Package ‘sitePath’

May 18, 2024

Type Package

Title Phylogeny-based sequence clustering with site polymorphism

Version 1.20.0

Description Using site polymorphism is one of the ways to cluster DNA/protein sequences but it is possible for the sequences with the same polymorphism on a single site to be genetically distant. This package is aimed at clustering sequences using site polymorphism and their corresponding phylogenetic trees. By considering their location on the tree, only the structurally adjacent sequences will be clustered. However, the adjacent sequences may not necessarily have the same polymorphism. So a branch-and-bound like algorithm is used to minimize the entropy representing the purity of site polymorphism of each cluster.

License MIT + file LICENSE

Depends R (>= 4.1)

Imports RColorBrewer, Rcpp, ape, aplot, ggplot2, ggrepel, ggtree, graphics, grDevices, gridExtra, methods, parallel, seqinr, stats, tidytree, utils

Suggests BiocStyle, devtools, knitr, magick, rmarkdown, testthat

LinkingTo Rcpp

RoxygenNote 7.1.2

Encoding UTF-8

VignetteBuilder knitr

URL https://wuaipinglelab.github.io/sitePath/

BugReports https://github.com/wuaipinglelab/sitePath/issues

biocViews Alignment, MultipleSequenceAlignment, Phylogenetics, SNP, Software

git_url https://git.bioconductor.org/packages/sitePath

git_branch RELEASE_3_19

git_last_commit bcfdf3

git_last_commit_date 2024-04-30
Contents

Repository Bioconductor 3.19
Date/Publication 2024-05-17
Author Chengyang Ji [aut, cre, cph] (<https://orcid.org/0000-0001-9258-5453>), Hangyu Zhou [ths], Aiping Wu [ths]
Maintainer Chengyang Ji <chengyang.ji12@alumni.xjtu.edu.cn>

Contents

- allSitesName .. 3
- as.data.frame.fixationSites 4
- extractSite ... 5
- extractTips ... 5
- fixationIndels ... 7
- fixationPath ... 7
- fixationSites ... 8
- groupTips ... 9
- h3n2_align ... 10
- h3n2_tree ... 11
- lineagePath ... 11
- paraFixSites ... 14
- parallelSites .. 16
- phyMSAmatched .. 17
- plot.phyMSAmatched ... 18
- plotFixationSites ... 20
- plotMutSites ... 21
- plotParallelSites ... 22
- plotSingleSite .. 23
- reexports ... 24
- sars2_align ... 24
- sars2_tree ... 25
- setSiteNumbering ... 25
- similarityMatrix .. 26
- sitePath-deprecated ... 27
- sitesMinEntropy .. 27
- SNPsites ... 28
- zikv_align ... 29
- zikv_tree ... 29

Index ... 30
allSitesName

Retrieve position of all the sites

Description

The function is a way to get position of the resulting sites from `SNPsites`, `fixationSites` and `parallelSites`. The numbering is consistent with what’s being set by `setSiteNumbering`.

Usage

```r
allSitesName(x, ...)  
```

```r
## S3 method for class 'SNPsites'
allSitesName(x, ...)
```

```r
## S3 method for class 'sitesMinEntropy'
allSitesName(x, ...)
```

```r
## S3 method for class 'fixationSites'
allSitesName(x, ...)
```

```r
## S3 method for class 'parallelSites'
allSitesName(x, ...)
```

```r
## S3 method for class 'paraFixSites'
allSitesName(x, type = c("paraFix", "fixation", "parallel"), ...)
```

Arguments

- `x` The object containing the sites from analysis
- `...` Other arguments
- `type` Return fixation or parallel sites

Value

An integer vector for sites position

Examples

```r
data(zikv_tree)
snp <- SNPsites(tree)
allSitesName(snp)
```
Description

Convert return of functions in sitePath package to a data.frame so can be better worked with. The group name for each tip is the same as groupTips.

A fixationSites object will output the mutation name of the fixation and the cluster name before and after the mutation.

An SNPsites object will output the tip name with the SNP and its position.

An parallelSites object will output the tip name with the group name and mutation info.

Usage

S3 method for class 'fixationSites'
as.data.frame(x, row.names = NULL, optional = FALSE, ...)

S3 method for class 'SNPsites'
as.data.frame(x, row.names = NULL, optional = FALSE, ...)

S3 method for class 'parallelSites'
as.data.frame(x, row.names = NULL, optional = FALSE, ...)

Arguments

x The object to be converted to data.frame.
row.names Unimplemented.
optional Unimplemented.
... Other arguments.

Value

A data.frame object.

Examples

data(zikv_tree_reduced)
data(zikv_align_reduced)
tree <- addMSA(zikv_tree_reduced, alignment = zikv_align_reduced)
fixations <- fixationSites(lineagePath(tree))
as.data.frame(fixations)
extractSite

extractSite

Extract tips for a single site

Description

The functions in `sitePath` usually include the results on more than one site. The function `extractSite` can be used to extract the predicted result on a single site.

Usage

```r
evaluate(x, site, ...)  
## S3 method for class 'fixationSites'  
evaluate(x, site, ...)  
```

Arguments

- `x` A `fixationSites` or a `parallelSites` object. More type will be supported in the later version.
- `site` A site included in the result.
- `...` Other arguments

Value

The predicted result of a single site

Examples

```r  
data(zikv_tree_reduced)  
data(zikv_align_reduced)  
tree <- addMSA(zikv_tree_reduced, alignment = zikv_align_reduced)  
mutations <- fixationSites(lineagePath(tree))  
evaluate(mutations, 139)
```

extractTips

Extract grouped tips for a single site

Description

The result of `fixationSites` and `sitePath` contains all the possible sites with fixation mutation. The function `extractTips` retrieves the name of the tips involved in the fixation.

For `lineagePath`, the function `extractTips` groups all the tree tips according to the amino acid/nucleotide of the site.

For `parallelSites` and `sitePara` object, the function `extractTips` retrieve all the tips with parallel mutation.
Usage

```r
extractTips(x, ...)
```

S3 method for class 'lineagePath'

```r
extractTips(x, site, ...)
```

S3 method for class 'sitesMinEntropy'

```r
extractTips(x, site, ...)
```

S3 method for class 'fixationSites'

```r
extractTips(x, site, select = 1, ...)
```

S3 method for class 'sitePath'

```r
extractTips(x, select = 1, ...)
```

S3 method for class 'parallelSites'

```r
extractTips(x, site, ...)
```

S3 method for class 'sitePara'

```r
extractTips(x, ...)
```

Arguments

- `x` A fixationSites or a sitePath object.
- `...` Other arguments
- `site` A site predicted to experience fixation.
- `select` For a site, there theoretically might be more than one fixation on different lineages. You may use this argument to extract for a specific fixation of a site. The default is the first fixation of the site.

Value

Tree tips grouped as `list`

Examples

```r
data(zikv_tree_reduced)
data(zikv_align_reduced)
tree <- addMSA(zikv_tree_reduced, alignment = zikv_align_reduced)
mutations <- fixationSites(lineagePath(tree))
extractTips(mutations, 139)
```
fixationIndels Fixation indels prediction

Description
The fixation of insertions of deletions.

Usage
fixationIndels(x, ...)

S3 method for class 'sitesMinEntropy'
fixationIndels(x, ...)

Arguments
x The return from sitesMinEntropy function.
... Other arguments.

Value
A fixationIndels object.

Examples
data(zikv_tree_reduced)
data(zikv_align_reduced)
tree <- addMSA(zikv_tree_reduced, alignment = zikv_align_reduced)
fixationIndels(sitesMinEntropy(tree))

fixationPath Accumulation of fixed mutation as a tree

Description
The tips are clustered according to the fixation sites. The transition of fixation sites will be plotted as a phylogenetic tree. The length of each branch represents the number of fixation mutation between two clusters. The name of the tree tips indicate the number of sequences in the cluster.

Usage
fixationPath(x, ...)

S3 method for class 'sitesMinEntropy'
fixationPath(x, minEffectiveSize = NULL, ...)

S3 method for class 'fixationSites'
fixationPath(x, minEffectiveSize = NULL, ...)
fixationSites

Arguments

x
The return from fixationSites function.

...
Further arguments passed to or from other methods.

minEffectiveSize
The minimum size for a tip cluster.

Value

An fixationPath object

Examples

data(zikv_tree_reduced)
data(zikv_align_reduced)
tree <- addMSA(zikv_tree_reduced, alignment = zikv_align_reduced)
paths <- lineagePath(tree)
mutations <- fixationSites(paths)
fixationPath(mutations)

Description

After finding the lineagePath of a phylogenetic tree, fixationSites uses the result to find those sites that show fixation on some, if not all, of the lineages. The number of tips before and after the fixation mutation is expected to be more than minEffectiveSize. Also, the fixation will be skipped if the amino acid/nucleotide is gap or ambiguous character. A lineage has to have at least one fixation mutation to be reported.

Usage

fixationSites(paths, ...)

S3 method for class 'lineagePath'
fixationSites(
 paths,
 minEffectiveSize = NULL,
 searchDepth = 1,
 method = c("compare", "insert", "delete"),
 ...
)

S3 method for class 'sitesMinEntropy'
fixationSites(paths, ...)

S3 method for class 'paraFixSites'
fixationSites(paths, ...)
Arguments

paths A lineagePath object returned from `lineagePath` function.

... further arguments passed to or from other methods.

minEffectiveSize The minimum number of tips in a group.

searchDepth The function uses heuristic search but the termination of the search cannot be intrinsically decided. `searchDepth` is needed to tell the search when to stop.

method The strategy for predicting the fixation. The basic approach is entropy minimization and can be achieved by adding or removing fixation point, or by comparing the two.

Value

A `fixationSites` object.

See Also

`as.data.frame.fixationSites`

Examples

```r
data(zikv_tree_reduced)
data(zikv_align_reduced)
tree <- addMSA(zikv_tree_reduced, alignment = zikv_align_reduced)
fixationSites(lineagePath(tree))
```

Description

The tips between divergent nodes or fixation mutations on the lineages are each gathered as group.

Usage

```r
groupTips(tree, ...)

## S3 method for class 'phyMSAmatched'
groupTips(
  tree,
  similarity = NULL,
  simMatrix = NULL,
  forbidTrivial = TRUE,
  tipnames = TRUE,
  ...
)
```
S3 method for class 'lineagePath'

```
groupTips(tree, tipnames = TRUE, ...)  
```

S3 method for class 'sitesMinEntropy'

```
groupTips(tree, tipnames = TRUE, ...)  
```

S3 method for class 'fixationSites'

```
groupTips(tree, tipnames = TRUE, ...)  
```

S3 method for class 'fixationPath'

```
groupTips(tree, tipnames = TRUE, ...)  
```

Arguments

- **tree**
 The return from `addMSA`, `lineagePath`, `sitesMinEntropy` or other functions.

- **...**
 Other arguments.

- **similarity**
 This decides how minor SNPs are to remove. If provided as fraction between 0 and 1, then the minimum number of SNP will be total tips times similarity. If provided as integer greater than 1, the minimum number will be similarity. The default similarity is 0.05 for `lineagePath`.

- **simMatrix**
 Deprecated and will not have effect.

- **forbidTrivial**
 Does not allow trivial trimming.

- **tipnames**
 If return tips as integer or tip names.

Value

`groupTips` returns grouping of tips.

Examples

```r
data(zikv_tree)
data(zikv_align)
tree <- addMSA(zikv_tree, alignment = zikv_align)
groupTips(tree)
```

h3n2_align

Multiple sequence alignment of H3N2’s HA protein

Description

The raw protein sequences were downloaded from NCBI database and aligned using MAFFT (https://mafft.cbrc.jp/alignment/software/).

`h3n2_align_reduced` is a truncated version of `h3n2_align`
Usage

data(h3n2_align)

data(h3n2_align_reduced)

Format

an alignment object
an alignment object

h3n2_tree Phylogenetic tree of H3N2's HA protein

Description

Tree was built from h3n2_align using RAxML (http://www.exelixis-lab.org/) with default settings.

h3n2_tree_reduced is a truncated version of h3n2_tree

Usage

data(h3n2_tree)

data(h3n2_tree_reduced)

Format

a phylo object
a phylo object

lineagePath Resolving lineage paths using SNP

Description

lineagePath finds the lineages of a phylogenetic tree providing the corresponding sequence alignment. This is done by finding 'major SNPs' which usually accumulate along the evolutionary pathways.

sneakPeek is intended to plot 'similarity' (actually the least percentage of 'major SNP') as a threshold against number of output lineagePath. This plot is intended to give user a rough view about how many lineages they could expect from the 'similarity' threshold in the function lineagePath. The number of lineagePath is preferably not be too many or too few. The result excludes where the number of lineagePath is greater than number of tips divided by 20 or user-defined maxPath. The zero lineagePath result will also be excluded.
When used on the return of sneakPeek, a lineagePath with the closest similarity will be retrieved from the returned value.

similarity has no effect when using on paraFixSites object.

Usage

lineagePath(tree, similarity, ...)

S3 method for class 'phylo'
lineagePath(
 tree,
 similarity = NULL,
 alignment = NULL,
 seqType = c("AA", "DNA", "RNA"),
 reference = NULL,
 gapChar = "-",
 minSkipSize = NULL,
 ...
)

S3 method for class 'treedata'
lineagePath(tree, ...)

S3 method for class 'phyMSAmatched'
lineagePath(
 tree,
 similarity = NULL,
 simMatrix = NULL,
 forbidTrivial = TRUE,
 ...
)

sneakPeek(tree, step = 9, maxPath = NULL, minPath = 0, makePlot = TRUE)

S3 method for class 'sneakPeekedPaths'
lineagePath(tree, similarity, ...)

S3 method for class 'paraFixSites'
lineagePath(tree, similarity = NULL, ...)

Arguments

- **tree**
 The return from addMSA or sneakPeek function.

- **similarity**
 The parameter for identifying phylogenetic pathway using SNP. If provided as fraction between 0 and 1, then the minimum number of SNP will be total tips times Nmin. If provided as integer greater than 1, the minimum number will be Nmin.

- **...**
 Other arguments.
alignment An alignment object. This commonly can be from sequence parsing function in the seqinr package. Sequence names in the alignment should include all tip.label in the tree.

seqType The type of the sequence in the alignment file. The default is "AA" for amino acid. The other options are "DNA" and "RNA".

reference Name of reference for site numbering. The name has to be one of the sequences' name. The default uses the intrinsic alignment numbering.

gapChar The character to indicate gap. The numbering will skip the gapChar for the reference sequence.

minSkipSize The minimum number of tips to have gap or ambiguous amino acid/nucleotide for a site to be ignored in other analysis. This will not affect the numbering. The default is 0.8.

simMatrix Deprecated and will not have effect.

forbidTrivial Does not allow trivial trimming.

step the 'similarity' window for calculating and plotting. To better see the impact of threshold on path number. The default is 10.

maxPath maximum number of path to return show in the plot. The number of path in the raw tree can be far greater than trimmed tree. To better see the impact of threshold on path number. This is preferably specified. The default is one 20th of tree tip number.

minPath minimum number of path to return show in the plot. To better see the impact of threshold on path number. The default is 1.

makePlot Whether make a plot when return.

Value

Lineage path represent by node number.

sneakPeek return the similarity threhold against number of lineagePath. There will be a simple dot plot between threshold and path number if makePlot is TRUE.

Examples

data('zikv_tree')
data('zikv_align')
tree <- addMSA(zikv_tree, alignment = zikv_align)
lineagePath(tree)
sneakPeek(tree, step = 3)
x <- sneakPeek(tree, step = 3)
lineagePath(x, similarity = 0.05)
paraFixSites

The fixation sites with mutation on parallel lineage

Description

The operation between the results of fixationSites and parallelSites.

Usage

paraFixSites(x, ...)

S3 method for class 'phylo'
paraFixSites(
 x,
 alignment = NULL,
 seqType = c("AA", "DNA", "RNA"),
 Nmin = NULL,
 reference = NULL,
 gapChar = "-",
 minSkipSize = NULL,
 ...
)

S3 method for class 'treedata'
paraFixSites(x, ...)

S3 method for class 'lineagePath'
paraFixSites(
 x,
 minEffectiveSize = NULL,
 searchDepth = 1,
 method = c("compare", "insert", "delete"),
 ...
)

S3 method for class 'sitesMinEntropy'
paraFixSites(
 x,
 category = c("intersect", "union", "parallelOnly", "fixationOnly"),
 minSNP = NULL,
 mutMode = c("all", "exact", "pre", "post"),
 ...
)

Arguments

x A lineagePath object returned from lineagePath function.
paraFixSites

... further arguments passed to or from other methods.

alignment An alignment object. This commonly can be from sequence parsing function in the \texttt{seqinr} package. Sequence names in the alignment should include all \texttt{tip.label} in the tree.

seqType The type of the sequence in the alignment file. The default is "AA" for amino acid. The other options are "DNA" and "RNA".

Nmin The parameter for identifying phylogenetic pathway using SNP. If provided as fraction between 0 and 1, then the minimum number of SNP will be total tips times Nmin. If provided as integer greater than 1, the minimum number will be Nmin.

reference Name of reference for site numbering. The name has to be one of the sequences’ name. The default uses the intrinsic alignment numbering

gapChar The character to indicate gap. The numbering will skip the gapChar for the reference sequence.

minSkipSize The minimum number of tips to have gap or ambiguous amino acid/nucleotide for a site to be ignored in other analysis. This will not affect the numbering. The default is 0.8.

minEffectiveSize The minimum number of tips in a group.

searchDepth The function uses heuristic search but the termination of the search cannot be intrinsically decided. \texttt{searchDepth} is needed to tell the search when to stop.

method The strategy for predicting the fixation. The basic approach is entropy minimization and can be achieved by adding or removing fixation point, or by comparing the two.

category Could be \texttt{parallelOnly}, \texttt{fixationOnly}, \texttt{intersect} or \texttt{union}.

minSNP The minimum number of mutations to be qualified as parallel on at least two lineages. The default is 1.

mutMode The strategy for finding parallel site. The default \texttt{all} is to consider any mutation regardless of the amino acid/nucleotide before and after mutation; Or \texttt{exact} to force mutation to be the same; Or \texttt{pre/post} to select the site having amino acid/nucleotide before/after mutation.

Value

A \texttt{paraFixSites} object.

Examples

\begin{verbatim}
data(zikv_tree_reduced)
data(zikv_align_reduced)
paraFixSites(zikv_tree_reduced, alignment = zikv_align_reduced)
\end{verbatim}
parallelSites

Mutation across multiple phylogenetic lineages

Description

A site may have mutated on parallel lineages. Mutation can occur on the same site across the phylogenetic lineages solved by `lineagePath`. The site will be considered mutated in parallel if the mutation occurs on the non-overlap part of more than two lineages. The amino acid/nucleotide before and after the mutation can be allowed different on different lineages or only the exact same mutations are considered.

Usage

```r
parallelSites(x, ...)
```

Arguments

- `x` A `lineagePath` or a `sitesMinEntropy` object.
- `...` The arguments in `sitesMinEntropy`.
- `minSNP` The minimum number of mutations to be qualified as parallel on at least two lineages. The default is 1.
- `mutMode` The strategy for finding parallel site. The default `all` is to consider any mutation regardless of the amino acid/nucleotide before and after mutation; Or exact to force mutation to be the same; Or `pre/post` to select the site having amino acid/nucleotide before/after mutation.
Value

A `parallelSites` object

Examples

```r
data(zikv_tree_reduced)
data(zikv_align_reduced)
tree <- addMSA(zikv_tree_reduced, alignment = zikv_align_reduced)
paths <- lineagePath(tree)
x <- sitesMinEntropy(paths)
parallelSites(x)
```

Description

`addMSA` wraps `read.alignment` function in `seqinr` package and helps match names in tree and sequence alignment. Either provide the file path to an alignment file and its format or an alignment object from the return of `read.alignment` function. If both the file path and alignment object are given, the function will use the sequence in the alignment file.

Usage

```r
addMSA(tree, ...)
```

S3 method for class 'phylo'

```r
addMSA(
  tree,
  msaPath = "",
  msaFormat = c("fasta", "clustal", "phylip", "mase", "msf"),
  alignment = NULL,
  seqType = c("AA", "DNA", "RNA"),
  ...
)
```

S3 method for class 'treedata'

```r
addMSA(tree, ...)
```

Arguments

- `tree`
 A `phylo` object. This commonly can be from tree parsing function in `ape` or `ggtree`. All the `tip.label` should be found in the sequence alignment. The tree is supposed to be fully resolved (bifurcated) and will be resolved by `multi2di` if `is.binary` gives `FALSE`.

- `...`
 Other arguments.

- `msaPath`
 The file path to the multiple sequence alignment file.
The format of the multiple sequence alignment file. The internal uses the \texttt{read.alignment} from \texttt{seqinr} package to parse the sequence alignment. The default is "fasta" and it also accepts "clustal", "phylip", "mase", "msf".

An alignment object. This commonly can be from sequence parsing function in the \texttt{seqinr} package. Sequence names in the alignment should include all tip.label in the tree.

The type of the sequence in the alignment file. The default is "AA" for amino acid. The other options are "DNA" and "RNA".

Since 1.5.12, the function returns a \texttt{phyMSAmatched} object to avoid S3 methods used on \texttt{phylo} (better encapsulation).

\textbf{See Also}

\texttt{read.alignment}

\textbf{Examples}

```r
data(zikv_tree)
msaPath <- system.file('extdata', 'ZIKV.fasta', package = 'sitePath')
addMSA(zikv_tree, msaPath = msaPath, msaFormat = 'fasta')
```

\textbf{Description}

The plot function to visualize the return of functions in the package. The underlying function applies \texttt{ggplot2}. The function name \texttt{plot} is used to keep the compatibility with previous versions, but they do not behave like the generic \texttt{plot} function since 1.5.4.

A \texttt{phyMSAmatched} object will be plotted as a tree diagram.

A \texttt{lineagePath} object will be plotted as a tree diagram and paths are black solid line while the trimmed nodes and tips will use gray dashed line.

A \texttt{parallelSites} object will be plotted as original phylogenetic tree marked with parallel mutations attached as dot plot.

A \texttt{fixationSites} object will be plotted as original phylogenetic tree marked with fixation substitutions.

A \texttt{sitePath} object can be extracted by using \texttt{extractSite} on the return of \texttt{fixationSites}.

A \texttt{fixationIndels} object will be plotted as original phylogenetic tree marked with indel fixation.

A \texttt{fixationPath} object will be plotted as a \texttt{phylo} object. The tips are clustered according to the fixation sites. The transition of fixation sites will be plotted as a phylogenetic tree. The length of each branch represents the number of fixation mutation between two clusters.
Usage

S3 method for class 'phyMSAmatched'
plot(x, y = TRUE, ...)

S3 method for class 'lineagePath'
plot(x, y = TRUE, showTips = FALSE, ...)

S3 method for class 'parallelSites'
plot(x, y = TRUE, ...)

S3 method for class 'fixationSites'
plot(x, y = TRUE, tipsGrouping = NULL, ...)

S3 method for class 'sitePath'
plot(x, y = NULL, select = NULL, showTips = FALSE, ...)

S3 method for class 'fixationIndels'
plot(x, y = TRUE, ...)

S3 method for class 'fixationPath'
plot(x, y = TRUE, ...)

Arguments

x The object to plot.
y Whether to show the fixation mutation between clusters. For lineagePath object and sitePath object, it is deprecated and no longer have effect since 1.5.4.

... Other arguments. Since 1.5.4, the function uses ggtree as the base function to make plots so the arguments in plot.phylo will no longer work.

showTips Whether to plot the tip labels. The default is FALSE.
tipsGrouping A list to hold the grouping of tips for how the tree will be colored.
select For a sitePath object, it can have result on more than one evolution pathway. This is to select which path to plot. The default is NULL which will plot all the paths. It is the same as select in plotSingleSite.

Value

A ggplot object to make the plot.

Examples

data(zikv_tree)
data(zikv_align)
tree <- addMSA(zikv_tree, alignment = zikv_align)
plot(tree)
paths <- lineagePath(tree)
plot(paths)
parallel <- parallelSites(paths)
plotFixationSites

Plot the result of fixation sites

Description

Visualize the results of paraFixSites

Usage

plotFixationSites(x, ...)

S3 method for class 'fixationSites'
plotFixationSites(x, site = NULL, ...)

S3 method for class 'paraFixSites'
plotFixationSites(x, site = NULL, ...)

Arguments

x

return from paraFixSites

...

further arguments passed to or from other methods.

site

the number of the site according to setSiteNumbering. If not provided, all sites will be plotted as labels on the tree

Value

A ggplot object.

Examples

data(zikv_tree_reduced)
data(zikv_align_reduced)
paraFix <- paraFixSites(zikv_tree_reduced, alignment = zikv_align_reduced)
plotFixationSites(paraFix)
plotMutSites

Plot tree and mutation sites

Description

The mutated sites for each tip in a phylogenetic tree will be represented as colored dots positioned by their site number.

Usage

plotMutSites(x, ...)

S3 method for class 'SNPsites'
plotMutSites(x, showTips = FALSE, ...)

S3 method for class 'lineagePath'
plotMutSites(x, ...)

S3 method for class 'parallelSites'
plotMutSites(x, ...)

S3 method for class 'fixationSites'
plotMutSites(x, ...)

S3 method for class 'paraFixSites'
plotMutSites(
 x,
 widthRatio = 0.75,
 fontSize = 3.88,
 dotSize = 1,
 lineSize = 0.5,
 ...
)

Arguments

x

An SNPsites object.

... Other arguments

showTips Whether to plot the tip labels. The default is FALSE.

widthRatio The width ratio between tree plot and SNP plot

fontSize The font size of the mutation label in tree plot

dotSize The dot size of SNP in SNP plot

lineSize The background line size in SNP plot
Value
A tree plot with SNP as dots for each tip.

Examples
```r
data(zikv_tree_reduced)
data(zikv_align_reduced)
tree <- addMSA(zikv_tree_reduced, alignment = zikv_align_reduced)
plotMutSites(SNPsites(tree))
```

plotParallelSites
Plot the result of fixation sites

Description
Visualize the results of `paraFixSites`

Usage
```r
plotParallelSites(x, ...)
```

S3 method for class 'parallelSites'
```r
plotParallelSites(x, site = NULL, ...)
```

S3 method for class 'paraFixSites'
```r
plotParallelSites(x, site = NULL, ...)
```

Arguments
- `x` return from `paraFixSites`
- `...` further arguments passed to or from other methods.
- `site` the number of the site according to `setSiteNumbering`

Value
A ggplot object.

Examples
```r
data(zikv_tree)
data(zikv_align)
paraFix <- paraFixSites(zikv_tree, alignment = zikv_align)
plotParallelSites(paraFix)
```
plotSingleSite

Color the tree by a single site

Description
Plot and color the tree according to amino acid/nucleotide of the selected site. The color scheme depends on the seqType set in addMSA function.

For **lineagePath**, the tree will be colored according to the amino acid of the site. The color scheme tries to assign distinguishable color for each amino acid.

For **parallelSites**, the tree will be colored according to the amino acid of the site if the mutation is not fixed.

For **fixationSites**, it will color the ancestral tips in red, descendant tips in blue and excluded tips in grey.

Usage

```r
plotSingleSite(x, site, ...)  
## S3 method for class 'lineagePath'
plotSingleSite(x, site, showPath = TRUE, showTips = FALSE, ...)

## S3 method for class 'sitesMinEntropy'
plotSingleSite(x, site, ...)  

## S3 method for class 'parallelSites'
plotSingleSite(x, site, showPath = TRUE, ...)

## S3 method for class 'fixationSites'
plotSingleSite(x, site, select = NULL, ...)
```

Arguments

- `x`: The object to plot.
- `site`: For **lineagePath**, it can be any site within sequence length. For **fixationSites** and **parallelSites**, it is restrained to a predicted fixation site. The numbering is consistent with the reference defined by `setSiteNumbering`.
- `...`: Other arguments. Since 1.5.4, the function uses `ggtree` as the base function to make plots so the arguments in `plot.phylo` will no longer work.
- `showPath`: If plot the lineage result from **lineagePath**. The default is `TRUE`.
- `showTips`: Whether to plot the tip labels. The default is `FALSE`.
- `select`: Select which fixation path in to plot. The default is `NULL` which will plot all the fixations.
Value

Since 1.5.4, the function returns a ggplot object so on longer behaviors like the generic `plot` function.

See Also

`plot.sitePath`

Examples

```r
data(zikv_tree)
data(zikv_align)
tree <- addMSA(zikv_tree, alignment = zikv_align)
paths <- lineagePath(tree)
plotSingleSite(paths, 139)
fixations <- fixationSites(paths)
plotSingleSite(fixations, 139)
```

reexports

Objects exported from other packages

Description

These objects are imported from other packages. Follow the links below to see their documentation.

- `ape` `as.phylo`, `read.tree`
- `seqinr` `read.alignment`
- `tidytree` `as.treedata`

sars2_align

Multiple sequence alignment of SARS-CoV-2 genome CDS

Description

Usage

```r
data(sars2_align)
```

Format

an alignment object
Phylogenetic tree of SARS-CoV-2 genome CDS

Description

Tree was built from `sars2_align` using RAxML (http://www.exelixis-lab.org/) with default settings. The tip `EPI_ISL_402125` was used as the outgroup to root the tree.

Usage

```r
data(sars2_tree)
```

Format

a phylo object

setSiteNumbering

Set site numbering to the reference sequence

Description

A reference sequence can be used to define a global site numbering scheme for multiple sequence alignment. The gap in the reference sequence will be skipped for the numbering. Also, the site that is gap or amino acid/nucleotide for too many tips will be ignored but won’t affect numbering.

Usage

```r
setSiteNumbering(x, reference, gapChar, ...)
```

S3 method for class 'phyMSAmatched'

```r
setSiteNumbering(x, reference = NULL, gapChar = "-", minSkipSize = NULL, ...)
```

Arguments

- **x**
 - The object to set site numbering. It could be a `phyMSAmatched` or a `lineagePath` object.
- **reference**
 - Name of reference for site numbering. The name has to be one of the sequences’ name. The default uses the intrinsic alignment numbering.
- **gapChar**
 - The character to indicate gap. The numbering will skip the `gapChar` for the reference sequence.
- **...**
 - Further arguments passed to or from other methods.
- **minSkipSize**
 - The minimum number of tips to have gap or ambiguous amino acid/nucleotide for a site to be ignored in other analysis. This will not affect the numbering. The default is 0.8.
similarityMatrix

Value

The input x with numbering mapped to reference.

Examples

data(zikv_tree)
msaPath <- system.file('extdata', 'ZIKV.fasta', package = 'sitePath')
tree <- addMSA(zikv_tree, msaPath = msaPath, msaFormat = 'fasta')
setSiteNumbering(tree)

similarityMatrix: Similarity between sequences

Description

Get similarity between aligned sequences with gap ignored.

Usage

similarityMatrix(tree)

Arguments

tree: The return from addMSA function.

Value

A diagonal matrix of similarity between sequences.

Examples

data(zikv_tree)
data(zikv_align)
tree <- addMSA(zikv_tree, alignment = zikv_align)
simMatrix <- similarityMatrix(tree)
Deprecated functions in package ‘sitePath’

Description

These functions are provided for compatibility with older versions of ‘sitePath’ only, and will be defunct at the next release.

Details

The following functions are deprecated and will be made defunct; use the replacement indicated below:

- multiFixationSites: fixationSites

Fixation sites prediction

Description

After finding the lineagePath of a phylogenetic tree, sitesMinEntropy perform entropy minimization on every site of the sequence to group the tips according to amino acid/nucleotide.

Usage

sitesMinEntropy(x, ...)

S3 method for class 'lineagePath'
sitesMinEntropy(
 x,
 minEffectiveSize = NULL,
 searchDepth = 1,
 method = c("compare", "insert", "delete"),
 ...
)

Arguments

x A lineagePath object returned from lineagePath function.
...
进一步 arguments passed to or from other methods.
minEffectiveSize The minimum number of tips in a group.
searchDepth The function uses heuristic search but the termination of the search cannot be intrinsically decided. searchDepth is needed to tell the search when to stop.
method The strategy for predicting the fixation. The basic approach is entropy minimization and can be achieved by adding or removing fixation point, or by comparing the two.
SNPsites

Value

A `sitesMinEntropy` object.

Examples

data(zikv_tree_reduced)
data(zikv_align_reduced)
tree <- addMSA(zikv_tree_reduced, alignment = zikv_align_reduced)
sitesMinEntropy(lineagePath(tree))

SNPsites

Finding sites with variation

Description

Single nucleotide polymorphism (SNP) in the whole package refers to variation of amino acid. SNPsites will try to find SNP in the multiple sequence alignment. A reference sequence and gap character may be specified to number the site.

Usage

SNPsites(tree, ...)

S3 method for class 'phyMSAmatched'
SNPsites(tree, minSNP = NULL, ...)

Arguments

tree A `phyMSAmatched` object.
...
minSNP Minimum number of a mutation to be a SNP. The default is 10th of the total tree tips.

Value

A SNPsites object.

Examples

data(zikv_tree_reduced)
data(zikv_align_reduced)
tree <- addMSA(zikv_tree_reduced, alignment = zikv_align_reduced)
SNPsites(tree)
Multiple sequence alignment of Zika virus polyprotein

Description
The raw protein sequences were downloaded from ViPR database (https://www.viprbrc.org/) and aligned using MAFFT (https://mafft.cbrc.jp/alignment/software/). with default settings.

zikv_align_reduced is a truncated version of zikv_align

Usage
data(zikv_align)
data(zikv_align_reduced)

Format
an alignment object
an alignment object

Phylogenetic tree of Zika virus polyprotein

Description
Tree was built from zikv_align using RAxML (http://www.exelixis-lab.org/) with default settings. The tip ANK57896 was used as outgroup to root the tree.

zikv_tree_reduced is a truncated version of zikv_tree

Usage
data(zikv_tree)
data(zikv_tree_reduced)

Format
a phylo object
a phylo object
Index

* datasets
 h3n2_align, 10
 h3n2_tree, 11
 sars2_align, 24
 sars2_tree, 25
 zikv_align, 29
 zikv_tree, 29
* internal
 reexports, 24

addMSA, 10, 12, 23, 26
addMSA (phyMSAmatched), 17
allSitesName, 3
ape, 17
as.data.frame.fixationSites, 4, 9
as.data.frame.parallelSites
 (as.data.frame.fixationSites), 4
as.data.frame.SNPsites
 (as.data.frame.fixationSites), 4
as.phylo, 24
as.phylo (reexports), 24
as.treedata, 24
as.treedata (reexports), 24
data.frame, 4
extractSite, 5, 18
extractTips, 5
fixationIndels, 7, 18
fixationPath, 7, 18
fixationSites, 3–5, 8, 8, 14, 18, 23, 27
ggplot2, 18
ggtree, 17, 19, 23
groupTips, 4, 9
h3n2_align, 10, 11
h3n2_align_reduced (h3n2_align), 10
h3n2_tree, 11
h3n2_tree_reduced (h3n2_tree), 11
is.binary, 17
lineagePath, 5, 8–11, 11, 14, 16, 18, 23, 25, 27
list, 6
multi2di, 17
multiFixationSites
 (sitePath-deprecated), 27
paraFixSites, 12, 14, 20, 22
parallelSites, 3–5, 14, 16, 18, 23
phylo, 17
phyMSAmatched, 17, 18, 25, 28
plot, 18, 24
plot.fixationIndels
 (plot.phyMSAmatched), 18
plot.fixationPath (plot.phyMSAmatched), 18
plot.fixationSites
 (plot.phyMSAmatched), 18
plot.lineagePath (plot.phyMSAmatched), 18
plot.parallelSites
 (plot.phyMSAmatched), 18
plot.phyMSAmatched, 18
plot.sitePath, 24
plot.sitePath (plot.phyMSAmatched), 18
plotFixationSites, 20
plotMutSites, 21
plotParallelSites, 22
plotSingleSite, 19, 23
read.alignment, 17, 18, 24
read.alignment (reexports), 24
read.tree, 24
read.tree (reexports), 24
reexports, 24
INDEX

sars2_align, 24, 25
sars2_tree, 25
seqinr, 13, 15, 17, 18
setSiteNumbering, 3, 20, 22, 23, 25
similarityMatrix, 26
sitePath-deprecated, 27
sitesMinEntropy, 7, 10, 16, 27
sneakPeek (lineagePath), 11
SNPsites, 3, 4, 21, 28

zikv_align, 29, 29
zikv_align_reduced (zikv_align), 29
zikv_tree, 29
zikv_tree_reduced (zikv_tree), 29