Package ‘switchde’

May 30, 2024

Type Package

Title Switch-like differential expression across single-cell trajectories

Version 1.30.0

Date 2017-10-24

Description Inference and detection of switch-like differential expression across single-cell RNA-seq trajectories.

License GPL (>= 2)

LazyData TRUE

biocViews ImmunoOncology, Software, Transcriptomics, GeneExpression, RNASeq, Regression, DifferentialExpression, SingleCell

Depends R (>= 3.4), SingleCellExperiment

Imports SummarizedExperiment, dplyr, ggplot2, methods, stats

Suggests knitr, rmarkdown, BiocStyle, testthat, numDeriv, tidyr

VignetteBuilder knitr

RoxygenNote 6.0.1

URL https://github.com/kieranrcampbell/switchde

BugReports https://github.com/kieranrcampbell/switchde

git_url https://git.bioconductor.org/packages/switchde

git_branch RELEASE_3_19

git_last_commit b293bbf

git_last_commit_date 2024-04-30

Repository Bioconductor 3.19

Date/Publication 2024-05-29

Author Kieran Campbell [aut, cre]

Maintainer Kieran Campbell <kieranrcampbell@gmail.com>
Contents

example_sigmoid ... 2
extract_pars ... 2
ex_pseudotime ... 3
fit_nzi_model ... 3
fit_zi_model ... 4
sanitise_inputs .. 5
sigmoid .. 5
switchde ... 6
switchplot ... 7
synth_gex .. 7

Index 9

example_sigmoid Example sigmoid plot

description
Plot an example sigmoid function. For demonstration and documentation.

usage
example_sigmoid()

value
An object of class ggplot

examples
example_sigmoid()

extract_pars Extract parameters from fitted model

description
Extract maximum likelihood parameter estimates from a call to switchde.

usage
extract_pars(sde, gene)
Arguments

- `sde` The data.frame returned by `switchde`
- `gene` The gene for which to extract parameters

Value

A vector of length 3 corresponding to the parameters μ_0, k and t_0

Examples

```r
data(synth_gex)
data(ex_pseudotime)
sde <- switchde(synth_gex, ex_pseudotime)
pars <- extract_pars(sde, "Gene1")
```

ex_pseudotime

Synthetic gene pseudotimes

Description

A vector with example pseudotimes for the synthetic gene expression data in `example_gex`

Usage

```r
ex_pseudotime
```

Format

An object of class `array` of length 100.

Value

A vector of length 100

fit_nzi_model

Fit a (non-zero-inflated) model for a single gene

Description

Fits a sigmoidal expression model for a single gene vector, returning MLE model parameters and p-value.

Usage

```r
fit_nzi_model(y, pst)
```
Arguments

- **y**: Vector of gene expression values
- **pst**: Pseudotime vector, of same length as y

Value

A vector with 5 entries: maximum likelihood estimates for μ_0, k_0, σ^2 and a p-value

Examples

```r
data(synth_gex)
data(ex_pseudotime)
y <- synth_gex[1, ]
fit <- fit_zi_model(y, ex_pseudotime)
```

Description

Fits a zero-inflated sigmoidal model for a single gene vector, returning MLE model parameters and p-value.

Usage

```r
fit_zi_model(y, pst, maxiter = 10000, log_lik_tol = 0.001,
verbose = FALSE)
```

Arguments

- **y**: Vector of gene expression values
- **pst**: Pseudotime vector, of same length as y
- **maxiter**: Maximum number of iterations for EM algorithm if zero inflation enabled. Default 100
- **log_lik_tol**: If the change in the log-likelihood falls below this for zero inflated EM the algorithm is assumed to have converged
- **verbose**: Print convergence update for EM algorithm

Value

A vector with 6 entries: maximum likelihood estimates for μ_0, k_0, λ, σ^2 and a p-value

Examples

```r
data(synth_gex)
data(ex_pseudotime)
y <- synth_gex[1, ]
fit <- fit_zi_model(y, ex_pseudotime)
```
sanitise_inputs

Description
Sanitise inputs

Usage
sanitise_inputs(object, pseudotime, lower_threshold, zero_inflated, sce_assay)

Arguments
- object: The object passed at the entry point (either a SCESet or gene expression matrix)
- pseudotime: A pseudotime vector
- lower_threshold: The minimum threshold below which to set expression to zero to avoid numerical issues. Default is 0.01
- zero_inflated: Logical. Should zero inflation be implemented? Default FALSE
- sce_assay: The assay from the SingleCellExperiment to be used as expression, defaulting to "exprs"

Value
A list with two entries: a gene expression matrix X and a pseudotime vector pst.

sigmoid

Calculate the mean vector given parameters and pseudotimes (mu0 formulation)

Description
This function (common to all models) calculates the sigmoidal mean vector given the parameters and factor of pseudotimes

Usage
sigmoid(pst, params)

Arguments
- pst: Vector of pseudotimes
- params: Vector of length 3 with entries mu_0, k, t0

Value
Mean sigmoidal vector
switchde

Switch-like model fitting and differential expression test

Description

Fit sigmoidal differential expression models to gene expression across pseudotime. Parameter estimates are returned along with a p-value for switch-like differential expression over a null model (constant expression).

Usage

```r
switchde(object, pseudotime = NULL, zero_inflated = FALSE,
lower_threshold = 0.01, maxiter = 1000, log_lik_tol = 0.01,
verbose = FALSE, sce_assay = "exprs")
```

Arguments

- `object`: Gene expression data that is either
 - A vector of length number of cells for a single gene
 - A matrix of dimension number of genes x number of cells
 - An object of class SingleCellExperiment from package SingleCellExperiment
- `pseudotime`: A pseudotime vector with a pseudotime corresponding to every cell. Can be `NULL` if object is of class SCESet and `colData(sce)$pseudotime` is defined.
- `zero_inflated`: Logical. Should zero inflation be implemented? Default `FALSE`
- `lower_threshold`: The minimum threshold below which to set expression to zero to avoid numerical issues. Default is 0.01
- `maxiter`: Maximum number of iterations for EM algorithm if zero inflation enabled. Default 100
- `log_lik_tol`: If the change in the log-likelihood falls below this for zero inflated EM the algorithm is assumed to have converged
- `verbose`: Print convergence update for EM algorithm
- `sce_assay`: The assay from the SingleCellExperiment to be used as expression, defaulting to "exprs"

Value

A matrix where each column corresponds to a gene, the first row is the p-value for that gene and subsequent rows are model parameters.

Examples

```r
data(synth_gex)
data(ex_pseudotime)
sde <- switchde(synth_gex, ex_pseudotime)
```
switchplot

Plot gene behaviour

Description

Plot gene behaviour and MLE sigmoid as a function of pseudotime.

Usage

```
switchplot(x, pseudotime, pars)
```

Arguments

- `x` : Gene expression vector
- `pseudotime` : Pseudotime vector (of same length as `x`)
- `pars` : Fitted model parameters

Details

This plots expression of a single gene. Fitted model parameters can either be specified manually or can be extracted from the data.frame returned by `switchde` using the function `extract_pars`.

Value

A ggplot2 plot of gene expression and MLE sigmoid

Examples

```r
data(synth_gex)
data(ex_pseudotime)
sde <- switchde(synth_gex, ex_pseudotime)
switchplot(synth_gex[1, ], ex_pseudotime, extract_pars(sde, "Gene1"))
```

synth_gex

Synthetic gene expression matrix

Description

A matrix containing some synthetic gene expression data for 100 cells and 12 genes

Usage

```
synth_gex
```

Format

An object of class matrix with 12 rows and 100 columns.
Value

A 12 by 100 matrix
Index

* datasets
 ex_pseudotime, 3
 synth_gex, 7

* internal
 sanitise_inputs, 5
 sigmoid, 5

ex_pseudotime, 3
example_sigmoid, 2
extract_pars, 2

fit_nzi_model, 3
fit_zi_model, 4

sanitise_inputs, 5
sigmoid, 5
switchde, 6
switchplot, 7
synth_gex, 7