Package ‘semisup’

April 4, 2024

Version 1.26.0

Title Semi-Supervised Mixture Model

Description Implements a parametric semi-supervised mixture model. The permutation test detects markers with main or interactive effects, without distinguishing them. Possible applications include genome-wide association analysis and differential expression analysis.

biocViews SNP, GenomicVariation, SomaticMutation, Genetics, Classification, Clustering, DNASEq, Microarray, MultipleComparison

Depends R (>= 3.0.0)

Imports VGAM

Suggests knitr, testthat, SummarizedExperiment

VignetteBuilder knitr

License GPL-3

LazyData true

RoxygenNote 7.0.0

URL https://github.com/rauschenberger/semisup

BugReports https://github.com/rauschenberger/semisup/issues

git_url https://git.bioconductor.org/packages/semisup

git_branch RELEASE_3_18

git_last_commit 59f2b12

git_last_commit_date 2023-10-24

Repository Bioconductor 3.18

Date/Publication 2024-04-03

Author Armin Rauschenberger [aut, cre]

Maintainer Armin Rauschenberger <armin.rauschenberger@uni.lu>
R topics documented:

- semisup-package .. 2
- arguments .. 3
- debug ... 4
- estim.nbinom .. 5
- fit.nbinom .. 6
- fit.norm .. 7
- fit.wrap ... 8
- fit.zinb ... 9
- internal .. 10
- mixtura .. 11
- resam.lrts .. 12
- scrutor .. 13
- table ... 15
- toydata ... 15

Index ... 16

semisup-package Semi-supervised mixture model

Description

This R package implements the semi-supervised mixture model. Use mixtura for model fitting, and scrutor for hypothesis testing.

Getting started

Please type the following commands:
utils::vignette("semisup")
?semisup::mixtura
?semisup::scrutor

More information

<a.rauschenberger@vumc.nl>
Arguments

This page lists and describes all arguments of the R package semisup.

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>observations: numeric vector of length n</td>
</tr>
<tr>
<td>Y</td>
<td>observations: numeric vector of length n, or numeric matrix with n rows (samples) and q columns (variables)</td>
</tr>
<tr>
<td>z</td>
<td>class labels: integer vector of length n, with entries 0, 1 and NA</td>
</tr>
<tr>
<td>Z</td>
<td>class labels: numeric vector of length n, or numeric matrix with n rows (samples) and p columns (variables), with entries 0 and NA</td>
</tr>
<tr>
<td>dist</td>
<td>distributional assumption: character "norm" (Gaussian), "nbinom" (negative binomial), or "zinb" (zero-inflated negative binomial)</td>
</tr>
<tr>
<td>phi</td>
<td>dispersion parameters: numeric vector of length q, or NULL</td>
</tr>
<tr>
<td>pi</td>
<td>zero-inflation parameter(s): numeric vector of length q, or NULL</td>
</tr>
<tr>
<td>gamma</td>
<td>offset: numeric vector of length n, or NULL</td>
</tr>
<tr>
<td>test</td>
<td>resampling procedure: character "perm" (permutation) or "boot" (parametric bootstrap), or NULL</td>
</tr>
<tr>
<td>iter</td>
<td>(maximum) number of resampling iterations: positive integer, or NULL</td>
</tr>
<tr>
<td>kind</td>
<td>resampling accuracy: numeric between 0 and 1, or NULL; all p-values above kind are approximate</td>
</tr>
<tr>
<td>starts</td>
<td>restarts of the EM algorithm: positive integer (defaults to 1)</td>
</tr>
<tr>
<td>it.em</td>
<td>(maximum) number of iterations in the EM algorithm: positive integer (defaults to 100)</td>
</tr>
<tr>
<td>epsilon</td>
<td>convergence criterion for the EM algorithm: non-negative numeric (defaults to 1e-04)</td>
</tr>
<tr>
<td>debug</td>
<td>verification of arguments: TRUE or FALSE</td>
</tr>
<tr>
<td>pass</td>
<td>parameters for parametric bootstrap algorithm</td>
</tr>
<tr>
<td>...</td>
<td>settings EM algorithm: starts, it.em and epsilon (see arguments)</td>
</tr>
</tbody>
</table>

See Also

Use mixtura for model fitting, and scrutor for hypothesis testing. All other functions of the R package semisup are internal.
debug

Internal function

Description

This function verifies whether the arguments fulfill some formal requirements.

Usage

```r
def debug(y, z, dist, phi, pi, gamma, test, iter, kind, ...)
```

Arguments

- `y`: **observations**: numeric vector of length `n`
- `z`: **class labels**: integer vector of length `n`, with entries 0, 1 and NA
- `dist`: distributional assumption: character "norm" (Gaussian), "nbinom" (negative binomial), or "zinb" (zero-inflated negative binomial)
- `phi`: dispersion parameters: numeric vector of length `q`, or NULL
- `pi`: zero-inflation parameter(s): numeric vector of length `q`, or NULL
- `gamma`: offset: numeric vector of length `n`, or NULL
- `test`: resampling procedure: character "perm" (permutation) or "boot" (parametric bootstrap), or NULL
- `iter`: (maximum) number of resampling iterations: positive integer, or NULL
- `kind`: resampling accuracy: numeric between 0 and 1, or NULL; all p-values above `kind` are approximate
- `...`: settings EM algorithm: `starts`, `it.em` and `epsilon` (see arguments)

Details

If one or more entries of `z` are equal to 1, the mixture model can be fitted but not tested. Accordingly, `kind` is replaced by NULL.

Resampling-based testing cannot reach p-values below `1/iter`. If `kind` is smaller than `1/iter`, it is replaced by 0.

Value

This function returns warnings and errors. It also returns `kind` (see details).

See Also

This is an *internal* function. The user functions are `mixtura` and `scrutor`.

Examples

```r
NULL
```
estim.nbinom

estim.nbinom *Internal function*

Description

These functions estimate the parameters of the (zero-inflated) negative binomial distribution by applying the maximum likelihood method to the labelled observations in class 0.

Usage

```r
estim.nbinom(y, z, gamma)
estim.zinb(y, z, gamma)
```

Arguments

- **y**
 observations: numeric vector of length n
- **z**
 class labels: integer vector of length n, with entries 0, 1 and NA
- **gamma**
 offset: numeric vector of length n, or NULL

Value

These functions return a list of numerics.

See Also

These are *internal* functions. The user functions are *mixtura* and *scrutor*.

Examples

```r
# data simulation
n <- 100
y <- stats::rnbinom(n=n,mu=5,size=1/0.05)
y[sample(1:n,size=0.2*n)] <- 0
z <- rep(0,times=n)
gamma <- rep(1,times=n)

# parameter estimation
estim.nbinom(y,z,gamma)
estim.zinb(y,z,gamma)
```
fit.nbinom

Internal function

Description

This function fits the semi-supervised negative binomial mixture model. It is called by fit.wrap.

Usage

fit.nbinom(y, z, phi, gamma, it.em, epsilon)

Arguments

- **y**: observations: numeric vector of length n
- **z**: class labels: integer vector of length n, with entries 0, 1 and NA
- **phi**: dispersion parameters: numeric vector of length q, or NULL
- **gamma**: offset: numeric vector of length n, or NULL
- **it.em**: (maximum) number of iterations in the EM algorithm: positive integer (defaults to 100)
- **epsilon**: convergence criterion for the EM algorithm: non-negative numeric (defaults to 1e-04)

Value

This function returns the parameter estimates, the posterior probabilities, and the likelihood.

See Also

This is an internal function. The user functions are mixtura and scrutor.

Examples

```r
# data simulation
n <- 100
z <- rep(0:1,each=n/2)
gamma <- runif(n=n,min=0,max=2)
y <- rnbinom(n=n,mu=gamma*(5+2*z),size=1/0.05)
z[(n/4):n] <- NA

# model fitting
fit.nbinom(y,z,phi=0.05,gamma=gamma,
          it.em=100,epsilon=1e-04)
```
fit.norm

Internal function

Description

This function fits the semi-supervised Gaussian mixture model. It is called by `fit.wrap`.

Usage

`fit.norm(y, z, it.em, epsilon)`

Arguments

- `y` **observations**: numeric vector of length `n`
- `z` **class labels**: integer vector of length `n`, with entries 0, 1, and NA
- `it.em` (maximum) number of iterations in the EM algorithm: positive integer (defaults to 100)
- `epsilon` convergence criterion for the EM algorithm: non-negative numeric (defaults to 1e-04)

Value

This function returns the parameter estimates, the posterior probabilities, and the likelihood.

See Also

This is an internal function. The user functions are `mixtura` and `scrutor`.

Examples

```r
# data simulation
n <- 100
z <- rep(0:1,each=n/2)
y <- rnorm(n=n,mean=2*z,sd=1)
z[(n/4):n] <- NA

# model fitting
fit.norm(y, z, it.em=100, epsilon=1e-04)
```
Description

This function fits the semi-supervised mixture model multiple times. It is called by `mixtura` and `scrutor`.

Usage

```r
fit.wrap(y, z, dist, phi, pi, gamma, starts = 1, it.em = 100, epsilon = 1e-04)
```

Arguments

- **y**: observations: numeric vector of length n
- **z**: class labels: integer vector of length n, with entries 0, 1 and NA
- **dist**: distributional assumption: character "norm" (Gaussian), "nbinom" (negative bionomial), or "zinb" (zero-inflated negative binomial)
- **phi**: dispersion parameters: numeric vector of length q, or NULL
- **pi**: zero-inflation parameter(s): numeric vector of length q, or NULL
- **gamma**: offset: numeric vector of length n, or NULL
- **starts**: restarts of the EM algorithm: positive integer (defaults to 1)
- **it.em**: (maximum) number of iterations in the EM algorithm: positive integer (defaults to 100)
- **epsilon**: convergence criterion for the EM algorithm: non-negative numeric (defaults to 1e-04)

Details

The distributions are parametrised as follows:

- **Gaussian**
 - \(y \sim N(\text{mean}, \text{sd}^2) \)
 - \(E[y]=\text{mean} \)
 - \(\text{Var}[y]=\text{sd}^2 \)

- **Negative binomial**
 - \(y \sim NB(\mu,\phi) \)
 - \(E[y]=\mu \)
 - \(\text{Var}[y]=\mu+\phi*\mu^2 \)

- **Zero-inflated negative binomial**
 - \(y \sim ZINB(\mu,\phi,p) \)
 - \(E[y]=(1-p)*\mu \)
Value

This function returns the parameter estimates, the posterior probabilities, and the likelihood.

- **posterior**: probability of belonging to class 1; numeric vector of length \(n \)
- **converge**: path of the log-likelihood; numeric vector with maximum length \(\text{it} \cdot \text{em} \)
- **estim0**: parameter estimates under \(H_0 \); data frame
- **estim1**: parameter estimates under \(H_1 \); data frame
- **loglik0**: log-likelihood under \(H_0 \); numeric
- **loglik1**: log-likelihood under \(H_1 \); numeric
- **lrts**: likelihood-ratio test statistic; positive numeric

See Also

This is an *internal* function. The user functions are *mixtura* and *scrutor*.

Examples

```r
# data simulation
n <- 100
z <- rep(0:1,each=n/2)
y <- rnorm(n=n,mean=2*z,sd=1)
z[(n/4):n] <- NA

# model fitting
fit.wrap(y,z,dist="norm")
```

Description

This function fits the semi-supervised zero-inflated negative binomial mixture model. It is called by *fit.wrap*.

Usage

```r
fit.zinb(y, z, phi, pi, gamma, it.em, epsilon)
```

Arguments

- **y**: numeric vector of length \(n \)
- **z**: integer vector of length \(n \), with entries 0, 1 and NA
- **phi**: dispersion parameters; numeric vector of length \(q \), or NULL
- **pi**: zero-inflation parameter(s); numeric vector of length \(q \), or NULL
gamma : numeric vector of length n, or NULL
it.em : (maximum) number of iterations in the EM algorithm: positive integer (defaults to 100)
epsilon : convergence criterion for the EM algorithm: non-negative numeric (defaults to 1e-04)

Value
This function returns the parameter estimates, the posterior probabilities, and the likelihood.

See Also
This is an internal function. The user functions are mixtura and scrutor.

Examples

```r
# data simulation
n <- 100
z <- rep(0:1,each=n/2)
gamma <- runif(n=n,min=0,max=2)
y <- rnbinom(n=n,mu=gamma*(5+2*z),size=1/0.05)
y[sample(1:n,size=0.2*n)] <- 0
z[(n/4):n] <- NA

# model fitting
fit.zinb(y,z,phi=0.05,pi=0.2,gamma=gamma,
it.em=100,epsilon=1e-04)
```

Description
This page lists and describes some internal functions of the R package semisup. These functions should not be used for analysing data.

- fit.wrap multiple restarts
- fit.norm Gaussian mixture model
- fit.nbinom negative binomial mixture model
- fit.zinb zero-inflated negative binomial mixture model
- estim.nbinom dispersion estimation
- estim.zinb dispersion and zero-inflation estimation
- resam.lrts resampling (bootstrap, permutation)

See Also
Use mixtura for model fitting, and scrutor for hypothesis testing.
mixtura

Model fitting

Description
This function fits a semi-supervised mixture model. It simultaneously estimates two mixture components, and assigns the unlabelled observations to these.

Usage
mixtura(y, z, dist = "norm",
 phi = NULL, pi = NULL, gamma = NULL,
 test = NULL, iter = 100, kind = 0.05,
 debug = TRUE, ...)

Arguments
 y observations: numeric vector of length n
 z class labels: integer vector of length n, with entries 0, 1 and NA
 dist distributional assumption: character "norm" (Gaussian), "nbinom" (negative bionomial), or "zinb" (zero-inflated negative binomial)
 phi dispersion parameters: numeric vector of length q, or NULL
 pi zero-inflation parameter(s): numeric vector of length q, or NULL
 gamma offset: numeric vector of length n, or NULL
 test resampling procedure: character "perm" (permutation) or "boot" (parametric bootstrap), or NULL
 iter (maximum) number of resampling iterations: positive integer, or NULL
 kind resampling accuracy: numeric between 0 and 1, or NULL; all p-values above kind are approximate
 debug verification of arguments: TRUE or FALSE
... settings EM algorithm: starts, it.em and epsilon (see arguments)

Details
By default, phi and pi are estimated by the maximum likelihood method, and gamma is replaced by a vector of ones.

Value
This function fits and compares a one-component (H0) and a two-component (H1) mixture model.
 posterior probability of belonging to class 1: numeric vector of length n
 converge path of the log-likelihood: numeric vector with maximum length it.em
 estim0 parameter estimates under H0: data frame
estim1 parameter estimates under H1: data frame
loglik0 log-likelihood under H0: numeric
loglik1 log-likelihood under H1: numeric
lrts likelihood-ratio test statistic: positive numeric
p.value H0 versus H1: numeric between 0 and 1, or NULL

Reference

See Also
Use scrutor for hypothesis testing. All other functions are internal.

Examples
data simulation
n <- 100
z <- rep(0:1,each=n/2)
y <- rnorm(n=n,mean=2,sd=1)
z[(n/4):n] <- NA

model fitting
mixtura(y, z, dist="norm", test="perm")

resam.lrts Internal function

Description
This function resamples the data, fits the semi-supervised mixture model, and returns the likelihood ratio test statistic. It is called by mixtura.

Usage
resam.lrts(y, z, dist, phi, pi, gamma, test, pass, ...)

Arguments

y observations: numeric vector of length n
z class labels: integer vector of length n, with entries 0, 1 and NA
dist distributional assumption: character "norm" (Gaussian), "nbinom" (negative binomial), or "zinha" (zero-inflated negative binomial)
scrutor

Hypothesis testing

This function tests whether the unlabelled observations come from a mixture of two distributions.

Usage

```r
scrutor(Y, Z, dist = "norm",
        phi = NULL, pi = NULL, gamma = NULL,
        test = "perm", iter = NULL, kind = NULL,
        debug = TRUE, ...)
```

Value

This function returns a numeric.

See Also

This is an internal function. The user functions are `mixtura` and `scrutor`.

Examples

```r
# data simulation
n <- 100
z <- rep(0:1, each=n/2)
y <- rnorm(n=n, mean=2*z, sd=1)
z[(n/4):n] <- NA

# observed test statistic
fit.wrap(y=y, z=z, dist="norm")$lrts

# simulated test statistic
resam.lrts(y=y, z=z, dist="norm",
           phi=NULL, pi=NULL, gamma=NULL,
           test="perm", pass=NULL)
```
Arguments

Y observations: numeric vector of length n, or numeric matrix with n rows (samples) and q columns (variables)

Z class labels: numeric vector of length n, or numeric matrix with n rows (samples) and p columns (variables), with entries 0 and NA

dist distributional assumption: character "norm" (Gaussian), "nbinom" (negative binomial), or "zibn" (zero-inflated negative binomial)

phi dispersion parameter(s): numeric vector of length q, or NULL (norm: none, nbinom: MLE)

pi zero-inflation parameter(s): numeric vector of length q, or NULL (norm: none, nbinom: MLE)

gamma offset: numeric vector of length n, or NULL

test resampling procedure: character "perm" (permutation) or "boot" (parametric bootstrap), or NULL

iter (maximum) number of resampling iterations: positive integer, or NULL

kind resampling accuracy: numeric between 0 and 1, or NULL; all p-values above kind are approximate

debug verification of arguments: TRUE or FALSE

... settings EM algorithm: starts, it.em and epsilon (see arguments)

Details

By default, phi and pi are estimated by the maximum likelihood method, and gamma is replaced by a vector of ones.

Value

This function tests a one-component (H0) against a two-component mixture model (H1).

y index observations

z index class labels

lrts test statistic

p.value p-value

Reference

See Also

Use mixtura for model fitting. All other functions are internal.
Examples

```r
# data simulation
n <- 100
z <- rep(0:1, each=n/2)
y <- rnorm(n=n, mean=2*z, sd=1)
z[(n/4):n] <- NA

# hypothesis testing
scrutor(y, z, dist="norm")
```

table
Table

Description
This dataset includes tables for the approximate mixture test (*not yet available*).

Usage

data(table)

Format

A list of numeric vectors.

Value

All entries are numeric.

toydata
Toydata

Description

This dataset allows to reproduce the examples shown in the vignette.

Usage

data(toydata)

Format

A list of numeric vectors and matrices.

Value

All entries are numeric.
Index

* documentation
 semisup-package, 2

* internal
 arguments, 3
 debug, 4
 estim.nbinom, 5
 fit.nbinom, 6
 fit.norm, 7
 fit.wrap, 8
 fit.zinb, 9
 internal, 10
 resam.lrts, 12
 table, 15
 toydata, 15

* methods
 mixtura, 11
 scrutor, 13

arguments, 3, 3, 4, 11, 13, 14

ddebug, 4

estim.nbinom, 5, 10
estim.zinb, 10
estim.zinb (estim.nbinom), 5

fit.nbinom, 6, 10
fit.norm, 7, 10
fit.wrap, 6, 7, 8, 9, 10
fit.zinb, 9, 10

internal, 3–7, 9, 10, 10, 12–14

mixtura, 2–10, 11, 12–14

resam.lrts, 10, 12

scrutor, 2–10, 12, 13, 13

semisup, 3, 10

semisup (semisup-package), 2

semisup-package, 2