Package ‘target’

May 30, 2024

Type Package
Title Predict Combined Function of Transcription Factors
Version 1.18.0
Description Implement the BETA algorithm for infering direct target
genes from DNA-binding and perturbation expression data Wang et al. (2013)
<doi:10.1038/nprot.2013.150>. Extend the algorithm to predict the combined
function of two DNA-binding elements from comparable binding and expression
data.
URL https://github.com/MahShaaban/target
Bug Reports https://github.com/MahShaaban/target/issues
License GPL-3
Encoding UTF-8
LazyData true
Depends R (>= 3.6)
Imports BiocGenerics, GenomicRanges, IRanges, matrixStats, methods,
 stats, graphics, shiny
Suggests testthat (>= 2.1.0), knitr, rmarkdown, shinytest, shinyBS,
 covr
VignetteBuilder knitr
RoxygenNote 6.1.1
biocViews Software, StatisticalMethod, Transcription
git_url https://git.bioconductor.org/packages/target
git_branch RELEASE_3_19
git_last_commit f954472
git_last_commit_date 2024-04-30
Repository Bioconductor 3.19
Date/Publication 2024-05-29
Author Mahmoud Ahmed [aut, cre]
Maintainer Mahmoud Ahmed <mahmoud.s.fahmy@students.kasralainy.edu.eg>
associated_peaks

Contents

associated_peaks . 2
direct_targets . 3
find_distance . 4
merge_ranges . 4
plot_predictions . 5
rank_product . 6
real_peaks . 7
real_transcripts . 7
score_peaks . 8
score_regions . 9
sim_peaks . 10
sim_transcripts . 10
target . 11
target_app . 11
test_predictions . 12

Index

associated_peaks

Description

This function selects overlapping peaks and regions, calculates the distance between them and score each peak.

Usage

associated_peaks(peaks, regions, regions_col, base = 1e+05)

Arguments

peaks A GRanges object
regions A GRanges object
regions_col A character string
base An integer to calculate distances relative to.

Value

A GRanges object. A similar object to peaks with three added metadata columns.
direct_targets

Examples

```r
# load peaks and transcripts data
data("real_peaks")
data("real_transcripts")

# associated peaks
ap <- associated_peaks(real_peaks, real_transcripts, 'name2')
```

direct_targets *Predict direct targets*

Description

This function selects overlapping peaks and regions, calculates the distance between them, score each peak and region and calculate rank products of the regions.

Usage

```r
direct Targets(peaks, regions, regions_col, stats_col, base = 1e+05)
```

Arguments

- **peaks**: A GRanges object
- **regions**: A GRanges object
- **regions_col**: A character string
- **stats_col**: A character string
- **base**: An integer to calculate distances relative to.

Value

A GRanges object. A similar object to regions with several added metadata columns.

Examples

```r
# load peaks and transcripts data
data("real_peaks")
data("real_transcripts")

# direct targets
dt <- direct_targets(real_peaks, real_transcripts, 'name2', 't')
```
find_distance
Find the distance between peaks and regions

Description

Calculate the distance between the elements of two GRanges objects.

Usage

```r
find_distance(peaks, regions, how = "center")
```

Arguments

- `peaks`: A GRanges object
- `regions`: A GRanges object
- `how`: A character string, default 'center'

Value

A vector of integers

Examples

```r
library(IRanges)

query <- IRanges(c(1, 4, 9), c(5, 7, 10))
subject <- IRanges(c(2, 2, 10), c(2, 3, 12))
find_distance(query, subject)
```

merge_ranges
Merge peaks and regions GRanges

Description

Merge two GRanges objects by overlaps

Usage

```r
merge_ranges(peaks, regions)
```

Arguments

- `peaks`: A GRanges object
- `regions`: A GRanges object
plot_predictions

Value
A DataFrame

Examples
library(IRanges)

query <- IRanges(c(1, 4, 9), c(5, 7, 10))
subject <- IRanges(c(2, 2, 10), c(2, 3, 12))
mergeByOverlaps(query, subject)

plot_predictions Plot the ECDF of ranks by groups

Description
Plot the cumulative distribution function of chosen value (e.g. ranks) by a factor of the same length, group. Each group is given a color and a label.

Usage
plot_predictions(rank, group, colors, labels, ...)

Arguments
rank A numeric vector

group A factor of length equal that of rank

tcolors A character vector of colors for each group

labels A character vector of length equal the unique values in groups

... Other arguments passed to points

Value
NULL.

Examples
generate random values
rn1 <- rnorm(100)
rn2 <- rnorm(100, 2)
e <- c(rn1, rn2)

g <- rep(c('up', 'down'), times = c(length(rn1), length(rn2)))

plot_predictions(e,
rank_product

Calculate the regions rank products

Description

Calculate the rank products of the rank of the distances and the statistics.

Usage

```
rank_product(region_score, region_stat, region_id)
```

Arguments

- `region_score` A vector of numerics
- `region_stat` A vector of numerics
- `region_id` A vector of characters

Value

A vector of numerics

Examples

```
library(IRanges)

query <- IRanges(c(1, 4, 9), c(5, 7, 10))
subject <- IRanges(c(2, 2, 10), c(2, 3, 12))
distance <- find_distance(query, subject)
peak_score <- score_peaks(distance, 100000)
region_id <- c('region1', 'region1', 'region2')
region_score <- score_regions(peak_score, region_id)
region_stat <- c(30, 30, -40)
rank_product(region_score, region_stat, region_id)
```
real_peaks

Description
Androgen receptor peaks from ChIP-Seq experiment in the LNCaP cell line.

Usage
real_peaks

Format
A GRanges

Source
https://github.com/suwangbio/BETA/blob/master/BETA_test_data/3656_peaks.bed

See Also
real_transcripts
sim_peaks

Examples
load data
data('real_peaks')

locate the raw data
system.file('extdata', '3656_peaks.bed.gz', package = 'target')

locate the source code for preparing the data
system.file('extdata', 'make-data.R', package = 'target')

real_transcripts Differential expression of DHT treated LNCaP cell line

Description
The differential expression analysis output of LNCaP cell line treated with DHT for 16 hours compared to non-treated cells. The REFSEQ transcript identifiers were used to merge the data.frame with the transcript coordinates from the hg19 reference genome.

Usage
real_transcripts
score_peaks

Calculate peak scores

Description

Calculate the peak score based on the distance to a region of interest.

Usage

`score_peaks(distance, base)`

Arguments

- `distance` A vector of integers
- `base` An integer to calculate distances relative to.

Value

A vector of integers
Examples

library(IRanges)

query <- IRanges(c(1, 4, 9), c(5, 7, 10))
subject <- IRanges(c(2, 2, 10), c(2, 3, 12))
distance <- find_distance(query, subject)
score_peaks(distance, 100000)

score_regions

Calculate region scores

Description

Calculate the region score based on the distance to their assigned peaks.

Usage

score_regions(peak_score, region_id)

Arguments

peak_score A vector of integers
region_id A vector of character

Value

A vector of numerics

Examples

library(IRanges)

query <- IRanges(c(1, 4, 9), c(5, 7, 10))
subject <- IRanges(c(2, 2, 10), c(2, 3, 12))
distance <- find_distance(query, subject)
peak_score <- score_peaks(distance, 100000)
region_id <- c('region1', 'region1', 'region2')
region_score <- score_regions(peak_score, region_id)
Description

is randomly generated peaks with random distances from the transcripts start sites (TSS) of chromosome 1 of the mm10 mouse genome.

Usage

sim_peaks

Format

A GRanges

See Also

real_peaks

sim_transcripts

Examples

```r
# load data
data('sim_peaks')

# locate the source code for preparing the data
system.file('extdata', 'make-data.R', package = 'target')
```

Description

Simulated transcripts The transcripts chromosome 1 of the mm10 mouse genome with randomly singed statistics assigned to each.

Usage

sim_transcripts

Format

A GRanges
See Also

- real_transcripts
- sim_transcripts

Examples

load data
data('sim_transcripts')

locate the source code for preparing the data
system.file('extdata', 'make-data.R', package = 'target')

target target: Predict Combined Function of Transcription Factors.

Description

Implement the BETA algorithm for inferring direct target genes from DNA-binding and perturbation expression data Wang et al. (2013) <doi: 10.1038/nprot.2013.150>. Extend the algorithm to predict the combined effect of two DNA-binding elements from comparable binding and expression data.

Details

- Predicting associated peaks and direct targets
- associated_peaks direct_targets
- Plotting and testing predictions plot_predictions test_predictions
- Internal target functions: merge_ranges find_distance score_peaks score_regions rank_product

target_app Run the shiny App

Description

Run the shiny App

Usage

target_app()

Value

Runs the shiny app
Description

Test whether the cumulative distribution function of two groups are drawn from the same distribution.

Usage

```r
test_predictions(rank, group, compare, ...)
```

Arguments

- `rank` A numeric vector
- `group` A factor of length equal that of rank
- `compare` A character vector of length two
- `...` Other arguments passed to `ks.test`

Value

An `htest` object

Examples

```r
# generate random values
rn1 <- rnorm(100)
rn2 <- rnorm(100, 2)
e <- c(rn1, rn2)

# generate grouping variable
g <- rep(c('up', 'down'), times = c(length(rn1), length(rn2)))

# test
test_predictions(e,
        group = g,
        compare = c('up', 'down'))
```
Index

* datasets
 real_peaks, 7
 real_transcripts, 7
 sim_peaks, 10
 sim_transcripts, 10

associated_peaks, 2, 11

direct_targets, 3, 11

find_distance, 4, 11

merge_ranges, 4, 11

plot_predictions, 5, 11

rank_product, 6, 11
real_peaks, 7, 8, 10
real_transcripts, 7, 7, 11

score_peaks, 8, 11
score_regions, 9, 11
sim_peaks, 7, 10
sim_transcripts, 8, 10, 10, 11

target, 11
target-package (target), 11
target_app, 11

test_predictions, 11, 12