Package ‘semisup’

May 30, 2024

Version 1.28.0

Title Semi-Supervised Mixture Model

Description Implements a parametric semi-supervised mixture model. The permutation test detects markers with main or interactive effects, without distinguishing them. Possible applications include genome-wide association analysis and differential expression analysis.

biocViews SNP, GenomicVariation, SomaticMutation, Genetics, Classification, Clustering, DNASeq, Microarray, MultipleComparison

Depends R (>= 3.0.0)

Imports VGAM

Suggests knitr, testthat, SummarizedExperiment

VignetteBuilder knitr

License GPL-3

LazyData true

RoxygenNote 7.0.0

URL https://github.com/rauschenberger/semisup

BugReports https://github.com/rauschenberger/semisup/issues

git_url https://git.bioconductor.org/packages/semisup

git_branch RELEASE_3_19

git_last_commit 9af92a1

git_last_commit_date 2024-04-30

Repository Bioconductor 3.19

Date/Publication 2024-05-29

Author Armin Rauschenberger [aut, cre]

Maintainer Armin Rauschenberger <armin.rauschenberger@uni.lu>
Contents

semisup-package ... 2
arguments ... 3
debug ... 4
estim.nbinom ... 5
fit.nbinom ... 6
fit.norm ... 7
fit.wrap ... 8
fit.zinb ... 9
internal ... 10
mixtura ... 11
resam.lrts ... 12
scrutor ... 13
table .. 15
toydata ... 15

Index .. 16

semisup-package Semi-supervised mixture model

Description

This R package implements the semi-supervised mixture model. Use mixtura for model fitting, and scrutor for hypothesis testing.

Getting started

Please type the following commands:
utils::vignette("semisup")
?semisup::mixtura
?semisup::scrutor

More information

<a.rauschenberger@vumc.nl>
Description

This page lists and describes all arguments of the R package \texttt{semisup}.

Arguments

\textbf{y} \hspace{1cm} \textbf{observations}: numeric vector of length \textit{n}

\textbf{Y} \hspace{1cm} \textbf{observations}: numeric vector of length \textit{n}, or numeric matrix with \textit{n} rows (samples) and \textit{q} columns (variables)

\textbf{z} \hspace{1cm} \textbf{class labels}: integer vector of length \textit{n}, with entries 0, 1 and NA

\textbf{Z} \hspace{1cm} \textbf{class labels}: numeric vector of length \textit{n}, or numeric matrix with \textit{n} rows (samples) and \textit{p} columns (variables), with entries 0 and NA

\textbf{dist} \hspace{1cm} \textbf{distributional assumption}: character "\texttt{norm}" (Gaussian), "\texttt{nbinom}" (negative binomial), or "\texttt{zinb}" (zero-inflated negative binomial)

\textbf{phi} \hspace{1cm} \textbf{dispersion parameters}: numeric vector of length \textit{q}, or NULL

\textbf{pi} \hspace{1cm} \textbf{zero-inflation parameter(s)}: numeric vector of length \textit{q}, or NULL

\textbf{gamma} \hspace{1cm} \textbf{offset}: numeric vector of length \textit{n}, or NULL

\textbf{test} \hspace{1cm} \textbf{resampling procedure}: character "\texttt{perm}" (permutation) or "\texttt{boot}" (parametric bootstrap), or NULL

\textbf{iter} \hspace{1cm} \textbf{(maximum) number of resampling iterations}: positive integer, or NULL

\textbf{kind} \hspace{1cm} \textbf{resampling accuracy}: numeric between 0 and 1, or NULL; all p-values above \textit{kind} are approximate

\textbf{starts} \hspace{1cm} \textbf{restarts of the EM algorithm}: positive integer (defaults to 1)

\textbf{it.em} \hspace{1cm} \textbf{(maximum) number of iterations in the EM algorithm}: positive integer (defaults to 100)

\textbf{epsilon} \hspace{1cm} \textbf{convergence criterion for the EM algorithm}: non-negative numeric (defaults to 1e-04)

\textbf{debug} \hspace{1cm} \textbf{verification of arguments}: TRUE or FALSE

\textbf{pass} \hspace{1cm} \textbf{parameters for parametric bootstrap algorithm}

\textbf{...} \hspace{1cm} \textbf{settings EM algorithm}: \texttt{starts}, \texttt{it.em} and \texttt{epsilon} (see \textbf{arguments})

See Also

Use \texttt{mixtura} for model fitting, and \texttt{scrutor} for hypothesis testing. All other functions of the R package \texttt{semisup} are \texttt{internal}.
Description

This function verifies whether the arguments fulfill some formal requirements.

Usage

d debug(y, z, dist, phi, pi, gamma, test, iter, kind, ...)

Arguments

 y observations: numeric vector of length n
 z class labels: integer vector of length n, with entries 0, 1 and NA
 dist distributional assumption: character "norm" (Gaussian), "nbinom" (negative binomial), or "zinb" (zero-inflated negative binomial)
 phi dispersion parameters: numeric vector of length q, or NULL
 pi zero-inflation parameter(s): numeric vector of length q, or NULL
 gamma offset: numeric vector of length n, or NULL
 test resampling procedure: character "perm" (permutation) or "boot" (parametric bootstrap), or NULL
 iter (maximum) number of resampling iterations: positive integer, or NULL
 kind resampling accuracy: numeric between 0 and 1, or NULL; all p-values above kind are approximate
 ... settings EM algorithm: starts, it.em and epsilon (see arguments)

Details

If one or more entries of z are equal to 1, the mixture model can be fitted but not tested. Accordingly, kind is replaced by NULL.

Resampling-based testing cannot reach p-values below 1/iter. If kind is smaller than 1/iter, it is replaced by 0.

Value

This function returns warnings and errors. It also returns kind (see details).

See Also

This is an internal function. The user functions are mixtura and scrutor.

Examples

 NULL
estim.nbinom

Internal function

Description

These functions estimate the parameters of the (zero-inflated) negative binomial distribution by applying the maximum likelihood method to the labelled observations in class 0.

Usage

estim.nbinom(y, z, gamma)
estim.zinb(y, z, gamma)

Arguments

y observations: numeric vector of length n
z class labels: integer vector of length n, with entries 0, 1 and NA
gamma offset: numeric vector of length n, or NULL

Value

These functions return a list of numerics.

See Also

These are internal functions. The user functions are mixtura and scrutinor.

Examples

data simulation
n <- 100
y <- stats::rnbinom(n=n,mu=5,size=1/0.05)
y[sample(1:n,size=0.2*n)] <- 0
z <- rep(0,times=n)
gamma <- rep(1,times=n)

parameter estimation
estim.nbinom(y,z,gamma)
estim.zinb(y,z,gamma)
fit.nbinom

Internal function

Description

This function fits the semi-supervised negative binomial mixture model. It is called by fit.wrap.

Usage

fit.nbinom(y, z, phi, gamma, it.em, epsilon)

Arguments

- **y**: observations: numeric vector of length n
- **z**: class labels: integer vector of length n, with entries 0, 1 and NA
- **phi**: dispersion parameters: numeric vector of length q, or NULL
- **gamma**: offset: numeric vector of length n, or NULL
- **it.em**: (maximum) number of iterations in the EM algorithm: positive integer (defaults to 100)
- **epsilon**: convergence criterion for the EM algorithm: non-negative numeric (defaults to 1e-04)

Value

This function returns the parameter estimates, the posterior probabilities, and the likelihood.

See Also

This is an internal function. The user functions are mixtura and scrutor.

Examples

```r
# data simulation
n <- 100
z <- rep(0:1,each=n/2)
gamma <- runif(n=n,min=0,max=2)
y <- rnbinom(n=n,mu=gamma*(5+2*z),size=1/0.05)
z[(n/4):n] <- NA

# model fitting
fit.nbinom(y,z,phi=0.05,gamma=gamma,
           it.em=100,epsilon=1e-04)
```
Description

This function fits the semi-supervised Gaussian mixture model. It is called by `fit.wrap`.

Usage

`fit.norm(y, z, it.em, epsilon)`

Arguments

- `y`: observations: numeric vector of length `n`
- `z`: class labels: integer vector of length `n`, with entries 0, 1 and NA
- `it.em`: (maximum) number of iterations in the EM algorithm: positive integer (defaults to 100)
- `epsilon`: convergence criterion for the EM algorithm: non-negative numeric (defaults to 1e-04)

Value

This function returns the parameter estimates, the posterior probabilities, and the likelihood.

See Also

This is an internal function. The user functions are `mixtura` and `scrutor`.

Examples

```r
# data simulation
n <- 100
z <- rep(0:1, each=n/2)
y <- rnorm(n=n, mean=2*z, sd=1)
z[(n/4):n] <- NA

# model fitting
fit.norm(y, z, it.em=100, epsilon=1e-04)
```
fit.wrap

Internal function

Description

This function fits the semi-supervised mixture model multiple times. It is called by `mixtura` and `scrutor`.

Usage

```r
fit.wrap(y, z, dist, phi, pi, gamma, starts = 1, it.em = 100, epsilon = 1e-04)
```

Arguments

- `y` **observations**: numeric vector of length `n`
- `z` **class labels**: integer vector of length `n`, with entries 0, 1 and NA
- `dist` **distributional assumption**: character "norm" (Gaussian), "nbinom" (negative binomial), or "zinb" (zero-inflated negative binomial)
- `phi` **dispersion parameters**: numeric vector of length `q`, or NULL
- `pi` **zero-inflation parameter(s)**: numeric vector of length `q`, or NULL
- `gamma` **offset**: numeric vector of length `n`, or NULL
- `starts` **restarts of the EM algorithm**: positive integer (defaults to 1)
- `it.em` **(maximum) number of iterations in the EM algorithm**: positive integer (defaults to 100)
- `epsilon` **convergence criterion for the EM algorithm**: non-negative numeric (defaults to 1e-04)

Details

The distributions are parametrised as follows:

- **Gaussian**

 \[y \sim N(\text{mean}, \text{sd}^2) \]

 \[E[y]=\text{mean} \]

 \[Var[y]=\text{sd}^2 \]

- **Negative binomial**

 \[y \sim NB(\mu, \phi) \]

 \[E[y]=\mu \]

 \[Var[y]=\mu+\phi*\mu^2 \]

- **Zero-inflated negative binomial**

 \[y \sim ZINB(\mu, \phi, p) \]

 \[E[y]=(1-p)*\mu \]
Value

This function returns the parameter estimates, the posterior probabilities, and the likelihood.

- `posterior`: probability of belonging to class 1: numeric vector of length n
- `converge`: path of the log-likelihood: numeric vector with maximum length `it.em`
- `estim0`: parameter estimates under H0: data frame
- `estim1`: parameter estimates under H1: data frame
- `loglik0`: log-likelihood under H0: numeric
- `loglik1`: log-likelihood under H1: numeric
- `lrts`: likelihood-ratio test statistic: positive numeric

See Also

This is an internal function. The user functions are `mixtura` and `scrutor`.

Examples

```r
# data simulation
n <- 100
z <- rep(0:1, each=n/2)
y <- rnorm(n=n, mean=2*z, sd=1)
z[(n/4):n] <- NA

# model fitting
fit.wrap(y, z, dist="norm")
```

Description

This function fits the semi-supervised zero-inflated negative binomial mixture model. It is called by `fit.wrap`.

Usage

```r
fit.zinb <- function(y, z, phi, pi, gamma, it.em, epsilon) {
  ...
}
```

Arguments

- `y`: **observations**: numeric vector of length n
- `z`: **class labels**: integer vector of length n, with entries 0, 1 and NA
- `phi`: dispersion parameters: numeric vector of length q, or NULL
- `pi`: zero-inflation parameter(s): numeric vector of length q, or NULL
gamma: offset: numeric vector of length n, or NULL
it.em: (maximum) number of iterations in the EM algorithm: positive integer (defaults to 100)
epsilon: convergence criterion for the EM algorithm: non-negative numeric (defaults to 1e-04)

Value
This function returns the parameter estimates, the posterior probabilities, and the likelihood.

See Also
This is an internal function. The user functions are mixtura and scrutor.

Examples
data simulation
n <- 100
z <- rep(0:1,each=n/2)
gamma <- runif(n=n,min=0,max=2)
y <- rnbinom(n=n,mu=gamma*(5+2*z),size=1/0.05)
y[sample(1:n,size=0.2*n)] <- 0
z[(n/4):n] <- NA

model fitting
fit.zinb(y,z,phi=0.05,pi=0.2,gamma=gamma,
 it.em=100,epsilon=1e-04)

Description
This page lists and describes some internal functions of the R package semisup. These functions should not be used for analysing data.

fit.wrap multiple restarts
fit.norm Gaussian mixture model
fit.nbinom negative binomial mixture model
fit.zinb zero-inflated negative binomial mixture model
estim.nbinom dispersion estimation
estim.zinb dispersion and zero-inflation estimation
resam.lrts resampling (bootstrap, permutation)

See Also
Use mixtura for model fitting, and scrutor for hypothesis testing.
mixtura

Model fitting

Description

This function fits a semi-supervised mixture model. It simultaneously estimates two mixture components, and assigns the unlabelled observations to these.

Usage

mixtura(y, z, dist = "norm",
 phi = NULL, pi = NULL, gamma = NULL,
 test = NULL, iter = 100, kind = 0.05,
 debug = TRUE, ...)

Arguments

y observations: numeric vector of length n
z class labels: integer vector of length n, with entries 0, 1 and NA
dist distributional assumption: character "norm" (Gaussian), "nbinom" (negative binomial), or "zinb" (zero-inflated negative binomial)
phi dispersion parameters: numeric vector of length q, or NULL
pi zero-inflation parameter(s): numeric vector of length q, or NULL
gamma offset: numeric vector of length n, or NULL
test resampling procedure: character "perm" (permutation) or "boot" (parametric bootstrap), or NULL
iter (maximum) number of resampling iterations: positive integer, or NULL
kind resampling accuracy: numeric between 0 and 1, or NULL; all p-values above kind are approximate
debug verification of arguments: TRUE or FALSE
...
settings EM algorithm: starts, it.em and epsilon (see arguments)

Details

By default, phi and pi are estimated by the maximum likelihood method, and gamma is replaced by a vector of ones.

Value

This function fits and compares a one-component (H0) and a two-component (H1) mixture model.

posterior probability of belonging to class 1: numeric vector of length n
converge path of the log-likelihood: numeric vector with maximum length it.em
estim0 parameter estimates under H0: data frame
estim1 parameter estimates under H1: data frame
loglik0 log-likelihood under H0: numeric
loglik1 log-likelihood under H1: numeric
lrts likelihood-ratio test statistic: positive numeric
p.value H0 versus H1: numeric between 0 and 1, or NULL

Reference

See Also

Use scrutor for hypothesis testing. All other functions are internal.

Examples

data simulation
n <- 100
z <- rep(0:1,each=n/2)
y <- rnorm(n=n,mean=2,sd=1)
z[(n/4):n] <- NA

model fitting
mixtura(y,z,dist="norm",test="perm")

Description

This function resamples the data, fits the semi-supervised mixture model, and returns the likelihood ratio test statistic. It is called by mixtura.

Usage

resam.lrts(y, z, dist, phi, pi, gamma, test, pass, ...)

Arguments

y observations: numeric vector of length n
z class labels: integer vector of length n, with entries 0, 1 and NA
dist distributional assumption: character "norm" (Gaussian), "nbinom" (negative binomial), or "zinb" (zero-inflated negative binomial)
This function tests whether the unlabelled observations come from a mixture of two distributions.

Usage

```
scrutor(Y, Z, dist = "norm",
    phi = NULL, pi = NULL, gamma = NULL,
    test = "perm", iter = NULL, kind = NULL,
    debug = TRUE, ...)
```
Arguments

Y
observations: numeric vector of length \(n\), or numeric matrix with \(n\) rows (samples) and \(q\) columns (variables)

Z
class labels: numeric vector of length \(n\), or numeric matrix with \(n\) rows (samples) and \(p\) columns (variables), with entries \(0\) and \(NA\)

dist
distributional assumption: character "norm" (Gaussian), "nbinom" (negative binomial), or "zinb" (zero-inflated negative binomial)

phi
dispersion parameter(s): numeric vector of length \(q\), or NULL (norm: none, nbinom: MLE)

pi
zero-inflation parameter(s): numeric vector of length \(q\), or NULL (norm: none, nbinom: MLE)

gamma
offset: numeric vector of length \(n\), or NULL

test
resampling procedure: character "perm" (permutation) or "boot" (parametric bootstrap), or NULL

iter
(maximum) number of resampling iterations: positive integer, or NULL

kind
resampling accuracy: numeric between \(0\) and \(1\), or NULL; all \(p\)-values above \(kind\) are approximate

debug
verification of arguments: TRUE or FALSE

...
settings EM algorithm: starts, it.em and epsilon (see arguments)

Details

By default, \(\phi\) and \(\pi\) are estimated by the maximum likelihood method, and \(\gamma\) is replaced by a vector of ones.

Value

This function tests a one-component (\(H_0\)) against a two-component mixture model (\(H_1\)).

y
index observations

z
index class labels

lrts
test statistic

p.value
\(p\)-value

Reference

See Also

Use **mixtura** for model fitting. All other functions are internal.
Examples

```r
# data simulation
n <- 100
z <- rep(0:1,each=n/2)
y <- rnorm(n=n,mean=2*z,sd=1)
z[(n/4):n] <- NA

# hypothesis testing
scrutor(y,z,dist="norm")
```

table

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
</table>
This dataset includes tables for the approximate mixture test *(not yet available)*.

Usage

data(table)

Format

A list of numeric vectors.

Value

All entries are numeric.

toydata

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
</table>
This dataset allows to reproduce the examples shown in the vignette.

Usage

data(toydata)

Format

A list of numeric vectors and matrices.

Value

All entries are numeric.
Index

* documentation
 semisup-package, 2

* internal
 arguments, 3
d debug, 4
estim.nbinom, 5
fit.nbinom, 6
fit.norm, 7
fit.wrap, 8
fit.zinb, 9
internal, 10
resam.lrts, 12
table, 15
toydata, 15

* methods
 mixtura, 11
 scrutor, 13

arguments, 3, 3, 4, 11, 13, 14
d debug, 4
estim.nbinom, 5, 10
estim.zinb, 10
estim.zinb (estim.nbinom), 5

fit.nbinom, 6, 10
fit.norm, 7, 10
fit.wrap, 6, 7, 8, 9, 10
fit.zinb, 9, 10

internal, 3–7, 9, 10, 10, 12–14
mixtura, 2–10, 11, 12–14
resam.lrts, 10, 12
scrutor, 2–10, 12, 13, 13
semisup, 3, 10
semisup (semisup-package), 2
semisup-package, 2