Package ‘spicyR’

May 30, 2024

Type Package

Title Spatial analysis of in situ cytometry data

Version 1.16.1

Description The spicyR package provides a framework for performing inference on changes in spatial relationships between pairs of cell types for cell-resolution spatial omics technologies. spicyR consists of three primary steps: (i) summarizing the degree of spatial localization between pairs of cell types for each image; (ii) modelling the variability in localization summary statistics as a function of cell counts and (iii) testing for changes in spatial localizations associated with a response variable.

License GPL (>=2)

LazyData true

biocViews SingleCell, CellBasedAssays, Spatial

Encoding UTF-8

Depends R (>= 4.1)

VignetteBuilder knitr

BugReports https://github.com/SydneyBioX/spicyR/issues

URL https://ellispatrick.github.io/spicyR/
https://github.com/SydneyBioX/spicyR

Imports ggplot2, concaveman, BiocParallel, spatstat.explore, spatstat.geom, lmerTest, S4Vectors, methods, pheatmap, rlang, grDevices, stats, data.table, dplyr, tidyr, scam, SingleCellExperiment, SpatialExperiment, SummarizedExperiment, ggforce, ClassifyR, tibble, magrittr, cli

Suggests BiocStyle, knitr, rmarkdown, pkgdown, imcRtools, testthat (>= 3.0.0)

RoxygenNote 7.3.1

Config/testthat/edition 3

git_url https://git.bioconductor.org/packages/spicyR

git_branch RELEASE_3_19

git_last_commit 64a2b90
bind

Produces a dataframe showing L-function metric for each imageID entry.

Usage
bind(results, pairName = NULL)

Arguments
results Spicy test result obtained from spicy.
pairName A string specifying the pairwise interaction of interest. If NULL, all pairwise interactions are shown.

Value
A data.frame containing the colData related to the results.
Examples

data(spicyTest)
df <- bind(spicyTest)

colTest

Perform a simple wilcoxon-rank-sum test or t-test on the columns of a data frame

Description

Perform a simple wilcoxon-rank-sum test or t-test on the columns of a data frame

Usage

colTest(df, condition, type = NULL, feature = NULL, imageID = "imageID")

Arguments

df A data.frame or SingleCellExperiment, SpatialExperiment
condition The condition of interest
type The type of test, "wilcox", "ttest" or "survival".
feature Can be used to calculate the proportions of this feature for each image
imageID The imageID’s if presenting a SingleCellExperiment

Value

Proportions

Examples

Test for an association with long-duration diabetes
This is clearly ignoring the repeated measures...
data(“diabetesData”)
diabetesData <- spicyR:::.format_data(
diabetesData, “imageID”, “cellType”, c(“x”, “y”), FALSE)
props <- getProp(diabetesData)
condition <- spicyR:::.getImagePheno(diabetesData)$stage
names(condition) <- spicyR:::.getImagePheno(diabetesData)$imageID
condition <- condition[condition %in% c(“Long-duration”, “Onset”)]
test <- colTest(props[names(condition),], condition)
convPairs

Converts colPairs object into an abundance matrix based on number of nearby interactions for every cell type.

Description

Converts colPairs object into an abundance matrix based on number of nearby interactions for every cell type.

Usage

convPairs(cells, colPair, cellType = "cellType", imageID = "imageID")

Arguments

- **cells**: A SingleCellExperiment that contains objects in the colPairs slot.
- **colPair**: The name of the object in the colPairs slot for which the dataframe is constructed from.
- **cellType**: The cell type if using SingleCellExperiment.
- **imageID**: The image ID if using SingleCellExperiment.

Value

Matrix of abundances

Examples

data("diabetesData")
diabetesData <- diabetesData[, SummarizedExperiment::colData(diabetesData)$imageID %in% images]
diabetesData_SPE <- SpatialExperiment::SpatialExperiment(diabetesData, colData = SummarizedExperiment::colData(diabetesData))
SpatialExperiment::spatialCoords(diabetesData_SPE) <- data.frame(SummarizedExperiment::colData(diabetesData_SPE)$x, SummarizedExperiment::colData(diabetesData_SPE)$y) |> as.matrix()
SpatialExperiment::spatialCoordsNames(diabetesData_SPE) <- c("x", "y")
diabetesData_SPE <- imcRtools::buildSpatialGraph(diabetesData_SPE, img_id = "imageID", type = "knn", k = 20,
coefs = c("x", "y")
}

pairAbundances <- convPairs(diabetesData_SPE,
 colPair = "knn_interaction_graph"
)

diabetesData

Diabetes IMC data in SCE format.

Description

This is a subset of the Damond et al 2019 imaging mass cytometry dataset. The data contains cells in the pancreatic islets of individuals with early onset diabetes and healthy controls. The object contains single-cell data of 160 images from 8 subjects, with 20 images per subject.

Usage

```r
data("diabetesData")
```

Format

- `diabetesData_SCE` a SingleCellExperiment object

Details

Converted into a SingleCellExperiment format.

goingPairwise

Get statistic from pairwise L curve of a single image.

Description

Get statistic from pairwise L curve of a single image.

Usage

```r
goingPairwise(
  cells,
  from = NULL,
  to = NULL,
  window = "convex",
  window.length = NULL,
  Rs = c(20, 50, 100),
  sigma = NULL,
)```
minLambda = 0.05,
edgeCorrect = TRUE,
includeZeroCells = TRUE,
BPPARAM = BiocParallel::SerialParam(),
imageIDCol = "imageID",
cellTypeCol = "cellType",
spatialCoordCols = c("x", "y")
)

Arguments

**cells**
A SummarizedExperiment that contains at least the variables x and y, giving the location coordinates of each cell, and cellType.

**from**
The 'from' cellType for generating the L curve.

**to**
The 'to' cellType for generating the L curve.

**window**
Should the window around the regions be 'square', 'convex' or 'concave'.

**window.length**
A tuning parameter for controlling the level of concavity when estimating concave windows.

**Rs**
A vector of the radii that the measures of association should be calculated.

**sigma**
A numeric variable used for scaling when fitting inhomogeneous L-curves.

**minLambda**
Minimum value for density for scaling when fitting inhomogeneous L-curves.

**edgeCorrect**
A logical indicating whether to perform edge correction.

**includeZeroCells**
A logical indicating whether to include cells with zero counts in the pairwise association calculation.

**BPPARAM**
A BiocParallelParam object.

**imageIDCol**
The name of the imageID column if using a SingleCellExperiment or SpatialExperiment.

**cellTypeCol**
The name of the cellType column if using a SingleCellExperiment or SpatialExperiment.

**spatialCoordCols**
The names of the spatialCoords column if using a SingleCellExperiment.

Value

Statistic from pairwise L curve of a single image.

Examples

data("diabetesData")
# Subset by imageID for fast example
selected_cells <- diabetesData[
    , SummarizedExperiment::colData(diabetesData)$imageID == "A09"
]
pairAssoc <- getPairwise(selected_cells)
getProp

Get proportions from a SummarizedExperiment.

Description

Get proportions from a SummarizedExperiment.

Usage

getProp(cells, feature = "cellType", imageID = "imageID")

Arguments

  cells          A SingleCellExperiment, SpatialExperiment or data.frame.
  feature        The feature of interest
  imageID        The imageID's

Value

  Proportions

Examples

data("diabetesData")
prop <- getProp(diabetesData)

signifPlot

Plots result of signifPlot.

Description

Plots result of signifPlot.

Usage

signifPlot(
  results,
  fdr = FALSE,
  type = "bubble",
  breaks = NULL,
  comparisonGroup = NULL,
  colours = c("#4575B4", "white", "#D73027"),
  marksToPlot = NULL,
  cutoff = 0.05
)

)
Arguments

results  Data frame obtained from spicy.
fdr      TRUE if FDR correction is used.
type     Where to make a bubble plot or heatmap.
breaks   Vector of 3 numbers giving breaks used in pheatmap. The first number is the minimum, the second is the maximum, the third is the number of breaks.
comparisonGroup  A string specifying the name of the outcome group to compare with the base group.
colours  Vector of colours to use in pheatmap.
marksToPlot  Vector of marks to include in pheatmap.
cutoff   significance threshold for circles in bubble plot

Value

a pheatmap object

Examples

data(spicyTest)

p <- signifPlot(spicyTest, breaks = c(-3, 3, 0.5))
# plot includes unicode characters, do not use default pdf device
ggplot2::ggsave(p, filename = tempfile(), device = cairo_pdf)

spicyBoxPlot  Plots boxplot for a specified cell-cell relationship

Description

Plots boxplot for a specified cell-cell relationship

Usage

spicyBoxPlot(results, from = NULL, to = NULL, rank = NULL)

Arguments

results  Data frame obtained from spicy.
from     Cell type which you would like to compare to the to cell type.
to       Cell type which you would like to compare to the from cell type.
rank     Ranking of cell type in terms of p-value, the smaller the p-value the higher the rank.
SpicyResults-class

Value

a ggplot2 boxplot

Examples

data(spicyTest)

spicyBoxPlot(spicyTest, rank = 1)

SpicyResults-class

Performs spatial tests on spatial cytometry data.

Description

Performs spatial tests on spatial cytometry data.

Usage

spicy(
cells,
condition,
subject = NULL,
covariates = NULL,
from = NULL,
to = NULL,
imageIDCol = "imageID",
cellTypeCol = "cellType",
spatialCoordCols = c("x", "y"),
alternateResult = NULL,
verbose = FALSE,
weights = TRUE,
weightsByPair = FALSE,
weightFactor = 1,
window = "convex",
window.length = NULL,
BPPARAM = BiocParallel::SerialParam(),
sigma = NULL,
Rs = NULL,
minLambda = 0.05,
edgeCorrect = TRUE,
includeZeroCells = FALSE,
...)}
**SpicyResults-class**

**Arguments**

- **cells**: A SummarizedExperiment or data frame that contains at least the variables x and y, giving the location coordinates of each cell, and cellType.
- **condition**: Vector of conditions to be tested corresponding to each image.
- **subject**: Vector of subject IDs corresponding to each image if cells is a data frame.
- **covariates**: Vector of covariate names that should be included in the mixed effects model as fixed effects.
- **from**: vector of cell types which you would like to compare to the to vector
- **to**: vector of cell types which you would like to compare to the from vector
- **imageIDCol**: The image ID if using SingleCellExperiment.
- **cellTypeCol**: The cell type if using SingleCellExperiment.
- **spatialCoordCols**: The spatial coordinates if using a SingleCellExperiment.
- **alternateResult**: An pairwise association statistic between each combination of cell types in each image.
- **verbose**: logical indicating whether to output messages.
- **weights**: logical indicating whether to include weights based on cell counts.
- **weightsByPair**: logical indicating whether weights should be calculated for each cell type pair.
- **weightFactor**: numeric that controls the convexity of the weight function.
- **window**: Should the window around the regions be 'square', 'convex' or 'concave'.
- **window.length**: A tuning parameter for controlling the level of concavity when estimating concave windows.
- **BPPARAM**: A BiocParallelParam object.
- **sigma**: A numeric variable used for scaling when fitting inhomogeneous L-curves.
- **Rs**: A vector of radii that the measures of association should be calculated.
- **minLambda**: Minimum value for density for scaling when fitting inhomogeneous L-curves.
- **edgeCorrect**: A logical indicating whether to perform edge correction.
- **includeZeroCells**: A logical indicating whether to include cells with zero counts in the pairwise association calculation.
- **...**: Other options.

**Value**

Data frame of p-values.
Examples

```r
data("diabetesData")

Test with random effect for patient on a pairwise combination of cell
types.
spicy(diabetesData,
 condition = "stage", subject = "case",
 from = "Tc", to = "Th"
)

Test all pairwise combinations of cell types without random effect of
patient.
Not run:
spicyTest <- spicy(diabetesData, condition = "stage", subject = "case")

End(Not run)

Test all pairwise combination of cell types with random effect of patient.
Not run:
spicy(diabetesData, condition = "condition", subject = "subject")

End(Not run)
```

### spicyTest

Results from `spicy` for `diabetesData`

<table>
<thead>
<tr>
<th>spicyTest</th>
<th>Results from spicy for diabetesData</th>
</tr>
</thead>
</table>

#### Description

Results from the call: `spicyTest <- spicy(diabetesData, condition = "condition", subject = "subject")`

#### Usage

```r
data("spicyTest")
```

#### Format

spicyTest a spicy object

<table>
<thead>
<tr>
<th>topPairs</th>
<th>A table of the significant results from spicy tests</th>
</tr>
</thead>
</table>

#### Description

A table of the significant results from spicy tests
Usage

```r
topPairs(x, coef = NULL, n = 10, adj = "fdr", cutoff = NULL, figures = NULL)
```

Arguments

- `x`: The output from `spicy`.
- `coef`: Which coefficient to list.
- `n`: Extract the top `n` most significant pairs.
- `adj`: Which p-value adjustment method to use, argument for `p.adjust()`.
- `cutoff`: A p-value threshold to extract significant pairs.
- `figures`: Round to 'figures' significant figures.

Value

A data.frame

Examples

```r
data(spicyTest)
topPairs(spicyTest)
```
Index

* datasets
  diabetesData, 5
  spicyTest, 11

bind, 2

colTest, 3
convPairs, 4

diabetesData, 5

getPairwise, 5
getProp, 7

signifPlot, 7
spicy(SpicyResults-class), 9
spicy, spicy-method
  (SpicyResults-class), 9
spicyBoxPlot, 8
SpicyResults, list, ANY-method
  (SpicyResults-class), 9
SpicyResults-class, 9
spicyTest, 11

topPairs, 11
topPairs, SpicyResults-method
  (topPairs), 11