Package ‘soGGi’

May 27, 2024

Type Package

Title Visualise ChIP-seq, MNase-seq and motif occurrence as aggregate plots Summarised Over Grouped Genomic Intervals

Version 1.36.0

Date 2021-11-21

Author Gopuraja Dharmalingam, Doug Barrows, Tom Carroll

Maintainer Tom Carroll <tc.infomatics@gmail.com>

Description The soGGi package provides a toolset to create genomic interval aggregate/summary plots of signal or motif occurrence from BAM and bigWig files as well as PWM, rlelist, GRanges and GAlignments Bioconductor objects. soGGi allows for normalisation, transformation and arithmetic operation on and between summary plot objects as well as grouping and subsetting of plots by GRanges objects and user supplied metadata. Plots are created using the GGplot2 library to allow user defined manipulation of the returned plot object. Coupled together, soGGi features a broad set of methods to visualise genomics data in the context of groups of genomic intervals such as genes, superenhancers and transcription factor binding events.

biocViews Sequencing, ChIPSeq, Coverage

License GPL (>= 3)

LazyLoad yes

Depends R (>= 3.2.0), BiocGenerics, SummarizedExperiment

Imports methods, reshape2, ggplot2, S4Vectors, IRanges, GenomeInfoDb, GenomicRanges, Biostrings, Rsamtools, GenomicAlignments, rtracklayer, preprocessCore, chipseq, BiocParallel

Collate 'allClasses.r' 'motifTools.R' 'peakTransforms.r' 'plots.R' 'soGGi.R'

VignetteBuilder knitr

Suggests testthat, BiocStyle, knitr

NeedsCompilation no
c,ChIPprofile-method

Join, subset and manipulate ChIPprofile objects

Description

Join, subset and manipulate ChIPprofile objects

Usage

```r
## S4 method for signature 'ChIPprofile'
c(x, ..., recursive = FALSE)

## S4 method for signature 'ChIPprofile'
rbind(x, ..., deparse.level = 1)

## S4 method for signature 'ChIPprofile'
cbind(x, ..., deparse.level = 1)

## S4 method for signature 'ChIPprofile,ANY,missing'
```
Arguments

j Should be missing
...
objects to be concatenated.
recursive logical. If recursive = TRUE, the function recursively descends through lists (and pairlists) combining all their elements into a vector.
deparse.level See ?base:::cbind for a description of this argument.
x object from which to extract element(s) or in which to replace element(s).
i indices specifying elements to extract or replace. Indices are numeric or character vectors or empty (missing) or NULL. Numeric values are coerced to integer as by as.integer (and hence truncated towards zero). Character vectors will be matched to the names of the object (or for matrices/arrays, the dimnames): see ‘Character indices’ below for further details.

For [.-indexing only: i, j, ... can be logical vectors, indicating elements/slices to select. Such vectors are recycled if necessary to match the corresponding extent. i, j, ... can also be negative integers, indicating elements/slices to leave out of the selection.

When indexing arrays by [a single argument i can be a matrix with as many columns as there are dimensions of x; the result is then a vector with elements corresponding to the sets of indices in each row of i.

An index value of NULL is treated as if it were integer(0).

name A literal character string or a name (possibly backtick quoted). For extraction, this is normally (see under ‘Environments’) partially matched to the names of the object.

Value

A ChIPprofile object

Examples

data(chipExampleBig)
x <- c(chipExampleBig[[1]],chipExampleBig[[2]])
y <- rbind(chipExampleBig[[1]],chipExampleBig[[2]])
chipExampleBig

Example ChIP profiles

Description

This dataset contains peaks from ChIP-signal over genes

Usage

data(chipExampleBig)

Details

• ChIPprofiles

Value

A ChIPprofile object

ChIPprofile-class
The soggi function and ChIPprofile object.

Description

Manual for soggi and ChIPprofile object

The soggi function is the constructor for ChIPprofile objects.

Usage

regionPlot(bamFile, testRanges, samplename = NULL, nOfWindows = 100, FragmentLength = 150, style = "point", distanceAround = NULL, distanceUp = NULL, distanceDown = NULL, distanceInRegionStart = NULL, distanceOutRegionStart = NULL, distanceOutRegionEnd = NULL, paired = FALSE, normalize = "RPM", plotBy = "coverage", removeDup = FALSE, verbose = TRUE, format = "bam", seqlengths = NULL, forceFragment = NULL, method = "bin", genome = NULL, cutoff = 80, downSample = NULL, minFragmentLength = NULL, maxFragmentLength = NULL)
Arguments

bamFile
Character vector for location of BAM file or bigWig, an rleList or PWM matrix.

testRanges
GRanges object or character vector of BED file location of regions to plot.

sampleName
Character vector of sample name. Default is NULL.

nOfWindows
Number of windows to bin regions into for coverage calculations (Default 100)

FragmentLength
Integer vector Predicted or expected fragment length.

style
"Point" for per base pair plot, "percentOfRegion" for normalised length and "region" for combined plot

distanceAround
Distance around centre of region to be used for plotting

distanceUp
Distance upstream from centre of region to be used for plotting

distanceDown
Distance downstream from centre of region to be used for plotting

distanceInRegionStart
Distance into region start (5' for Watson/positive strand or not specified strand Regions, 3' for Crick/negative strand regions) for plotting.

distanceOutRegionStart
Distance out from region start (5' for Watson/positive strand or not specified strand Regions, 3' for Crick/negative strand regions) for plotting.

distanceInRegionEnd
Distance into region end (3' for Watson/positive strand or not specified strand Regions, 5' for Crick/negative strand regions) for plotting.

distanceOutRegionEnd
Distance out from region end (3' for Watson/positive strand or not specified strand Regions, 5' for Crick/negative strand regions) for plotting.

paired
Is data paired end

normalize
Calculate coverage as RPM. Presently only RPM available.

plotBy
Score to be used for plotting. Presently only coverage.

removeDup
Remove duplicates before calculating coverage.

verbose
TRUE or FALSE

format
character vector of "BAM", "BigWig", "RleList" or "PWM"

seqlengths
Chromosomes to be used. If missing will report all.

forceFragment
Centre fragment and force consistent fragment width.

method
Character vector of value "bp","bin" or "spline". The bin method divides a region of interest into equal sized bins of number specified in nOfWindows. Coverage or counts are then summarised within these windows. The spline method creates a spline with the number of spline points as specified in nOfWindows argument.

downSample
Down sample BAM reads to this proportion of original.

genomes
BSGenome object to be used when using PWM input.

cutoff
Cut-off for identifying motifs when using PWM input.

minFragmentLength
Remove fragments smaller than this.

maxFragmentLength
Remove fragments larger than this.
Value

ChIPprofile A ChIPprofile object.

References

See http://bioinformatics.csc.mrc.ac.uk for more details on soG Gi workflows

Examples

data(chipExampleBig)
chipExampleBig

```r
findconsensusRegions(testRanges, bamFiles = NULL, method = "majority",
                      summit = "mean", resizepeak = "asw", overlap = "any",
                      fragmentLength = NULL, NonPrimaryPeaks = list(withinsample = "drop",
                                                                      betweensample = "mean"))

summitPipeline(reads, peakfile, fragmentLength, readlength)
```

Description

Plot coverage of points or regions.

Returns summits and summmit scores after optional fragment length prediction and read extension

Usage

```r
findconsensusRegions(testRanges, bamFiles = NULL, method = "majority",
                      summit = "mean", resizepeak = "asw", overlap = "any",
                      fragmentLength = NULL, NonPrimaryPeaks = list(withinsample = "drop",
                                                                      betweensample = "mean"))

summitPipeline(reads, peakfile, fragmentLength, readlength)
```

Arguments

testRanges Named character vector of region locations
bamFiles Named character vector of bamFile locations
method Method to select reproducible summits to merge.
summit Only mean avaialble
resizepeak Only asw available
overlap Type of overlap to consider for finding consensus sites
fragmentLength Predicted fragment length. Set to NULL to auto-calculate
NonPrimaryPeaks A list of parameters to deal with non primary peaks in consensus regions.
peakfile GRanges of genomic intervals to summit.
reads Character vector of bamFile location or GAlignments object
readlength Read length of alignments.
groupByOverlaps

Value
Consensus A GRanges object of consensus regions with consensus summits.
Summits A GRanges object of summits and summit scores.

Description
Create GRangeslist from all combinations of GRanges

Usage
groupByOverlaps(testRanges)

Arguments
testRanges A named list of GRanges or a named GRangesList

Value
groupedGRanges A named GRangesList object.

Examples
data(ik_Example)
gts <- groupByOverlaps(ik_Example)

ik_Example Example Ikaros peaksets

Description
This dataset contains peaks from Ikaros ChIP by two antibodies

Usage
data(ik_Example)

Details
- Ikpeaksets

Value
A list containing two GRanges objects
ik_Profiles

Example Ikaros signal over peaksets

Description

This dataset contains signal over peaks from Ikaros ChIP by two antibodies

Usage

data(ik_Profiles)

Details

• ik_Profiles

Value

A ChIPprofile object

normalise

Normalise ChIPprofiles

Description

Various normalisation methods for ChIPprofile objects

Usage

S4 method for signature 'ChIPprofile'
normalise(object)

S4 method for signature 'ChIPprofile,character,numeric'
normalise(object = "ChIPprofile",
 method = "rpm", normFactors = NULL)

Arguments

object
A ChIPprofile object

method
A character vector specifying normalisation method. Currently "rpm" for normalising signal for BAM to total reads, "quantile" to quantile normalise across samples, "signalInRegion" to normalise to proportion of signal within intervals, "normaliseSample" to normalise across samples and "normaliseRegions" to apply a normalisation across intervals.

normFactors
A numeric vector used to scale columns or rows.
normaliseQuantiles

Value

A ChIPprofile object

Author(s)

Thomas Carroll

Examples

data(chipExampleBig)
normalise(chipExampleBig, method="quantile", normFactors=1)

Description

Quantile normalisation across bins/regions.

Usage

S4 method for signature 'ChIPprofile'
normaliseQuantiles(object)

S4 method for signature 'ChIPprofile'
normaliseQuantiles(object = "ChIPprofile")

Arguments

object A ChIPprofile object

Value

A ChIPprofile object containing normalised data

Author(s)

Thomas Carroll

Examples

data(chipExampleBig)
normaliseQuantiles(chipExampleBig)
Ops,ChIPprofile,ChIPprofile-method

Arithmetic operations

Description
Arithmetic operations

Usage

```r
## S4 method for signature 'ChIPprofile,ChIPprofile'
Ops(e1, e2)

## S4 method for signature 'ChIPprofile,numeric'
Ops(e1, e2)

## S4 method for signature 'numeric,ChIPprofile'
Ops(e1, e2)

## S4 method for signature 'ChIPprofile'
mean(x, ...)

## S4 method for signature 'ChIPprofile'
log2(x)

## S4 method for signature 'ChIPprofile'
log(x, base = exp(1))
```

Arguments

- `e1` ChIPprofile object
- `e2` ChIPprofile object
- `x` objects.
- `...` further arguments passed to methods.
- `base` a positive or complex number: the base with respect to which logarithms are computed. Defaults to \(e^{\exp(1)} \).

Value
A ChIPprofile object of result of arithmetic operation.

Examples

```r
data(chipExampleBig)
chipExampleBig[[1]] + chipExampleBig[[2]]
```
orientBy

Set strand by overlapping or nearest anchor GRanges

Description
Set strand by overlapping or nearest anchor GRanges

Usage
orientBy(testRanges, anchorRanges)

Arguments

 testRanges The GRanges object to anchor.
 anchorRanges A GRanges object by which to anchor strand orientation.

Value
newRanges A GRanges object.

Examples

 data(ik_Example)
 strand(ik_Example[[1]]) <- "+"
 anchoredGRanges <- orientBy(ik_Example[[2]],ik_Example[[1]])

plotRegion

Plot regions

Description
A function to plot regions

Usage

S4 method for signature 'ChIPprofile'
plotRegion(object,
gts,sampleData,groupData,summariseBy,
colourBy,lineBy,groupBy,
plotregion,outliers,freeScale)

S4 method for signature 'ChIPprofile'
plotRegion(object = "ChIPprofile", gts = NULL,
sampleData = NULL, groupData = NULL, summariseBy = NULL,
colourBy = NULL, lineBy = NULL, groupBy = NULL, plotregion = "full",
outliers = NULL, freeScale = FALSE)
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>A ChIPprofile object</td>
</tr>
<tr>
<td>gts</td>
<td>A list of character vectors or GRangesList</td>
</tr>
<tr>
<td>plotregion</td>
<td>region to plot. For combined plots with style "region", may be "start" or "end" to show full resolution of plot of edges.</td>
</tr>
<tr>
<td>groupData</td>
<td>Dataframe of metadata for groups</td>
</tr>
<tr>
<td>sampleData</td>
<td>Dataframe of metadata for sample</td>
</tr>
<tr>
<td>summariseBy</td>
<td>Column names from GRanges elementmetadata. Formula or character vector of column names to use to collapse genomic ranges to summarised profiles. summariseBy can not be used in conjuction with groups specified by gts argument.</td>
</tr>
<tr>
<td>colourBy</td>
<td>Character vector or formula of either column names from colData(object) containing sample metadata or character vector "group" to colour by groups in gts</td>
</tr>
<tr>
<td>lineBy</td>
<td>Character vector or formula of either column names from colData(object) containing sample metadata or character vector "group" to set line type by groups in gts</td>
</tr>
<tr>
<td>groupBy</td>
<td>Character vector or formula of either column names from colData(object) containing sample metadata or character "group" to colour by groups in gts</td>
</tr>
<tr>
<td>outliers</td>
<td>A numeric vector of length 1 containing proportion from limits to windsorise.</td>
</tr>
<tr>
<td>freeScale</td>
<td>TRUE or FALSE to set whether ggplot2 facets have their own scales. Useful for comparing multiple samples of differing depths without normalisation. Default is FALSE.</td>
</tr>
</tbody>
</table>

Value

A gg object from ggplot2

Author(s)

Thomas Carroll

Examples

```r
data(chipExampleBig)
plotRegion(chipExampleBig[[2]])
```

Description

This dataset contains an rlelist of motif coverage

Usage

```r
data(pwmCov)
```
Details

- pwmCov

Value

A rlelist of motif coverage

pwmToCoverage
PWM hits and motif scores as an RLElist

Description

Creates rlelist of pwm hits.
Motif score as an RLElist

Usage

```r
pwmToCoverage(pwm, genome, min = "70\%", removeRand = FALSE,  
chrsOfInterest = NULL)
```

```r
makeMotifScoreRle(pwm, regions, genome, extend, removeRand = FALSE, 
strandScore = "mean", atCentre = FALSE)
```

Arguments

- `pwm` A PWM matrix object.
- `genome` A BSgenome object
- `min` pwm score (as percentage of maximum score) cutoff
- `removeRand` Remove contigs with rand string
- `chrsOfInterest` Chromosomes to use
- `regions` GRanges object to include in pwm rlelist
- `extend` bps to extend regions by
- `strandScore` Method for averaging strand. Options are max, mean, sum, bothstrands
- `atCentre` TRUE/FALSE. TRUE assigns score onto 1bp position at centre of motif. FALSE assigns every basepair the sum of scores of all overlapping motifs.

Value

A RLElist of motif density per base pair to be used as input to main soggi function.

Author(s)

Thomas Carroll
Examples

 data(pwmCov)
 data(singleGRange)

singleGRange
* A single GRanges

Description

This dataset contains an rlelist of motif coverage

Usage

 data(singleGRange)

Details

- singleGRange

Value

A single GRanges used in motif coverage example/
Index

datasets
- chipExampleBig, 4
- ik_Example, 7
- ik_Profiles, 8
- pwmCov, 12
- singleGRange, 14
- [\[,ChIPprofile,ANY,missing-method
 (c,ChIPprofile-method), 2
- $,ChIPprofile-method
 (c,ChIPprofile-method), 2
- as.integer, 3
- backtick, 3
- c,ChIPprofile-method, 2
- cbind, 3
- cbind,ChIPprofile-method
 (c,ChIPprofile-method), 2
- chipExampleBig, 4
- ChIPprofile (ChIPprofile-class), 4
- ChIPprofile-ChIPprofile
 (ChIPprofile-class), 4
- ChIPprofile-class, 4
- dimnames, 3
- findconsensusRegions, 6
- groupByOverlaps, 7
- ik_Example, 7
- ik_Profiles, 8
- log,ChIPprofile-method
 (Ops,ChIPprofile,ChIPprofile-method), 10
- log2,ChIPprofile-method
 (Ops,ChIPprofile,ChIPprofile-method), 10
- makeMotifScoreRle (pwmToCoverage), 13
- mean,ChIPprofile-method
 (Ops,ChIPprofile,ChIPprofile-method), 10
- name, 3
- names, 3
- normalise, 8
- normalise,ChIPprofile,character,numeric-method
 (normalise), 8
- normalise,ChIPprofile-method
 (normalise), 8
- normalise.ChIPprofile (normalise), 8
- normaliseQuantiles, 9
- normaliseQuantiles,ChIPprofile-method
 (normaliseQuantiles), 9
- normaliseQuantiles.ChIPprofile
 (normaliseQuantiles), 9
- Ops,ChIPprofile,ChIPprofile-method, 10
- Ops,ChIPprofile,numerical-method
 (Ops,ChIPprofile,ChIPprofile-method), 10
- Ops,numerical,ChIPprofile-method
 (Ops,ChIPprofile,ChIPprofile-method), 10
- orientBy, 11
- plotRegion, 11
- plotRegion,ChIPprofile-method
 (plotRegion), 11
- plotRegion.ChIPprofile (plotRegion), 11
- pwmCov, 12
- pwmToCoverage, 13
- rbind,ChIPprofile-method
 (c,ChIPprofile-method), 2
- regionPlot (ChIPprofile-class), 4
- singleGRange, 14
- soggi (ChIPprofile-class), 4
- summitPipeline (findconsensusRegions), 6