Package ‘spqn’

April 6, 2024

Title Spatial quantile normalization

Version 1.14.0

Description The spqn package implements spatial quantile normalization (SpQN). This method was developed to remove a mean-correlation relationship in correlation matrices built from gene expression data. It can serve as pre-processing step prior to a co-expression analysis.

License Artistic-2.0

Imports graphics, stats, utils, matrixStats

Depends R (>= 4.0), ggplot2, ggridges, SummarizedExperiment, BiocGenerics

Suggests BiocStyle, knitr, rmarkdown, tools, spqnData (>= 0.99.3), RUnit

VignetteBuilder knitr

URL https://github.com/hansenlab/spqn

BugReports https://github.com/hansenlab/spqn/issues

bioViews NetworkInference, GraphAndNetwork, Normalization

git_url https://git.bioconductor.org/packages/spqn

git_branch RELEASE_3_18

git_last_commit cbe7719

git_last_commit_date 2023-10-24

Repository Bioconductor 3.18

Date/Publication 2024-04-05

Author Yi Wang [cre, aut], Kasper Daniel Hansen [aut]

Maintainer Yi Wang <yiwangthu5@gmail.com>
R topics documented:

- spqn-package ... 2
- normalize_correlation ... 2
- plot_IQR_condition_exp .. 3
- plot_signal_condition_exp ... 4
- qqplot_condition_exp ... 5

Index

| spqn-package | Spatial quantile normalization |

Description

The spqn package implements spatial quantile normalization (SpQN). This method was developed to remove a mean-correlation relationship in correlation matrices built from gene expression data. It can serve as pre-processing step prior to a co-expression analysis.

Details

See references for details on spatial quantile normalization.

The main function is `normalize_correlation`. We include a number of plotting functions for examining the mean-correlation relationship, see the vignette for examples.

References

Usage

```r
normalize_correlation(cor_mat, ave_exp, ngrp, size_grp, ref_grp)
```
Arguments

- **cor_mat**
 - A (square and symmetrix) correlation matrix.

- **ave_exp**
 - A vector of expression levels, same length as the number of rows of the correlation matrix in `cor_mat`. For other types of data, `ave_exp` can be the vector corresponding to the row/column of the correlation matrix, whose dependency with the distribution of correlations need to be removed.

- **ngrp**
 - Number of bins in each row/column to be used to partition the correlation matrix, integer.

- **size_grp**
 - Size of the outer bins to be used to approximate the distribution of the inner bins, in order to smooth the normalization. Note that the product of `size_grp` and `ngrp` must be equal or larger than than the row/column number of `cor_mat`, and there is no smoothness in the normalization when they are equal.

- **ref_grp**
 - Location of the reference bin on the diagonal, whose distribution will be used as target distribution in the normalization, an integer.

Value

- A normalized correlation matrix.

Examples

```r
if(require(spqmData)){
  data(gtex.4k)
  cor_ori <- cor(t(assay(gtex.4k)))
  ave_logrpkm <- rowData(gtex.4k)$ave_logrpkm
  normalize_correlation(cor_ori, ave_exp = ave_logrpkm,
    ngrp=10, size_grp=15, ref_grp=9)}
```

Description

The `get_IQR_condition_exp` function computes the IQRs of a set of 10 by 10 same-size bins that partition the correlation matrix, ordered according to expression level.

The `plot_IQR_condition_exp` function plots the IQR for each bin among a set of 10 by 10 same-size bins that partition the correlation matrix, with IQR denoted by the width of boxes in the plot.

Usage

- `get_IQR_condition_exp(cor_mat, ave_exp)`
- `plot_IQR_condition_exp(IQR_list)`

Get and plot the IQRs of submatrices of the correlation matrix.
plot_signal_condition_exp

Plot the signal and background distribution of a correlation matrix.

Description
This function allows users to visualize the distributions of (assumed) signal and background, conditional on expression levels. The predicted signals are defined by the 0.1% highest correlations in each bin.

Usage
plot_signal_condition_exp(cor_mat, ave_exp, signal)

Arguments
- cor_mat: Matrix, correlation matrix, generated by gene expression matrix
- ave_exp: Vector, average expression level of each gene for the normalized expression matrix
- signal: a value between 0 and 1 giving the fraction of correlations which should be considered signal. We often use a value of 0.001.
qqplot_condition_exp

Value

Invoked for the side effect of producing a plot.

Note

The mnemonic for condition_exp is 'conditional on expression'.

Examples

```r
if(require(spqnData)) {
  data(gtex.4k)
  cor_mat <- cor(t(assay(gtex.4k)))
  ave_logrpkm <- rowData(gtex.4k)$ave_logrpkm
  plot_signal_condition_exp(cor_mat, ave_exp=ave_logrpkm, signal=0.05)
}
```

Description

We partition the correlation matrix into 10x10 bins of equal size, with genes ordered according to expression level. As reference bin, we choose the (9,9) bin (ie. the almost-highest expressed genes). We then make a QQ-plot of the (i,j)'th submatrix vs. the (9,9) submatrix. See the SpQN paper for detail on these choices.

Usage

`qqplot_condition_exp(cor_mat, ave_exp, i, j)`

Arguments

- `cor_mat` Matrix, correlation matrix, generated by gene expression matrix.
- `ave_exp` Vector, average expression level of each gene for the normalized expression matrix.
- `i` Integer, row number of the submatrix (see details).
- `j` Integer, column number of the submatrix (see details).

Value

Invoked for the side effect of producing a plot.

Note

The mnemonic for condition_exp is 'conditional on expression'.
Examples

```r
if(require(spqnData)) {
  data(gtex.4k)
  cor_mat <- cor(t(assay(gtex.4k)))
  ave_logrpkm <- rowData(gtex.4k)$ave_logrpkm
  qqplot_condition_exp(cor_mat, ave_exp=ave_logrpkm, 1, 1)
}
```
Index

* package
 spqn-package, 2

get_IQR_condition_exp
 (plot_IQR_condition_exp), 3

normalize_correlation, 2

plot_IQR_condition_exp, 3
plot_signal_condition_exp, 4

qqplot_condition_exp, 5

spqn (spqn-package), 2
spqn-package, 2