Package ‘trackViewer’

April 29, 2024

Type Package

Title A R/Bioconductor package with web interface for drawing elegant interactive tracks or lollipop plot to facilitate integrated analysis of multi-omics data

Version 1.39.17

Maintainer Jianhong Ou <jianhong.ou@duke.edu>

Description Visualize mapped reads along with annotation as track layers for NGS dataset such as ChIP-seq, RNA-seq, miRNA-seq, DNA-seq, SNPs and methylation data.

License GPL (>= 2)

Depends R (>= 3.5.0), grDevices, methods, GenomicRanges, grid

Imports GenomeInfoDb, GenomicAlignments, GenomicFeatures, Gviz, Rsamtools, S4Vectors, rtracklayer, BiocGenerics, scales, tools, IRanges, AnnotationDbi, grImport, htmlwidgets, plotrix, InteractionSet, igraph, utils, rhdf5, strawr, txdbmaker

Suggests biomaRt, TxDb.Hsapiens.UCSC.hg19.knownGene, RUnit, org.Hs.eg.db, BiocStyle, knitr, VariantAnnotation, httr, htmltools, rmardown, motifStack

biocViews Visualization

VignetteBuilder knitr

RoxygenNote 7.3.1

Encoding UTF-8

git_url https://git.bioconductor.org/packages/trackViewer
git_branch devel
git_last_commit 1b65355
git_last_commit_date 2024-03-16

Repository Bioconductor 3.19

Date/Publication 2024-04-28

Author Jianhong Ou [aut, cre] (<https://orcid.org/0000-0002-8652-2488>), Julie Lihua Zhu [aut]
Contents

trackViewer-package .. 3
addArrowMark .. 4
addGuideLine .. 5
addInteractionAnnotation ... 6
ARA ... 7
browseTracks ... 8
browseTracks-shiny ... 9
coverageGR ... 9
dandelion.plot ... 10
geneModelFromTxdb ... 11
geneTrack .. 13
getCurTrackViewport ... 13
geneIDsFromTxDb .. 14
getLocation .. 15
gi2track .. 15
gieStain .. 16
Gloperator ... 16
gridPlot ... 17
GRoperator ... 17
ideogramPlot ... 18
importBam ... 19
importData ... 20
importGInteractions ... 21
importScore ... 23
importScSeqScore .. 24
listChromosomes ... 25
listResolutions ... 26
loadIdeogram ... 26
lolliplot ... 27
loopBouquetPlot ... 29
optimizeStyle ... 31
parse2GRanges ... 32
parseWIG ... 32
plotGRanges .. 33
plotIdeo .. 34
plotOneIdeo ... 35
pos-class .. 36
reduce,GInteractions-method .. 36
trackList-class .. 37
trackStyle-class .. 38
trackViewerStyle-class .. 40
viewGene .. 41
viewTracks .. 42
xscale-class .. 43
yaxisStyle-class .. 44

Index ... 45
trackViewer-package

Minimal designed plotting tool for genomic data

Description

A package that plots data and annotation information along genomic coordinates in an elegance style. This tool is based on Gviz but want to draw figures in minimal style for publication.

Author(s)

Maintainer: Jianhong Ou <jianhong.ou@duke.edu> (ORCID)

Authors:

- Julie Lihua Zhu <Julie.Zhu@umassmed.edu>

Examples

```r
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
library(org.Hs.eg.db)
trs <- geneModelFromTxdb(TxDb.Hsapiens.UCSC.hg19.knownGene,
                        org.Hs.eg.db,
                        chrom="chr11",
                        start=122929275,
                        end=122930122)
extdata <- system.file("extdata", package="trackViewer",
mustWork=TRUE)
repA <- importScore(paste(extdata, "cpsf160.repA_.+.wig", sep="/"),
paste(extdata, "cpsf160.repA_.-.wig", sep="/"),
format="WIG")
strand(repA@dat) <- "+"
strand(repA@dat2) <- "-"
fox2 <- importScore(paste(extdata, "fox2.bed", sep="/"), format="BED")
dat <- coverageGR(fox2@dat)
fox2@dat <- dat[strand(dat)=="+"]
fox2@dat2 <- dat[strand(dat)=="-"
gr <- GRanges("chr11", IRanges(122929275, 122930122), strand="-")
vp <- viewTracks(trackList(repA, fox2, trs), gr=gr, autoOptimizeStyle=TRUE)
addGuideLine(c(122929767, 122929969), vp=vp)
addArrowMark(list(x=unit(.5, "npc"),
y=unit(.39, "npc")),
col="blue")
```
addArrowMark

Add arrow mark to the figure at a given position

Description

A function to add arrow mark for emphasizing peaks

Usage

addArrowMark(
 pos = grid.locator(),
 label = NULL,
 angle = 15,
 length = unit(0.25, "inches"),
 col = "red",
 cex = 1,
 quadrant = 4,
 type = "closed",
 vp = NULL
)

Arguments

pos A unit object representing the location of arrow mark to be placed at current viewport. Default is the value of grid.locator, which will get the location of the mouse click.

label A character or expression vector.

angle A parameter passed into grid::arrow function. The angle of arrow head in degrees (smaller numbers produce narrower, pointier arrows). Essentially describes the width of the arrow head.

length A parameter passed into grid::arrow function. A unit specifying the length of the arrow head.

col color of the arrow

cex Multiplier applied to fontsize

quadrant the direction of arrow, 1: to bottomleft, 2: to bottomright, 3: to topright, 4: to topleft

type A parameter passed into grid::arrow function. One of "open" or "closed" indicating whether the arrow head should be a closed triangle.

vp A Grid viewport object. It must be output of viewTracks

Value

invisible x, y position value.
addGuideLine

See Also

See Also as addGuideLine, arrow

Examples

grid.newpage()
addArrowMark(list(x=unit(.5, "npc"),
 y=unit(.5, "npc"),
 label="label1",
 col="blue")
how to get the position by mouse click
if(interactive()){
pos <- addArrowMark(label="byClick")
 addArrowMark(pos, label="samePosAsAbove")
}

addGuideLine Add guide lines to the tracks

Description

A function to add lines for emphasizing the positions

Usage

addGuideLine(guideLine, col = "gray", lty = "dashed", lwd = 1, vp = NULL)

Arguments

guideLine The genomic coordinates to draw the lines
col A vector for the line color
lty A vector for the line type
lwd A vector for the line width
vp A Grid viewport object. It must be output of viewTracks

See Also

See Also as getCurTrackViewport, addArrowMark, viewTracks

Examples

vp <- getCurTrackViewport(trackViewerStyle(), 10000, 10200)
addGuideLine(c(10010, 10025, 10150), vp=vp)
addInteractionAnnotation

Add annotation markers to the figure at a given position

Description
A function to add annotation markers for emphasizing interactions

Usage
addInteractionAnnotation(
 obj,
 idx,
 FUN = grid.polygon,
 panel = c("top", "bottom"),
 ...
)

Arguments

obj A GInteractions object, GRanges object or numeric vector. For numeric vector, the positive value will generate a line with slope 1 and negative value will generate a line at the position with slope -1.

idx The layer number of track.

FUN Function for plot. Available functions are grid.polygon, grid.lines, and grid.text for GInteractions object; grid.lines, and grid.text for GRanges object; FUN is not used for numeric vector.

panel Plot regions. Available values are "top", "bottom".

... Parameters will be passed to FUN.

Value
invisible viewport for plot region.

See Also
See Also as addGuideLine, addArrowMark

Examples
library(trackViewer)
library(InteractionSet)
gi <- readRDS(system.file("extdata", "nij.chr6.51120000.53200000.gi.rds", package="trackViewer"))
tads <- GInteractions(
 GRanges("chr6",
 IRanges(c(51130001, 51130001, 51450001, 52210001), width = 20000)),
 GRanges("chr6",
 IRanges(c(51130001, 51130001, 51450001, 52210001), width = 20000)),
...
ARA

GRanges("chr6",
 IRanges(c(51530001, 52170001, 52210001, 53210001), width = 20000))
range <- GRanges("chr6", IRanges(51120000, 53200000))
tr <- gi2track(gi)
viewTracks(trackList(tr),
 gr=range, autoOptimizeStyle = TRUE)
addInteractionAnnotation(tads, "tr", grid.lines,
 gp=gpar(col = "#E69F00", lwd=3, lty=3))

ARA Aggregate Region Analysis

Description
Extract the interaction signal means from given coordinates.

Usage
ARA(gr, upstream = 2e+05, downstream = upstream, resolution = 10000, ...)

Arguments
- `gr`: A `GRanges` object. The center of the object will be used for alignment for all
 the given regions.
- `upstream`, `downstream`: numeric(1L). Upstream and downstream from the center of given `gr`
 input will be used to extract the signals.
- `resolution`: numeric(1L). The resolution will be passed to `importGInteractions`
 function.
- `...`: The parameters used by `importGInteractions` function. Please note that the
 ranges resolution and out parameter should not be involved.

Value
A `GInteractions` object with scores which represent the mean values of the interactions.

Examples

```
hic <- system.file("extdata", "test_chr22.hic", package = "trackViewer",
    mustWork=TRUE)
gr <- GRanges("22", c(seq(20000001, 50000001, by=10000000), width=1))
gi <- ARA(gr, file= hic, format="hic")
rg <- GRanges("22", IRanges(1, 400000))
op <- optimizeStyle(trackList(gi2track(gi)))
heatmap <- op$tracks
sty <- op$style
setTrackViewerStyleParam(sty, "xat", c(1, 200000, 400000))
setTrackViewerStyleParam(sty, "xlabel", c("-20K", "center", "20K"))
viewTracks(heatmap, viewerStyle=sty, gr=rg)
```
Description

browse tracks by a web browser.

Usage

browseTracks(
 trackList,
 gr = GRanges(),
 ignore.strand = TRUE,
 width = NULL,
 height = NULL,
 ...
)

Arguments

- `trackList` an object of `trackList`
- `gr` an object of `GRanges`
- `ignore.strand` ignore the strand or not when do filter. default TRUE
- `width` width of the figure
- `height` height of the figure
- `...` parameters not used

Value

An object of class htmlwidget that will intelligently print itself into HTML in a variety of contexts including the R console, within R Markdown documents, and within Shiny output bindings.

Examples

```r
extdata <- system.file("extdata", package="trackViewer", mustWork=TRUE)
files <- dir(extdata, ""-.wig")
tracks <- lapply(paste(extdata, files, sep="/"), 
  importScore, format="WIG")
tracks <- lapply(tracks, function(.ele) {strand(.ele@dat) <- "-"; .ele})
names(tracks) <- c("trackA", "trackB")
fox2 <- importScore(paste(extdata, "fox2.bed", sep="/"), format="BED")
dat <- coverageGR(fox2@dat)
fox2@dat <- dat[strand(dat)=="+"]
fox2@dat2 <- dat[strand(dat)=="-"]
gr <- GRanges("chr11", IRanges(122929275, 122930122))
browseTracks(trackList(tracks, fox2), gr=gr)
```
browseTracks-shiny

Shiny bindings for browseTracks

Description

Output and render functions for using browseTracks within Shiny applications and interactive Rmd documents.

Usage

```r
browseTracksOutput(outputId, width = "100\%", height = "600px")
```

```r
renderbrowseTracks(expr, env = parent.frame(), quoted = FALSE)
```

Arguments

- **outputId**: output variable to read from
- **width, height**: Must be a valid CSS unit (like '100\%', '400px', 'auto') or a number, which will be coerced to a string and have 'px' appended.
- **expr**: An expression that generates a browseTracks
- **env**: The environment in which to evaluate expr.
- **quoted**: Is expr a quoted expression (with `quote()`)? This is useful if you want to save an expression in a variable.

coverageGR

calculate coverage

Description

calculate coverage for `GRanges`, `GAlignments` or `GAlignmentPairs`

Usage

```r
coverageGR(gr)
```

Arguments

- **gr**: an object of `RGanges`, `GAlignments` or `GAlignmentPairs`

Value

- an object of `GRanges`
See Also

See Also as coverage, coverage-methods

Examples

```r
bed <- system.file("extdata", "fox2.bed", package="trackViewer", 
mustWork=TRUE)
fox2 <- importScore(bed)
fox2$dat <- coverageGR(fox2$dat)
```

Description

Plot variants and somatic mutations

Usage

```r
dandelion.plot(
    SNP.gr,
    features = NULL,
    ranges = NULL,
    type = c("fan", "circle", "pie", "pin"),
    newpage = TRUE,
    ylab = TRUE,
    ylab.gp = gpar(col = "black"),
    xaxis = TRUE,
    xaxis.gp = gpar(col = "black"),
    yaxis = FALSE,
    yaxis.gp = gpar(col = "black"),
    legend = NULL,
    cex = 1,
    maxgaps = 1/50,
    heightMethod = NULL,
    label_on_feature = FALSE,
    ...
)
```

Arguments

- **SNP.gr**: A object of GRanges or GRangesList. All the width of GRanges must be 1.
- **features**: A object of GRanges or GRangesList.
- **ranges**: A object of GRanges or GRangesList.
- **type**: Character. Could be fan, circle, pie or pin.
newpage plot in the new page or not.
ylab plot ylab or not. If it is a character vector, the vector will be used as ylab.
ylab.gp, xaxis.gp, yaxis.gp An object of class gpar for ylab, xaxis or yaxis.
xaxis, yaxis plot xaxis/yaxis or not. If it is a numeric vector with length greater than 1, the vector will be used as the points at which tick-marks are to be drawn. And the names of the vector will be used to as labels to be placed at the tick points if it has names.
legend If it is a list with named color vectors, a legend will be added.
cex cex will control the size of circle.
maxgaps maxgaps between the stem of dandelions. It is calculated by the width of plot region divided by maxgaps. If a GRanges object is set, the dandelions stem will be clustered in each genomic range.
heightMethod A function used to determine the height of stem of dandelion. eg. Mean. Default is length.
label_on_feature Labels of the feature directly on them. Default FALSE.

Details

In SNP.gr and features, metadata of the GRanges object will be used to control the color, fill, border, height, data source of pie if the type is pie.

Examples

SNP <- c(10, 100, 105, 108, 400, 410, 420, 600, 700, 805, 840, 1400, 1402)
SNP.gr <- GRanges("chr1", IRanges(SNP, width=1, names=paste0("snp", SNP)),
 score=sample.int(100, length(SNP))/100)
features <- GRanges("chr1", IRanges(c(1, 501, 1001),
 width=c(120, 500, 405),
 names=paste0("block", 1:3)),
 color="black",
 fill=c("#FF8833", "#51C6E6", "#DFA32D"),
 height=c(0.1, 0.05, 0.08))
dandelion.plot(SNP.gr, features, type="fan")

geneModelFromTxdb Prepare gene model from an object of TxDb

Description

Generate an object of track for viewTracks by given parameters.
geneModelFromTxdb

Usage

geneModelFromTxdb(
 txdb,
 orgDb,
 gr,
 chrom,
 start,
 end,
 strand = c("*", "+", "-"),
 txdump = NULL
)

Arguments

taxdb An object of TxDb
orgDb An object of "OrgDb"
gr An object of GRanges.
chrom chromosome name, must be a seqname of txdb
start start position
end end position
strand strand
txdump output of as.list(txdb), a list of data frames that can be used to make the db again with no loss of information.

Value

Generate a list of track from a TxDb object.

See Also

See Also as importScore, importBam, viewTracks

Examples

library(TxDb.Hsapiens.UCSC.hg19.knownGene)
library(org.Hs.eg.db)
trs <- geneModelFromTxdb(TxDb.Hsapiens.UCSC.hg19.knownGene,
org.Hs.eg.db,
chr="chr20",
start=22560000,
end=22565000,
strand="-"
geneTrack

Description
Generate a track object from TxDb by given gene ids

Usage
geneTrack(ids, txdb, symbols, type = c("gene", "transcript"), asList = TRUE)

Arguments
- **ids** Gene IDs. A vector of character. It should be keys in txdb.
- **txdb** An object of `TxDb`.
- **symbols** symbol of genes.
- **type** Output type of track, "gene" or "transcript".
- **asList** Output a list of tracks or not. Default TRUE.

Value
An object of `track`

Examples
```r
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
library(org.Hs.eg.db)
ids <- c("3312", "390259", "341056", "79827")
symbols <- mget(ids, org.Hs.egSYMBOL)
geneTrack(ids, TxDb.Hsapiens.UCSC.hg19.knownGene, symbols)
```

descTrackViewport

Description
Get current track viewport for addGuideLine

Usage
descTrackViewport(curViewerStyle, start, end)
getGeneIDsFromTxDb

Arguments

curViewerStyle an object of trackViewerStyle
start start position of current track
end end position of current track

Value

an object of viewport

See Also

See Also as addGuideLine

Examples

vp <- getCurTrackViewport(trackViewerStyle(), 10000, 10200)
addGuideLine(c(10010, 10025, 10150), vp=vp)

getGeneIDsFromTxDb get gene ids by genomic location

Description

retrieve gene ids from txdb object by genomic location.

Usage

geneIDsFromTxDb(gr, txdb)

Arguments

gr GRanges object.
.txdb An object of TxDb.

Value

A character vector of gene ids

Examples

library(TxDb.Hsapiens.UCSC.hg19.knownGene)
gr <- parse2GRanges("chr11:122,830,799-123,116,707")
ids <- getGeneIDsFromTxDb(gr, TxDb.Hsapiens.UCSC.hg19.knownGene)
getLocation

getGenomic Location by Gene Symbol

Description

Given a gene name, get the genomic coordinates.

Usage

```
getLocation(symbol, txdb, org)
```

Arguments

- `symbol`: Gene symbol
- `txdb`: `txdb` will be used to extract the genes
- `org`: `org` package name

Examples

```
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
library(org.Hs.eg.db)
getLocation("HSPA8", TxDb.Hsapiens.UCSC.hg19.knownGene, "org.Hs.eg.db")
```

gi2track

Convert GInteractions to Track Object

Description

Convert `GInteractions` object to track object.

Usage

```
gi2track(gi, gi2)
```

Arguments

- `gi`: an object of `GInteractions`
- `gi2`: an object of `GInteractions`

Value

- An track object

Examples

```
library(GInteractions)
library(trackViewer)
gi <- readRDS(system.file("extdata", "nij.chr6.51120000.53200000.gi.rds", package="trackViewer"))
gi2track(gi)
```
gieStain

color scheme for the schema for Chromosome Band (Ideogram)

Description
Describe the colors of giemsa stain results

Usage
gieStain()

Value
A character vector of colors

Examples
gieStain()

GIoperator

GInteractions operator

Description
GInteractions operations (add, subtract, multiply, divide)

Usage
GIoperator(gi_list, col = "score", operator = c("+",
"-",
"*",
"/"))

Arguments
- gi_list: a list of GInteractions objects
- col: colname of metadata to be calculated
- operator: operator, "+" means A + B, and so on. User-defined function also could be used.

Value
an object of GInteractions
Examples

```r
library(InteractionSet)
gr2 <- GRanges(seqnames=c("chr1", "chr1"),
ranges=IRanges(c(7,13), width=3))
gr3 <- GRanges(seqnames=c("chr1", "chr1"),
ranges=IRanges(c(1, 4), c(3, 9)))

gi <- GInteractions(gr2, gr3, score=c(1,2))
gi2 <- GInteractions(gr2, gr3, score=c(3,4))
GIoperator(list(gi, gi2), col="score", operator="+")
GIoperator(list(gi, gi2), col="score", operator="-")
```

gridPlot

plot GRanges metadata

description

plot GRanges metadata for different types

Usage

```
gridPlot(gr, gp, type, xscale)
```

Arguments

- `gr`: an object of GRanges with metadata. All metadata must be numeric.
- `gp`: an object of gpar
- `type`: type of the figure, could be barplot, line, point and heatmap
- `xscale`: x scale of the viewport

GRoperator

GRanges operator

description

GRanges operations (add, subtract, multiply, divide)

Usage

```
GRoperator(
A,
B,
col = "score",
operator = c("+", "-", "^", "/", "^", "%%"),
ignore.strand = TRUE
)
```
Arguments

A an object of GRanges
B an object of GRanges
col colname of A and B to be calculated
operator operator, "+" means A + B, and so on. User-defined function also could be used.
ignore.strand When set to TRUE, the strand information is ignored in the overlap calculations.

Value

an object of GRanges

Examples

gr2 <- GRanges(seqnames=c("chr1", "chr1"),
ranges=IRanges(c(7,13), width=3),
strand=c("-", "-"), score=3:4)
gr3 <- GRanges(seqnames=c("chr1", "chr1"),
ranges=IRanges(c(1, 4), c(3, 9)),
strand=c("-", "-"), score=c(6L, 2L))
GRoperator(gr2, gr3, col="score", operator="+")
GRoperator(gr2, gr3, col="score", operator="-")
GRoperator(gr2, gr3, col="score", operator="*")
GRoperator(gr2, gr3, col="score", operator="/")
GRoperator(gr2, gr3, col="score", operator=mean)

ideogramPlot plot ideogram with data

Description

plot ideogram with data for multiple chromosomes

Usage

ideogramPlot(
ideo,
dataList,
layout = NULL,
horiz = TRUE,
parameterList = list(vp = plotViewport(margins = c(0.1, 4.1, 0.3, 0.1)),
ideoHeight = unit(1/(1 + length(dataList)), "npc"),
vgap = unit(0.3, "lines"),
ylabs = "auto",
ylabsRot = ifelse(horiz, 0, 90),
ylabsPos = unit(2.5, "lines"),
xaxis = FALSE,
yaxis = FALSE,
xlab = ","
types = "barplot",
heights = NULL,
dataColumn = "score",
gps = gpar(col = "black", fill = "gray"),
colorSheme = gieStain(),
gp = gpar(fill = NA, lwd = 2),
...)
importBam

Arguments

ideo output of loadIdeogram.
dataList a GRangesList of data to plot.
layout The layout of chromosomes. Could be a list with chromosome names as its elements.
hORIZ a logical value. If FALSE, the ideograms are drawn vertically to the left. If TRUE, the ideograms are drawn horizontally at the bottom.
parameterList a list of parameters for each dataset in the dataList. The elements of the parameters could be xlabs, ylabs, etc. type could be barplot, line, point, heatmap.
colorSheme A character vector of giemsa stain colors.
gp parameters used for grid.roundrect.
... parameters not used.

Examples

Not run:
ideo <- loadIdeogram("hg38")
library(rtracklayer)
library(grid)
dataList <- ideo
dataList$score <- as.numeric(dataList$gieStain)
dataList <- dataList[dataList$gieStain!="gneg"]
dataList <- GRangesList(dataList)
grid.newpage()
ideogramPlot(ideo, dataList,
layout=list("chr1", "chr2", c("chr3", "chr22"),
c("chr4", "chr21"), c("chr5", "chr20"),
c("chr6", "chr19"), c("chr7", "chr18"),
c("chr8", "chr17"), c("chr9", "chr16"),
c("chr10", "chr15"), c("chr11", "chr14"),
c("chr12", "chr13"), c("chrX", "chrY")),
parameterList = list(types="heatmap", colorKeyTitle="sample1"))

End(Not run)

importBam

Reading data from a BAM file

Description

Read a track object from a BAM file

Usage

importBam(file, file2, ranges = GRanges(), pairs = FALSE)
importData

Reading data from a BED or WIG file to RleList

Description

Read a track object from a BED, bedGraph, WIG or BigWig file to RleList

Usage

importData(files, format = NA, ranges = GRanges())

Arguments

files The path to the files to read.
format The format of import file. Could be BAM, BED, bedGraph, WIG or BigWig
ranges An object of GRanges to indicate the range to be imported

Value

a list of RleList.
Examples

import a BED file
bedfile <- system.file("tests", "test.bed", package="rtracklayer", mustWork=TRUE)
dat <- importData(files=bedfile, format="BED", ranges=GRanges("chr7", IRanges(127471197, 127474697)))

import a WIG file
wigfile <- system.file("tests", "step.wig", package = "rtracklayer", mustWork=TRUE)
dat <- importData(files=wigfile, format="WIG", ranges=GRanges("chr19", IRanges(59104701, 59110920)))

import a BigWig file
if(.Platform$OS.type!="windows"){
 ## this is because we are using rtracklayer::import
 bwfile <- system.file("tests", "test.bw", package = "rtracklayer", mustWork=TRUE)
dat <- importData(files=bwfile, format="BigWig", ranges=GRanges("chr19", IRanges(1500, 2700)))
}

importGInteractions

Reading data from a ginteractions, hic, cool, or validPairs file

Description

Read a track object from a ginteractions, hic, mcool, or validPairs file

Usage

importGInteractions(
 file,
 format = c("ginteractions", "hic", "cool", "validPairs"),
 ranges = GRanges(),
 ignore.strand = TRUE,
 out = c("track", "GInteractions"),
 resolution = 1e+05,
 unit = c("BP", "FRAG"),
 matrixType = c("observed", "oe", "expected"),
 ...
importGInteractions

Arguments

- **file**: The path to the file to read.
- **format**: The format of the import file. Could be ginteractions, hic, cool or validPairs.
- **ranges**: An object of `GRanges` to indicate the range to be imported. For .hic file, if the length of ranges is 2, the first range will be used as anchor 1 and the second range will be used as anchor 2.
- **ignore.strand**: Ignore the strand or not when do filter. Default TRUE
- **out**: Output format. Default is track. Possible values: track, GInteractions.
- **resolution**: Resolutions for the interaction data.
- **unit**: BP (base pair) or FRAG (fragment) (.hic file only).
- **normalization**: Type of normalization, NONE, VC, VC_SORT or KR for .hic and NONE, balanced for .cool.
- **matrixType**: Type of matrix for .hic file. Available choices are "observed", "oe", and "expected". Default is "observed".

Value

A `track` object

See Also

See Also as `listResolutions`, `listChromosomes`, `readHiCNormTypes`

Examples

```r
# import a ginteractions file
# gi <- system.file("extdata", "test.ginteractions.tsv", package="trackViewer", mustWork=TRUE)
# dat <- importGInteractions(file=gi, format="ginteractions",
# ranges=GRanges("chr7", IRanges(127471197, 127474697)))

## import a hic file
if(.Platform$OS.type!="windows"){
  hic <- system.file("extdata", "test_chr22.hic", package = "trackViewer",
  mustWork=TRUE)
  dat <- importGInteractions(file=hic, format="hic",
  ranges=GRanges("22", IRanges(1500000, 100000000)))
}

## import a cool file
cool <- system.file("extdata", "test.mcool", package = "trackViewer", mustWork=TRUE)
dat <- importGInteractions(file=cool, format="cool",
  resolution = 2,
  ranges=GRanges("chr1", IRanges(10, 28)))

## import a validPairs file
```
importScore

Reading data from a BED or WIG file

Description

Read a track object from a BED, bedGraph, WIG or BigWig file.

Usage

importScore(
 file,
 file2,
 format = c("BED", "bedGraph", "WIG", "BigWig"),
 ranges = GRanges(),
 ignore.strand = TRUE
)

Arguments

file The path to the file to read.
file2 The path to the second file to read.
format The format of import file. Could be BED, bedGraph, WIG or BigWig.
ranges An object of GRanges to indicate the range to be imported.
ignore.strand ignore the strand or not when do filter. default TRUE

Value

a track object

See Also

See Also as importBam, track, viewTracks

Examples

import a BED file
bedfile <- system.file("tests", "test.bed", package="rtracklayer",
 mustWork=TRUE)
dat <- importScore(file=bedfile, format="BED",
 ranges=GRanges("chr7", IRanges(127471197, 127474697)))

import a WIG file

#validPairs <- system.file("extdata", "test.validPairs", package = "trackViewer",
 # mustWork=TRUE)
#dat <- importGInteractions(file=validPairs, format="validPairs")
importScSeqScore

wigfile <- system.file("tests", "step.wig", package = "rtracklayer", mustWork=TRUE)
dat <- importScore(file=wigfile, format="WIG")

import a BigWig file
if(.Platform$OS.type!="windows"){##this is because we are using rtracklayer::import
 bwfile <- system.file("tests", "test.bw", package = "rtracklayer", mustWork=TRUE)
 dat <- importScore(file=bwfile, format="BigWig")
}

import 2 file
wigfile1 <- system.file("extdata", "cpsf160.repA_+.wig", package="trackViewer", mustWork=TRUE)
wigfile2 <- system.file("extdata", "cpsf160.repA_-.wig", package="trackViewer", mustWork=TRUE)
dat <- importScore(wigfile1, wigfile2, format="WIG", ranges=GRanges("chr11", IRanges(122817703, 122889073)))

importScSeqScore plot tracks for single cell RNAseq

Description

Plot single cell RNAseq data as heatmap track for Seurat object.

Usage

importScSeqScore(
 object,
 files,
 samplenames,
 ...,
 txdb,
 gene,
 id,
 idents,
 gr,
 color,
 withCoverageTrack = TRUE,
 flag = scanBamFlag(isSecondaryAlignment = FALSE, isUnmappedQuery = FALSE,
 isNotPassingQualityControls = FALSE, isSupplementaryAlignment = FALSE)
)

Arguments

 object Seurat object.
 files bam file to be scanned.

listChromosomes

List the available chromosome

Description

List the chromosomes available in the file.

Usage

```r
listChromosomes(file, format = c("hic", "cool"))
```

Arguments

- `file` character(1). File name of .hic or .cool/.mcool/.scool
- `format` character(1). File format, "hic" or "cool".

Examples

```r
hicfile <- system.file("extdata", "test_chr22.hic", package="trackViewer")
listChromosomes(hicfile)
coolfile <- system.file("extdata", "test.mcool", package="trackViewer")
listChromosomes(coolfile, format="cool")
```
listResolutions
List the available resolutions

Description

List the resolutions available in the file.

Usage

```r
listResolutions(file, format = c("hic", "cool"))
```

Arguments

- `file`: character(1). File name of .hic or .cool/.mcool/.scool.
- `format`: character(1). File format, "hic" or "cool".

Examples

```r
hicfile <- system.file("extdata", "test_chr22.hic", package="trackViewer")
listResolutions(hicfile)
coolfile <- system.file("extdata", "test.mcool", package="trackViewer")
listResolutions(coolfile, format="cool")
```

loadIdeogram
load ideogram from UCSC

Description

Download ideogram table from UCSC

Usage

```r
loadIdeogram(genome, chrom = NULL, ranges = NULL, ...)
```

Arguments

- `genome`: Assembly name assigned by UCSC, such as hg38, mm10.
- `chrom`: A character vector of chromosome names, or NULL.
- `ranges`: A Ranges object with the intervals.
- `...`: Additional arguments to pass to the GRanges constructor.

Value

A GRanges object.
lolliplot

See Also

See Also as *ideogramPlot*

Examples

```r
## Not run:
head(loadIdeogram("hg38", chrom = "chr1"))

## End(Not run)
```

lolliplot
Lolliplots

Description

Plot variants and somatic mutations

Usage

```r
lolliplot(
  SNP.gr,
  features = NULL,
  ranges = NULL,
  type = "circle",
  newpage = TRUE,
  ylab = TRUE,
  ylab.gp = gpar(col = "black"),
  yaxis = TRUE,
  yaxis.gp = gpar(col = "black"),
  xaxis = TRUE,
  xaxis.gp = gpar(col = "black"),
  legend = NULL,
  cex = 1,
  dashline.col = "gray80",
  jitter = c("node", "label"),
  rescale = FALSE,
  label_on_feature = FALSE,
  lollipop_style_switch_limit = 10,
  ...
)
```

Arguments

- **SNP.gr**: A object of **GRanges**, **GRangesList** or a list of **GRanges**. All the width of **GRanges** must be 1.
features A object of `GRanges`, `GRangesList` or a list of `GRanges`. The metadata 'featureLayerID' are used for drawing features in different layers. See details in vignette.

ranges A object of `GRanges` or `GRangesList`.

type character. Could be circle, pie, pin, pie.stack or flag.

newpage Plot in the new page or not.

ylab Plot ylab or not. If it is a character vector, the vector will be used as ylab.

ylab.gp, xaxis.gp, yaxis.gp An object of class gpar for ylab, xaxis or yaxis.

yaxis Plot yaxis or not.

xaxis Plot xaxis or not. If it is a numeric vector with length greater than 1, the vector will be used as the points at which tick-marks are to be drawn. And the names of the vector will be used to as labels to be placed at the tick points if it has names.

legend If it is a list with named color vectors, a legend will be added.

cex cex will control the size of circle.

dashline.col color for the dashed line.

jitter jitter the position of nodes or labels.

rescale logical(1), character(1), numeric vector, or a dataframe with rescale from and to. Rescalse the x-axis or not. if dataframe is used, colnames must be from.start, from.end, to.start, to.end. And the from scale must cover the whole plot region. The rescale parameter can be set as "exon" or "intron" to emphasize "exon" or "intron" region. The "exon" or "intron" can be followed with an integer e.g. "exon_80", or "intron_99". The integer indicates the total percentage of "exon" or "intron" region. Here "exon" indicates all regions in features. And "intron" indicates all flank regions of the features.

label_on_feature Labels of the feature directly on them. Default FALSE.

lollipop_style_switch_limit The cutoff value for lollipop style for the 'circle' type. If the max score is greater than this cutoff value, trackViewer will only plot one shape at the highest score. Otherwise trackViewer will draw the shapes like 'Tanghulu'.

... not used.

Details

In SNP.gr and features, metadata of the GRanges object will be used to control the color, fill, border, alpha, shape, height, cex, dashline.col, data source of pie if the type is pie. And also the controls for labels by name the metadata start as label.parameter.<properties>, and for node labels by name the metadata start as node.label.<properties>, such as label.parameter.rot, label.parameter.gp. The parameter is used for grid.text or plotMotifLogo. The metadata 'featureLayerID' for features are used for drawing features in different layers. The metadata 'SNPsideID' for SNP.gr are used for determining the side of lollipops. And the 'SNPsideID' could only be 'top' or 'bottom'.
Examples

```r
SNP <- c(10, 100, 105, 108, 400, 410, 420, 600, 700, 805, 840, 1400, 1402)
x <- sample.int(100, length(SNP))
SNP.gr <- GRanges("chr1", IRanges(SNP, width=1, names=paste0("snp", SNP)),
                  value1=x, value2=100-x)
SNP.gr$color <- rep(list(c("red", "blue")), length(SNP))
SNP.gr$border <- sample.int(7, length(SNP), replace=TRUE)
features <- GRanges("chr1", IRanges(c(1, 501, 1001),
                       width=c(120, 500, 405),
                       names=paste0("block", 1:3)),
                        color="black",
                        fill=c("#FF8833", "#51C6E6", "#DFA32D"),
                        height=c(0.1, 0.05, 0.08),
                        label.getParameter.rot=45)
lollipop(SNP.gr, features, type="pie")
```

Description

plot graph for GInteractions

Usage

```r
loopBouquetPlot(
  gi,
  range,
  feature.gr,
  atacSig,
  label_region = FALSE,
  show_edges = TRUE,
  show_cluster = TRUE,
  lwd.backbone = 2,
  col.backbone = "gray",
  lwd.maxAtacSig = 8,
  reverseATACSig = TRUE,
  col.backbone_background = "gray70",
  lwd.gene = 2,
  lwd.nodeCircle = 1,
  col.nodeCircle = "#D8DADD825",
  lwd.edge = 2,
  col.edge = "gray80",
  coor_mark_interval = 1e+05,
  col.coor = "black",
  show_coor = TRUE,
  coor_tick_unit = 1000,
)```
label_gene = TRUE,
col.tension_line = "black",
lwd.tension_line = 1,
length.arrow = NULL,
safe_text_force = 3,
method = 1,
doReduce = FALSE,
)

Arguments

gi An object of GlInteractions
range The region to plot. an object of GRanges
feature.gr The annotation features to be added. An object of GRanges.
atcSig The ATAC-seq signals. An object of GRanges with scores or an object of track.
label_region Label the region node or not.
show_edges Plot the interaction edges or not.
show_cluster Plot the cluster background or not.
lwd.backbone, lwd.gene, lwd.nodeCircle, lwd.edge, lwd.tension_line, lwd.maxAtacSig
Line width for the linker, gene, interaction node circle, the dashed line of interaction edges, the tension line and the maximal reversed ATAC signal.
col.backbone, col.backbone_background, col.nodeCircle, col.edge, col.tension_line, col.coor
Color for the DNA chain, the compact DNA chain, the node circle, the linker, the tension line and the coordinates marker.
reverseATACSig Plot the ATAC-seq signals in reverse values.
coor_mark_interval The coordinates marker interval. Numeric(1). Set to 0 to turn it off. The default value 1e5 means show coordinates every 0.1M bp.
show_coor Plot ticks in the line to show the DNA compact tension.
coor_tick_unit The bps for every ticks. Default is 1K.
label_gene Show gene symbol or not.
length.arrow Length of the edges of the arrow head (in inches).
safe_text_force The loops to avoid the text overlapping.
method Plot method. Could be 1 or 2.
doReduce Reduce the GlInteractions or not.
... Parameter will be passed to layout_with_fr.
**optimizeStyle**

Optimize the style of plot

**Description**

Automatic optimize the style of trackViewer

**Usage**

```r
optimizeStyle(trackList, viewerStyle = trackViewerStyle(), theme = NULL)
```

**Arguments**

- `trackList` An object of `trackList`
- `viewerStyle` An object of `trackViewerStyle`
- `theme` A character string. Could be "bw", "col" or "safe".

**Value**

A list of a `trackList` and a `trackViewerStyle`

**See Also**

See Also as `viewTracks`

**Examples**

```r
extdata <- system.file("extdata", package="trackViewer",
 mustWork=TRUE)
files <- dir(extdata, ".wig")
tracks <- lapply(paste(extdata, files, sep="/"),
 importScore, format="WIG")
```
```r
re <- optimizeStyle(trackList(tracks))
trackList <- re$tracks
viewerStyle <- re$style
```

### parse2GRanges

**parse text into GRanges**

**Description**

parse text like "chr13:99,443,451-99,848,821:" into GRanges

**Usage**

```r
parse2GRanges(text)
```

**Arguments**


**Value**

an object of GRanges

**Examples**

```r
parse2GRanges("chr13:99,443,451-99,848,821:"")
```

### parseWIG

**convert WIG format track to BED format track**

**Description**

convert WIG format track to BED format track for a given range

**Usage**

```r
parseWIG(trackScore, chrom, from, to)
```

**Arguments**

- `trackScore`: an object of track with WIG format
- `chrom`: sequence name of the chromosome
- `from`: start coordinate
- `to`: end coordinate
plotGRanges

Value

an object of track

Examples

```r
extdata <- system.file("extdata", package="trackViewer", mustWork=TRUE)
repA <- importScore(file.path(extdata, "cpsf160.repA_-_.wig"),
 file.path(extdata, "cpsf160.repA_+_.wig"),
 format="WIG")
strand(repA$dat) <- "-"
strand(repA$dat2) <- "+
parseWIG(repA, chrom="chr11", from=122929275, to=122930122)
```

plotGRanges

plot GRanges data

Description

A function to plot GRanges data for given range

Usage

```r
plotGRanges(
 ...,
 range = GRanges(),
 viewerStyle = trackViewerStyle(),
 autoOptimizeStyle = FALSE,
 newpage = TRUE
)
```

Arguments

... one or more objects of GRanges
range an object of GRanges
viewerStyle an object of trackViewerStyle
autoOptimizeStyle should use optimizeStyle to optimize style
newpage should be draw on a new page?

Value

An object of viewport for addGuideLine

See Also

See Also as addGuideLine, addArrowMark
Examples

```
gr1 <- GRanges("chr1", IRanges(1:50, 51:100))
gr2 <- GRanges("chr1", IRanges(seq(from=10, to=80, by=5),
 seq(from=20, to=90, by=5)))
vp <- plotGRanges(gr1, gr2, range=GRanges("chr1", IRanges(1, 100)))
addGuideLine(guideLine=c(5, 10, 50, 90), col=2:5, vp=vp)

gr <- GRanges("chr1", IRanges(c(1, 11, 21, 31), width=9),
 score=c(5, 10, 5, 1))
plotGRanges(gr, range=GRanges("chr1", IRanges(1, 50)))
```

Description

plot ideogram for one chromosome

Usage

```
plotIdeo(
 ideo,
 chrom = seqlevels(ideo)[1],
 colorSheme = gieStain(),
 gp = gpar(fill = NA),
 ...
)
```

Arguments

- `ideo` output of `loadIdeogram`.
- `chrom` A length 1 character vector of chromosome name.
- `colorSheme` A character vector of giemsa stain colors.
- `gp` parameters used for `grid.roundrect`.
- `...` parameters not used.

Examples

```
Not run:
ideo <- loadIdeogram("hg38")
library(grid)
grid.newpage()
plotIdeo(ideo)

End(Not run)
```
**plotOneIdeo**

*plot ideogram with data for one chromosome*

**Description**

plot ideogram with data for one chromosome

**Usage**

```r
plotOneIdeo(
 ideo,
 dataList,
 parameterList = list(wp = plotViewport(margins = c(0.1, 4.1, 1.1, 0.1)), ideoHeight =
 unit(1/(1 + length(dataList)), "npc"), vgap = unit(1, "lines"), ylabs =
 seqlevels(ideo)[1], ylabsRot = 90, ylabsPos = unit(2.5, "lines"), xaxis = FALSE,
 yaxis = FALSE, xlab = "", types = "barplot", heights = NULL, dataColumn = "score",
 gpar = gpar(col = "black", fill = "gray"),
 chrom = seqlevels(ideo)[1],
 colorSheme = gieStain(),
 gp = gpar(fill = NA, lwd = 2),
 ...
)
)
```

**Arguments**

- `ideo` output of `loadIdeogram`.
- `dataList` a `GRangesList` of data to plot.
- `parameterList` a list of parameters for each dataset in the `dataList`. The elements of the parameters could be `xlabs`, `ylabs`, etc. `type` could be `barplot`, `line`, `point`, `heatmap`.
- `chrom` A length 1 character vector of chromosome name.
- `colorSheme` A character vector of giemsa stain colors.
- `gp` parameters used for `grid.roundrect`.
- `...` parameters not used.

**Examples**

```r
Not run:
ideo <- loadIdeogram("hg38")
library(rtracklayer)
library(grid)
dataList <- ideo[seqnames(ideo) %in% "chr1"]
dataList$score <- as.numeric(dataList$gieStain)
dataList <- dataList[dataList$gieStain!="gneg"]
dataList <- GRangesList(dataList, dataList)
grid.newpage()
plotOneIdeo(ideo, dataList, chrom="chr1")
```
pos-class

Class "pos"

Description

An object of class "pos" represents a point location.

Slots

- **x**: A numeric value, indicates the x position.
- **y**: A numeric value, indicates the y position.
- **unit**: A character specifying the units for the corresponding numeric values. See `unit`.

reduce,GInteractions-method

Reduce method for 'GInteractions'

Description

Reduce returns an object of the same type as x containing reduced ranges for each distinct (seqname, strand) pairing.

Usage

```r
S4 method for signature 'GInteractions'
reduce(x, min.gapwidth = 1L, ignore.strand = TRUE, ...)
```

Arguments

- **x**: GInteractions object.
- **min.gapwidth**: Ranges separated by a gap of at least min.gapwidth positions are not merged.
- **ignore.strand**: TRUE or FALSE. Whether the strand of the input ranges should be ignored or not.
- **...**: Not used.
Examples

```r
Not run:
library(InteractionSet)
gi <- readRDS(system.file("extdata", "gi.rds", package="trackViewer"))
reduce(head(gi, n=20))

End(Not run)
```

---

### Description

An extension of List that holds only `track` objects.

### Usage

```r
S4 replacement method for signature 'trackList'
seqlevelsStyle(x) <- value

trackList(..., heightDist = NA)
```

### Arguments

- `x`: trackList object.
- `value`: values to be assigned.
- `...`: Each tracks in ... becomes an element in the new trackList, in the same order. This is analogous to the list constructor, except every argument in ... must be derived from `track`.
- `heightDist`: A vector or NA to define the height of each track.

### See Also

- `track`
Description

An object of class "trackStyle" represents track style.
An object of class "track" represents scores of a given track.

Usage

## S4 method for signature 'track'
seqlevels(x)

## S4 method for signature 'track'
seqlevelsStyle(x)

## S4 replacement method for signature 'track'
seqlevelsStyle(x) <- value

## S4 method for signature 'track'
show(object)

## S4 method for signature 'track'
x$name

## S4 replacement method for signature 'track'
x$name <- value

setTrackStyleParam(ts, attr, value)

## S4 method for signature 'track,character'
setTrackStyleParam(ts, attr, value)

setTrackXscaleParam(ts, attr, value)

## S4 method for signature 'track,character'
setTrackXscaleParam(ts, attr, value)

setTrackYaxisParam(ts, attr, value)

## S4 method for signature 'track,character'
setTrackYaxisParam(ts, attr, value)

Arguments

x an object of trackStyle
trackStyle-class

value  values to be assigned.
object  an object of trackStyle.
name  slot name of trackStyle
ts  An object of track.
attr  the name of slot of trackStyle object to be changed.

Details

The attr of setTrackXscaleParam could not only be a slot of xscale, but also be position. If the attr is set to position, value must be a list of x, y and label. For example setTrackXscaleParam(track, attr="position", value=list(x=122929675, y=4, label=500))

Slots

trekkertype "character" track type, could be peak or cluster. Default is "peak". "cluster" is not supported yet. For interaction data, it could be "heatmap" or "link".
color "character" track color. If the track has dat and dat2 slot, it should have two values.
NAcolor "character" NA color for interactionData.
brea ks "numeric" breaks for color keys of interactionData.
height "numeric" track height. It should be a value between 0 and 1
marginTop "numeric" track top margin
marginBottom "numeric" track bottom margin
xscale  object of xscale, describe the details of x-scale
yaxis  object of yaxisStyle, describe the details of y-axis
ylim "numeric" y-axis range
ylabpos "character", ylab posion, ylabpos should be 'left', 'right', 'topleft', 'bottomleft', 'topright', 'bottomright', 'abovebaseline' or 'underbaseline'. For gene type track, it also could be 'upstream' or 'downstream'
ylablas "numeric" y lable direction. It should be a integer 0-3. See par:las
ylabgp  A "list" object. It will convert to an object of class gpar. This is basically a list of graphical parameter settings of y-label.
dat  Object of class GRanges the scores of a given track. It should contain score metadata.
dat2  Object of class GRanges the scores of a given track. It should contain score metadata. When dat2 and dat is paired, dat will be drawn as positive value where dat2 will be drawn as negative value (-1 * score)
type  The type of track. It could be 'data', 'gene', 'transcript', 'scSeq', 'lollipopData' or 'interactionData'.
format  The format of the input. It could be "BED", "bedGraph", "WIG", "BigWig" or "BAM"
style  Object of class trackStyle
name  unused yet
trackViewerStyle-class

Class "trackViewerStyle"

Description

An object of class "trackViewerStyle" represents track viewer style.

Usage

trackViewerStyle(...)

setTrackViewerStyleParam(tvs, attr, value)

## S4 method for signature 'trackViewerStyle,character'
setTrackViewerStyleParam(tvs, attr, value)

Arguments

... Each argument in ... becomes an slot in the new trackViewerStyle.
tvs An object of trackViewerStyle.
attr the name of slot to be changed.
value values to be assigned.

Slots

margin "numeric", specify the bottom, left, top and right margin.
xlas "numeric", label direction of x-axis mark. It should be a integer 0-3. See par:las
xgp A "list", object. It will convert to an object of class gpar. This is basically a list of graphical parameter settings of x-axis. For y-axis, see yaxisStyle
xaxis "logical", draw x-axis or not
xat "numeric", the values will be passed to grid.xaxis as 'at' parameter.

See Also

Please try to use importScore and importBam to generate the object.

Examples

extdata <- system.file("extdata", package="trackViewer",
                    mustWork=TRUE)
fox2 <- importScore(file.path(extdata, "fox2.bed"), format="BED")
setTrackStyleParam(fox2, "color", c("red","green"))
setTrackXscaleParam(fox2, "gp", list(cex=.5))
setTrackYaxisParam(fox2, "gp", list(col="blue"))
fox2$dat <- GRanges(score=numeric(0))
viewGene

xlabel "character", the values will be passed to grid.xaxis as 'label' parameter.
autolas "logical" automatic determine y label direction
flip "logical" flip the x-axis or not, default FALSE

Examples

tvs <- trackViewerStyle()
setTrackViewerStyleParam(tvs, "xaxis", TRUE)

viewGene plot tracks based on gene name

Description

given a gene name, plot the tracks.

Usage

viewGene(
symbol,
filenames,
format,
taxdb,
org,
upstream = 1000,
downstream = 1000,
anchor = c("gene", "TSS"),
plot = FALSE
)

Arguments

symbol Gene symbol
filenames files used to generate tracks
format file format used to generate tracks
taxdb txdb will be used to extract the genes
org org package name
upstream upstream from anchor
downstream downstream from anchor
anchor TSS, or gene
plot plot the tracks or not.

Value

an invisible list of a trackList, a trackViewerStyle and a GRanges
Examples

```r
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
library(org.Hs.eg.db)
extdata <- system.file("extdata", package="trackViewer", mustWork=TRUE)
filename = file.path(extdata, "fox2.bed")
optSty <- viewGene("HSPA8", filenames=filename, format="BED",
txDB=TxDB.Hsapiens.UCSC.hg19.knownGene,
org="org.Hs.eg.db")
```

### Description

A function to plot the data for given range

### Usage

```r
viewTracks(
 trackList,
 chromosome,
 start,
 end,
 strand,
 gr = GRanges(),
 ignore.strand = TRUE,
 viewerStyle = trackViewerStyle(),
 autoOptimizeStyle = FALSE,
 newpage = TRUE,
 operator = NULL,
 smooth = FALSE,
 lollipop_style_switch_limit = 10
)
```

### Arguments

- **trackList**: an object of `trackList`
- **chromosome**: chromosome
- **start**: start position
- **end**: end position
- **strand**: strand
- **gr**: an object of `GRanges`
- **ignore.strand**: ignore the strand or not when do filter. default TRUE
- **viewerStyle**: an object of `trackViewerStyle`
autoOptimizeStyle
should use optimizeStyle to optimize style

newpage
should be draw on a new page?

operator
operator, could be +, -, *, /, ^, %%, and NA. "-" means dat - dat2, and so on. NA means do not apply any operator. Note: if multiple operator is supplied, please make sure the length of operator keep same as the length of trackList.

smooth
logical(1) or numeric(). Plot smooth curve or not. If it is numeric, eg n, mean of nearby n points will be used for plot. If it is numeric, the second number will be the color. Default color is 2 (red).

lollipop_style_switch_limit
The cutoff value for lollipop style for the 'circle' type. If the max score is greater than this cutoff value, trackViewer will only plot one shape at the highest score. Otherwise trackViewer will draw the shapes like 'Tanghulu'.

Value
An object of viewport for addGuideLine

See Also
See Also as addGuideLine, addArrowMark

Examples

extdata <- system.file("extdata", package="trackViewer", 
  mustWork=TRUE)
files <- dir(extdata, ".-wig")
tracks <- lapply(paste(extdata, files, sep="/"), 
  importScore, format="WIG")
tracks <- lapply(tracks, function(.ele) {strand(.ele@dat) <- "-"; .ele})
fox2 <- importScore(paste(extdata, "fox2.bed", sep="/"), format="BED")
dat <- coverageGR(fox2@dat)
fox2@dat <- dat[strand(dat)=="+"]
fox2@dat2 <- dat[strand(dat)=="-"]
gr <- GRanges("chr11", IRanges(122929275, 122930122), strand="-")
viewTracks(trackList(track=tracks, fox2=fox2), gr=gr, autoOptimizeStyle=TRUE)
Slots

- from A **pos** class, indicates the start point position of x-scale.
- to A **pos** class, indicates the end point position of x-scale.
- label "character" the label of x-scale
- gp A "list" object, It will convert to an object of class **gpar**. This is basically a list of graphical parameter settings of x-scale.
- draw A "logical" value indicating whether the x-scale should be draw.

---

**yaxisStyle-class**

Class "yaxisStyle"

Description

An object of class "yaxisStyle" represents y-axis style.

Slots

- at "numeric" vector of y-value locations for the tick marks
- label "logical" value indicating whether to draw the labels on the tick marks.
- gp A "list" object, It will convert to an object of class **gpar**. This is basically a list of graphical parameter settings of y-axis.
- draw A "logical" value indicating whether the y-axis should be draw.
- main A "logical" value indicating whether the y-axis should be draw in left (TRUE) or right (FALSE).
Index

$,track-method (trackStyle-class), 38
$<-, track-method (trackStyle-class), 38

addArrowMark, 4, 5, 6, 33, 43
addGuideline, 5, 5, 6, 14, 33, 43
addInteractionAnnotation, 6
ARA, 7
arrow, 5

browseTracks, 8
browseTracks-shiny, 9
browseTracksOutput
  (browseTracks-shiny), 9

coverage, 10
coverageGR, 9
dandelion.plot, 10
dAlignmentPairs, 9
dAlignments, 9
geneModelFromTxdb, 11
geneTrack, 13
getchTrackViewport, 5, 13
getGeneIDsFromTxDb, 14
getLocation, 15
gi2track, 15
gieStain, 16
GInteractions, 6, 7, 30
GIOperator, 16
gpar, 17, 39, 40, 44
GRanges, 6, 8–10, 17, 20, 22, 23, 26–28, 30, 32, 33, 39, 41, 42
GRangesList, 10, 19, 27, 28, 35
grid.lines, 6
grid.polygon, 6
grid.roundrect, 19, 34, 35
grid.text, 6, 28
gridPlot, 17
GROperator, 17
ideogramPlot, 18, 27
importBam, 12, 19, 23, 40
importData, 20
importGInteractions, 7, 21
importScore, 12, 20, 23, 40
importScSeqScore, 24
layout_with_fr, 30
listChromosomes, 22, 25
listResolutions, 22, 26
loadIdeogram, 19, 26, 34, 35
lollipopt, 27
loopBouquetPlot, 29
numeric, 36

optimizeStyle, 31, 33, 43
par, 39, 40
parse2GRanges, 32
parseWIG, 32
plotGRanges, 33
plotGIOperator, 34
plotMotifLogoA, 28
plotOneIdeo, 35
pos, 44
pos (pos-class), 36
pos-class, 36

Ranges, 26
readGAlignments, 20, 25
readGAlignmentsList, 25
readHicNormTypes, 22
reduce,GInteractions
  (reduce,GInteractions-method), 36
reduce,GInteractions-method, 36
renderbrowseTracks
  (browseTracks-shiny), 9
RleList, 20
seqlevels, track-method
  (trackStyle-class), 38
seqlevelsStyle, track-method
  (trackStyle-class), 38
seqlevelsStyle<-, track-method
  (trackStyle-class), 38
seqlevelsStyle<-, trackList-method
  (trackList-class), 37
setTrackStyleParam (trackStyle-class), 38
setTrackStyleParam, track, character, ANY-method
  (trackStyle-class), 38
setTrackStyleParam, track, character-method
  (trackStyle-class), 38
setTrackViewerStyleParam
  (trackViewerStyle-class), 40
setTrackViewerStyleParam, trackViewerStyle, character, ANY-method
  (trackViewerStyle-class), 40
setTrackViewerStyleParam, trackViewerStyle, character-method
  (trackViewerStyle-class), 40
setTrackXscaleParam (trackStyle-class), 38
setTrackXscaleParam, track, character, ANY-method
  (trackStyle-class), 38
setTrackXscaleParam, track, character-method
  (trackStyle-class), 38
setTrackYaxisParam (trackStyle-class), 38
setTrackYaxisParam, track, character, ANY-method
  (trackStyle-class), 38
setTrackYaxisParam, track, character-method
  (trackStyle-class), 38
show, track-method (trackStyle-class), 38

track, 11–13, 19–23, 30, 33, 37
track (trackStyle-class), 38
track-class (trackStyle-class), 38
trackList, 8, 31, 41, 42
trackList (trackList-class), 37
trackList-class, 37
trackStyle, 39
trackStyle (trackStyle-class), 38
trackStyle-class, 38
trackViewer (trackViewer-package), 3
trackViewer-package, 3
trackViewerStyle, 14, 31, 33, 41, 42
trackViewerStyle
  (trackViewerStyle-class), 40
trackViewerStyle-class, 40

TxDb, 12–14
unit, 36
viewGene, 41
viewport, 14, 33, 43
viewTracks, 4, 5, 11, 12, 20, 23, 31, 42
xscale, 39
xscale (xscale-class), 43
xscale-class, 43
yaxisStyle, 39, 40
yaxisStyle (yaxisStyle-class), 44
yaxisStyle-class, 44

TxDb, 12–14
unit, 36
viewGene, 41
viewport, 14, 33, 43
viewTracks, 4, 5, 11, 12, 20, 23, 31, 42
xscale, 39
xscale (xscale-class), 43
xscale-class, 43
yaxisStyle, 39, 40
yaxisStyle (yaxisStyle-class), 44
yaxisStyle-class, 44

TxDb, 12–14
unit, 36
viewGene, 41
viewport, 14, 33, 43
viewTracks, 4, 5, 11, 12, 20, 23, 31, 42
xscale, 39
xscale (xscale-class), 43
xscale-class, 43
yaxisStyle, 39, 40
yaxisStyle (yaxisStyle-class), 44
yaxisStyle-class, 44

TxDb, 12–14
unit, 36
viewGene, 41
viewport, 14, 33, 43
viewTracks, 4, 5, 11, 12, 20, 23, 31, 42
xscale, 39
xscale (xscale-class), 43
xscale-class, 43
yaxisStyle, 39, 40
yaxisStyle (yaxisStyle-class), 44
yaxisStyle-class, 44

TxDb, 12–14
unit, 36
viewGene, 41
viewport, 14, 33, 43
viewTracks, 4, 5, 11, 12, 20, 23, 31, 42
xscale, 39
xscale (xscale-class), 43
xscale-class, 43
yaxisStyle, 39, 40
yaxisStyle (yaxisStyle-class), 44
yaxisStyle-class, 44

TxDb, 12–14
unit, 36
viewGene, 41
viewport, 14, 33, 43
viewTracks, 4, 5, 11, 12, 20, 23, 31, 42
xscale, 39
xscale (xscale-class), 43
xscale-class, 43
yaxisStyle, 39, 40
yaxisStyle (yaxisStyle-class), 44
yaxisStyle-class, 44

TxDb, 12–14
unit, 36
viewGene, 41
viewport, 14, 33, 43
viewTracks, 4, 5, 11, 12, 20, 23, 31, 42
xscale, 39
xscale (xscale-class), 43
xscale-class, 43
yaxisStyle, 39, 40
yaxisStyle (yaxisStyle-class), 44
yaxisStyle-class, 44

TxDb, 12–14
unit, 36
viewGene, 41
viewport, 14, 33, 43
viewTracks, 4, 5, 11, 12, 20, 23, 31, 42
xscale, 39
xscale (xscale-class), 43
xscale-class, 43
yaxisStyle, 39, 40
yaxisStyle (yaxisStyle-class), 44
yaxisStyle-class, 44

TxDb, 12–14
unit, 36
viewGene, 41
viewport, 14, 33, 43
viewTracks, 4, 5, 11, 12, 20, 23, 31, 42
xscale, 39
xscale (xscale-class), 43
xscale-class, 43
yaxisStyle, 39, 40
yaxisStyle (yaxisStyle-class), 44
yaxisStyle-class, 44

TxDb, 12–14
unit, 36
viewGene, 41
viewport, 14, 33, 43
viewTracks, 4, 5, 11, 12, 20, 23, 31, 42
xscale, 39
xscale (xscale-class), 43
xscale-class, 43
yaxisStyle, 39, 40
yaxisStyle (yaxisStyle-class), 44
yaxisStyle-class, 44