Package ‘spqn’

April 2, 2024

Title Spatial quantile normalization

Version 1.14.0

Description The spqn package implements spatial quantile normalization (SpQN). This method was developed to remove a mean-correlation relationship in correlation matrices built from gene expression data. It can serve as pre-processing step prior to a co-expression analysis.

License Artistic-2.0

Imports graphics, stats, utils, matrixStats

Depends R (>= 4.0), ggplot2, ggridges, SummarizedExperiment, BiocGenerics

Suggests BiocStyle, knitr, rmarkdown, tools, spqnData (>= 0.99.3), RUnit

VignetteBuilder knitr

URL https://github.com/hansenlab/spqn

BugReports https://github.com/hansenlab/spqn/issues

biocViews NetworkInference, GraphAndNetwork, Normalization

git_url https://git.bioconductor.org/packages/spqn

git_branch RELEASE_3_18

git_last_commit cbe7719

git_last_commit_date 2023-10-24

Repository Bioconductor 3.18

Date/Publication 2024-04-01

Author Yi Wang [cre, aut],
 Kasper Daniel Hansen [aut]

Maintainer Yi Wang <yiwangthu5@gmail.com>
R topics documented:

- spqn-package .. 2
- normalize_correlation ... 2
- plot_IQR_condition_exp .. 3
- plot_signal_condition_exp .. 4
- qqplot_condition_exp .. 5

Index

<table>
<thead>
<tr>
<th>spqn-package</th>
<th>Spatial quantile normalization</th>
</tr>
</thead>
</table>

Description

The spqn package implements spatial quantile normalization (SpQN). This method was developed to remove a mean-correlation relationship in correlation matrices built from gene expression data. It can serve as pre-processing step prior to a co-expression analysis.

Details

See references for details on spatial quantile normalization.

The main function is `normalize_correlation`. We include a number of plotting functions for examining the mean-correlation relationship, see the vignette for examples.

References

<table>
<thead>
<tr>
<th>normalize_correlation</th>
<th>Spatial quantile normalization (SpQN)</th>
</tr>
</thead>
</table>

Description

This method was developed to remove a mean-correlation relationship in correlation matrices built from gene expression data. It can serve as pre-processing step prior to a co-expression analysis.

Usage

```
normalize_correlation(cor_mat, ave_exp, ngrp, size_grp, ref_grp)
```
plot_IQR_condition_exp

Arguments

cor_mat A (square and symmetrical) correlation matrix.
ave_exp A vector of expression levels, same length as the number of rows of the correlation matrix in cor_mat. For other types of data, ave_exp can be the vector corresponding to the row/column of the correlation matrix, whose dependency with the distribution of correlations need to be removed.
ngrp Number of bins in each row/column to be used to partition the correlation matrix, integer.
size_grp Size of the outer bins to be used to approximate the distribution of the inner bins, in order to smooth the normalization. Note that the product of size_grp and ngrp must be equal or larger than than the row/column number of cor_mat, and there is no smoothness in the normalization when they are equal.
ref_grp Location of the reference bin on the diagonal, whose distribution will be used as target distribution in the normalization, an integer.

Value

A normalized correlation matrix.

Examples

if(require(spmnData)){
 data(gtex.4k)
 cor_ori <- cor(t(assay(gtex.4k)))
 ave_logrpkm <- rowData(gtex.4k)$ave_logrpkm
 normalize_correlation(cor_ori, ave_exp = ave_logrpkm,
 ngrp=10, size_grp=15, ref_grp=9)}

plot_IQR_condition_exp

Get and plot the IQRs of submatrices of the correlation matrix.

Description

The get_IQR_condition_exp function computes the IQRs of a set of 10 by 10 same-size bins that partition the correlation matrix, ordered according to expression level.

The plot_IQR_condition_exp function plots the IQR for each bin among a set of 10 by 10 same-size bins that partition the correlation matrix, with IQR denoted by the width of boxes in the plot.

Usage

get_IQR_condition_exp(cor_mat, ave_exp)
plot_IQR_condition_exp(IQR_list)
plot_signal_condition_exp

Arguments

cor_mat correlation matrix, generated by gene expression matrix, with genes sorted by average expression levels.
ave_exp vector, average expression level of each gene for the normalized gene expression matrix.
IQR_list List, output of get_IQR_condition_exp.

Value

A plot with boxes that shows the IQR of each bin

Note

The mnemonic for condition_exp is 'conditional on expression'.

Examples

```r
if(require(spqnData)) {
  data(gtex.4k)
  cor_mat <- cor(t(assay(gtex.4k)))
  ave_logrpkm <- rowData(gtex.4k)$ave_logrpkm
  IQR_list <- get_IQR_condition_exp(cor_mat, ave_exp = ave_logrpkm)
  plot_IQR_condition_exp(IQR_list)
}
```

plot_signal_condition_exp

Plot the signal and background distribution of a correlation matrix.

Description

This function allows users to visualize the distributions of (assumed) signal and background, conditional on expression levels. The predicted signals are defined by the 0.1% highest correlations in each bin.

Usage

```r
plot_signal_condition_exp(cor_mat, ave_exp, signal)
```

Arguments

cor_mat Matrix, correlation matrix, generated by gene expression matrix
ave_exp Vector, average expression level of each gene for the normalized expression matrix
signal a value between 0 and 1 giving the fraction of correlations which should be considered signal. We often use a value of 0.001.
qqplot_condition_exp

Value
Invoked for the side effect of producing a plot.

Note
The mnemonic for condition_exp is ‘conditional on expression’.

Examples
if(require(spqnData)) {
 data(gtex.4k)
 cor_mat <- cor(t(assay(gtex.4k)))
 ave_logrpkm <- rowData(gtex.4k)$ave_logrpkm
 plot_signal_condition_exp(cor_mat, ave_exp=ave_logrpkm, signal=0.05)
}

Description
We partition the correlation matrix into 10x10 bins of equal size, with genes ordered according to expression level. As reference bin, we choose the (9,9) bin (ie. the almost-highest expressed genes). We then make a QQ-plot of the (i,j)’th submatrix vs. the (9,9) submatrix. See the SpQN paper for detail on these choices.

Usage
qqplot_condition_exp(cor_mat, ave_exp, i, j)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cor_mat</td>
<td>Matrix, correlation matrix, generated by gene expression matrix.</td>
</tr>
<tr>
<td>ave_exp</td>
<td>Vector, average expression level of each gene for the normalized expression matrix.</td>
</tr>
<tr>
<td>i</td>
<td>Integer, row number of the submatrix (see details).</td>
</tr>
<tr>
<td>j</td>
<td>Integer, column number of the submatrix (see details).</td>
</tr>
</tbody>
</table>

Value
Invoked for the side effect of producing a plot.

Note
The mnemonic for condition_exp is ‘conditional on expression’.
Examples

```r
if(require(spqnData)) {
  data(gtex.4k)
  cor_mat <- cor(t(assay(gtex.4k)))
  ave_logrpkm <- rowData(gtex.4k)$ave_logrpkm
  qqplot_condition_exp(cor_mat, ave_exp=ave_logrpkm, 1, 1)
}
```
Index

* **package**
 * spqn-package, 2

get_IQR_condition_exp
 * (plot_IQR_condition_exp), 3

normalize_correlation, 2

plot_IQR_condition_exp, 3
plot_signal_condition_exp, 4

qqplot_condition_exp, 5

spqn (spqn-package), 2
spqn-package, 2