocViews SingleCell, RNASeq, QualityControl, Preprocessing, Transcriptomics, GeneExpression, Sequencing, Software, Classification

RoxygenNote 6.1.1

Depends R (>= 3.6.0)

Imports Matrix, S4Vectors, SingleCellExperiment, SummarizedExperiment, xgboost, methods, stats, dplyr, pROC

Suggests BiocStyle, knitr, rsvd, Rtsne, scater, cowplot, rmarkdown

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/scds

git_branch RELEASE_3_18

git_last_commit df0c08

git_last_commit_date 2023-10-24

Repository Bioconductor 3.18

Date/Publication 2024-03-06

Author Dennis Kostka [aut, cre], Bais Abha [aut]

Maintainer Dennis Kostka <kostka@pitt.edu>
R topics documented:

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>bcds</td>
<td>2</td>
</tr>
<tr>
<td>cxdS</td>
<td>3</td>
</tr>
<tr>
<td>cxdS_bcds_hybrid</td>
<td>4</td>
</tr>
<tr>
<td>cxdS_getTopPairs</td>
<td>4</td>
</tr>
<tr>
<td>get_dblCalls_ALL</td>
<td>5</td>
</tr>
<tr>
<td>get_dblCalls_dist</td>
<td>6</td>
</tr>
<tr>
<td>get_dblCalls_ROC</td>
<td>6</td>
</tr>
<tr>
<td>sce_chcl</td>
<td>7</td>
</tr>
</tbody>
</table>

Index

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>bcds</td>
<td>8</td>
</tr>
</tbody>
</table>

bcds

Find doublets/multiplets in UMI scRNA-seq data;

Description

Annotates doublets/multiplets using a binary classification approach to discriminate artificial doublets from original data.

Usage

```r
cdms(sce, ntop = 500, srat = 1, verb = FALSE, retRes = FALSE, 
    nmax = "tune", varImp = FALSE, estNdbl = FALSE)
```

Arguments

- `sce`: single cell experiment (`SingleCellExperiment`) object to analyze; needs counts in assays slot.
- `ntop`: integer, indicating number of top variance genes to consider. Default: 500
- `srat`: numeric, indicating ratio between orginal number of "cells" and simulated doublets; Default: 1
- `verb`: progress messages. Default: FALSE
- `retRes`: logical, should the trained classifier be returned? Default: FALSE
- `nmax`: maximum number of training rounds; integer or "tune". Default: "tune"
- `varImp`: logical, should variable (i.e., gene) importance be returned? Default: FALSE
- `estNdbl`: logical, should the number of doublets be estimated from the data. Enables doublet calls. Default:FALSE. Use with caution.

Value

sce input sce object `SingleCellExperiment` with doublet scores added to colData as "bcds_score" column, and possibly more (details)
cxds

Examples
data("sce_chcl")
create small data set using only 100 cells
sce_chcl_small = sce_chcl[, 1:100]
sce_chcl_small = bcds(sce_chcl_small)

cxds

Find doublets/multiplets in UMI scRNA-seq data;

Description
Annotates doublets/multiplets using co-expression based approach

Usage
cxds(sce, ntop = 500, binThresh = 0, verb = FALSE, retRes = FALSE, estNdbl = FALSE)

Arguments
sce single cell experiment (SingleCellExperiment) object to analyze; needs counts in assays slot.
ntop integer, indimessageing number of top variance genes to consider. Default: 500
binThresh integer, minimum counts to consider a gene "present" in a cell. Default: 0
verb progress messages. Default: FALSE
retRes logical, whether to return gene pair scores & top-scoring gene pairs? Default: FALSE.
estNdbl logical, should the number of doublets be estimated from the data. Enables doublet calls. Default:FALSE. Use with caution.

Value
sce input sce object SingleCellExperiment with doublet scores added to colData as "cxds_score" column.

Examples
data("sce_chcl")
create small data set using only 100 cells
sce_chcl_small = sce_chcl[, 1:100]
sce_chcl_small = cxds(sce_chcl_small)
cxds_bcds_hybrid Find doublets/multiples in UMI scRNA-seq data:

Description
Annotates doublets/multiplets using the hybrid approach

Usage
 cxds_bcds_hybrid(sce, cxdsArgs = NULL, bcdsArgs = NULL, verb = FALSE, estNdbl = FALSE, force = FALSE)

Arguments

sce single cell experiment (SingleCellExperiment) object to analyze; needs counts in assays slot.
cxdsArgs list, arguments for cxds function in list form. Default: NULL
bcdsArgs list, arguments for bcds function in list form. Default: NULL
verb logical, switch on/off progress messages
estNdbl logical, should the number of doublets be estimated from the data. Enables doublet calls. Default: FALSE. Use with caution.
force logical, force a (re)run of cxds and bcds. Default: FALSE

Value
sce input sce object SingleCellExperiment with doublet scores added to colData as "hybrid_score" column.

Examples
data("sce_chcl")
create small data set using only 100 cells
csc_hcl_small = sce_chcl[, 1:100]
csc_hcl_small = cxds_bcds_hybrid(csc_hcl_small)

cxds_getTopPairs Extract top-scoring gene pairs from an SingleCellExperiment where cxds has been run

Description
Extract top-scoring gene pairs from an SingleCellExperiment where cxds has been run
Usage

cxds_getTopPairs(sce, n = 100)

Arguments

sce single cell experiment to analyze; needs "counts" in assays slot.
n integer. The number of gene pairs to extract. Default: 100

Value

matrix Matrix with two columns, each containing gene indexes for gene pairs (rows).

get_dblCalls_ALL Wrapper for getting doublet calls

Description

Wrapper for getting doublet calls

Usage

get_dblCalls_ALL(scrs_real, scrs_sim, rel_loss = 1)

Arguments

scrs_real numeric vector, the scores for the real/original data
scrs_sim numeric vector, the scores for the artificial doublets
rel_loss numeric scalar, relative weight of a false positive classification compared with a false negative. Default: 1 (same loss for fp and fn).

Value

numeric, matrix containing the (estimated) number of doublets, the score threshold and the fraction of artificial doublets missed (false negative rate, of sorts) as columns and four types of estimating: "youden", "balanced" and a false negative rate of artificial doublets of 0.1 and 0.01, respectively.
get_dblCalls_dist

Derive doublet calls from doublet scores

Description
Given score vectors for real data and artificial doubles, derive doublet calls based on determining doublet score cutoffs.

Usage
get_dblCalls_dist(scrs_real, scrs_sim, type = "balanced")

Arguments

scre_real numeric vector, the scores for the real/original data
scrs_sim numeric vector, the scores for the artificial doublets
type character or numeric, describes how the score threshold for calling doublets is determined. Either "balanced" or a number between zero and one that indicates the fraction of artificial doublets missed when making calls. Default: "balanced".

Value
numeric, vector containing the (estimated) number of doublets, the score threshold and the fraction of artificial doublets missed (false negative rate, of sorts)

get_dblCalls_ROC

Derive doublet calls from classification probabilities

Description
Given class probabilities (or scores) discriminating real data from artificial doublets, derive doublet calls. Based on selecting a ROC cutoff, see The Inconsistency of “Optimal” Cutpoints Obtained using Two Criteria basedon the Receiver Operating Characteristic Curve, (doi).

Usage
going_dblCalls_ROC(scrs_real, scrs_sim, rel_loss = 1)

Arguments

crs_real numeric vector, the scores for the real/original data
scrs_sim numeric vector, the scores for the artificial doublets
rel_loss numeric scalar, relative weight of a false positive classification compared with a false negative. Default: 1 (same loss for fp and fn).
Value

numeric, vector containing the (estimated) number of doublets, the score threshold and the fraction of artificial doublets missed (false negative rate, of sorts)

sce_chcl
Example single cell experiment (SingleCellExperiment) object

Description

Example data set, created by randomly sampling genes and cells from a real data set (ch_cl, i.e., the cell lines data from https://satijalab.org/seurat/hashing_vignette.html). Contains raw counts in the counts assay slot.

Usage

`sce_chcl`

Format

a single cell experiment object (SingleCellExperiment) with raw counts in the counts in assays, and colData with experimental annotations.
Index

bcds, 2

cxds, 3
cxds_bcds_hybrid, 4
cxds_getTopPairs, 4

get_dblCalls_ALL, 5
get_dblCalls_dist, 6
get_dblCalls_ROC, 6

sce_chcl, 7