Package ‘ttgsea’

May 30, 2024

Type Package

Title Tokenizing Text of Gene Set Enrichment Analysis

Description Functional enrichment analysis methods such as gene set enrichment analysis (GSEA) have been widely used for analyzing gene expression data. GSEA is a powerful method to infer results of gene expression data at a level of gene sets by calculating enrichment scores for predefined sets of genes. GSEA depends on the availability and accuracy of gene sets. There are overlaps between terms of gene sets or categories because multiple terms may exist for a single biological process, and it can thus lead to redundancy within enriched terms. In other words, the sets of related terms are overlapping. Using deep learning, this package is aimed to predict enrichment scores for unique tokens or words from text in names of gene sets to resolve this overlapping set issue. Furthermore, we can coin a new term by combining tokens and find its enrichment score by predicting such a combined tokens.

Version 1.12.0

Date 2021-11-12

LazyData TRUE

Depends keras

Imports tm, text2vec, tokenizers, textstem, stopwords, data.table, purrr, DiagrammeR, stats

Suggests fgsea, knitr, testthat, reticulate, rmarkdown

SystemRequirement tensorflow

License Artistic-2.0

biocViews Software, GeneExpression, GeneSetEnrichment

NeedsCompilation no

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/ttgsea

git_branch RELEASE_3_19

git_last_commit 15ca189

git_last_commit_date 2024-04-30

Repository Bioconductor 3.19
bi_gru

Bidirectional GRU with embedding layer

Description

A predefined function that is used as a model in "ttgsea". This is a simple model, but you can define your own model. The loss function is "mean_squared_error" and the optimizer is "adam". Pearson correlation is used as a metric.

Usage

```
bi_gru(num_tokens, embedding_dim, length_seq, num_units)
```

Arguments

- **num_tokens**: maximum number of tokens
- **embedding_dim**: a non-negative integer for dimension of the dense embedding
- **length_seq**: length of input sequences, input length of "layer_embedding"
- **num_units**: dimensionality of the output space in the GRU layer

Value

- **model**

Author(s)

Dongmin Jung
bi_lstm

See Also

keras::keras_model, keras::layer_input, keras::layer_embedding, keras::layer_gru, keras::bidirectional, keras::layer_dense, keras::compile

Examples

```r
library(reticulate)
if (keras::is_keras_available() & reticulate::py_available()) {
    num_tokens <- 1000
    length_seq <- 30
    embedding_dim <- 50
    num_units <- 32
    model <- bi_gru(num_tokens, embedding_dim, length_seq, num_units)

    # stacked gru
    num_units_1 <- 32
    num_units_2 <- 16
    stacked_gru <- function(num_tokens, embedding_dim, length_seq,
                            num_units_1, num_units_2)
    {
        model <- keras::keras_model_sequential() %>%
        keras::layer_embedding(input_dim = num_tokens,
                               output_dim = embedding_dim,
                               input_length = length_seq,
                               mask_zero = TRUE) %>%
        keras::layer_gru(units = num_units_1,
                         activation = "relu",
                         return_sequences = TRUE) %>%
        keras::layer_gru(units = num_units_2,
                         activation = "relu") %>%
        keras::layer_dense(1)

        model %>%
        keras::compile(loss = "mean_squared_error",
                       optimizer = "adam",
                       metrics = custom_metric("pearson_correlation",
                                                metric_pearson_correlation))
    }
}
```

bi_lstm

Bidirectional LSTM with embedding layer

Description

A predefined function that is used as a model in "ttgsea". This is a simple model, but you can define your own model. The loss function is "mean_squared_error" and the optimizer is "adam". Pearson correlation is used as a metric.
Usage

\texttt{bi_lstm(num_tokens, embedding_dim, length_seq, num_units)}

Arguments

- \texttt{num_tokens}: maximum number of tokens
- \texttt{embedding_dim}: a non-negative integer for dimension of the dense embedding
- \texttt{length_seq}: length of input sequences, input length of "layer_embedding"
- \texttt{num_units}: dimensionality of the output space in the LSTM layer

Value

\texttt{model}

Author(s)

Dongmin Jung

See Also

- keras::keras_model
- keras::layer_input
- keras::layer_embedding
- keras::layer_lstm
- keras::bidirectional
- keras::layer_dense
- keras::compile

Examples

```r
library(reticulate)
if (keras::is_keras_available() & reticulate::py_available()) {
  num_tokens <- 1000
  length_seq <- 30
  embedding_dim <- 50
  num_units <- 32
  model <- bi\_lstm(num\_tokens, embedding\_dim, length\_seq, num\_units)
}

# stacked lstm
num\_units\_1 <- 32
num\_units\_2 <- 16
stacked\_lstm <- function(num\_tokens, embedding\_dim, length\_seq,
                          num\_units\_1, num\_units\_2) {
  model <- keras::keras\_model\_sequential() %>%
    keras::layer\_embedding(input\_dim = num\_tokens,
                            output\_dim = embedding\_dim,
                            input\_length = length\_seq,
                            mask\_zero = TRUE) %>%
    keras::layer\_lstm(units = num\_units\_1,
                      activation = "relu",
                      return\_sequences = TRUE) %>%
    keras::layer\_lstm(units = num\_units\_2,
                      activation = "relu") %>%
}
fit_model

```
keras::layer_dense(1)

model %>%
 keras::compile(loss = "mean_squared_error",
 optimizer = "adam",
 metrics = custom_metric("pearson_correlation",
 metric_pearson_correlation))
```

---

**fit_model**  
*Deep learning model fitting*

**Description**

From the result of GSEA, we can predict enrichment scores for unique tokens or words from text in names of gene sets by using deep learning. The function "text_token" is used for tokenizing text and the function "token_vector" is used for encoding. Then the encoded sequence is fed to the embedding layer of the model.

**Usage**

```
fit_model(gseaRes, text, score, model, ngram_min = 1, ngram_max = 2,
 num_tokens, length_seq, epochs, batch_size,
 use_generator = TRUE, ...)
```

**Arguments**

- `gseaRes` a table with GSEA result having rows for gene sets and columns for text and scores
- `text` column name for text data
- `score` column name for enrichment score
- `model` deep learning model, input dimension and length for the embedding layer must be same to the "num_token" and "length_seq", respectively
- `ngram_min` minimum size of an n-gram (default: 1)
- `ngram_max` maximum size of an n-gram (default: 2)
- `num_tokens` maximum number of tokens, it must be equal to the input dimension of "layer_embedding" in the "model"
- `length_seq` length of input sequences, it must be equal to the input length of "layer_embedding" in the "model"
- `epochs` number of epochs
- `batch_size` batch size
- `use_generator` if "use_generator" is TRUE, the function "sampling_generator" is used for "fit_generator". Otherwise, the "fit" is used without a generator.
- `...` additional parameters for the "fit" or "fit_generator"
Value

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>model</td>
<td>trained model</td>
</tr>
<tr>
<td>tokens</td>
<td>information for tokens</td>
</tr>
<tr>
<td>token_pred</td>
<td>prediction for every token, each row has a token and its predicted score</td>
</tr>
<tr>
<td>token_gsea</td>
<td>list of the GSEA result only for the corresponding token</td>
</tr>
<tr>
<td>num_tokens</td>
<td>maximum number of tokens</td>
</tr>
<tr>
<td>length_seq</td>
<td>length of input sequences</td>
</tr>
</tbody>
</table>

Author(s)

Dongmin Jung

See Also

keras::fit_generator, keras::layer_embedding, keras::pad_sequences, textstem::lemmatize_strings, text2vec::create_vocabulary, text2vec::prune_vocabulary

Examples

```r
library(reticulate)
if (keras::is_keras_available() & reticulate::py_available()) {
 library(fgsea)
data(examplePathways)
data(exampleRanks)
names(examplePathways) <- gsub("_", " ",
 substr(names(examplePathways), 9, 1000))
set.seed(1)
fgseaRes <- fgsea(examplePathways, exampleRanks)

num_tokens <- 1000
length_seq <- 30
batch_size <- 32
embedding_dims <- 50
num_units <- 32
epochs <- 1

ttgseaRes <- fit_model(fgseaRes, "pathway", "NES",
 model = bi_gru(num_tokens,
 embedding_dims,
 length_seq,
 num_units),
 num_tokens = num_tokens,
 length_seq = length_seq,
 epochs = epochs,
 batch_size = batch_size,
 use_generator = FALSE)
}
```
metric_pearson_correlation

*Pearson correlation coefficient*

**Description**

Pearson correlation coefficient can be seen as one of the model performance metrics. This is a measure of how close the predicted value is to the true value. If it is close to 1, the model is considered a good fit. If it is close to 0, the model is not good. A value of 0 corresponds to a random prediction.

**Author(s)**

Dongmin Jung

**See Also**

keras::k_mean, keras::sum, keras::k_square, keras::k_sqrt

**Examples**

```r
library(reticulate)
if (keras::is_keras_available() & reticulate::py_available()) {
 num_tokens <- 1000
 length_seq <- 30
 embedding_dims <- 50
 num_units_1 <- 32
 num_units_2 <- 16

 stacked_gru <- function(num_tokens, embedding_dims, length_seq,
 num_units_1, num_units_2)
 {
 model <- keras::keras_model_sequential() %>%
 keras::layer_embedding(input_dim = num_tokens,
 output_dim = embedding_dims,
 input_length = length_seq) %>%
 keras::layer_gru(units = num_units_1,
 activation = "relu",
 return_sequences = TRUE) %>%
 keras::layer_gru(units = num_units_2,
 activation = "relu") %>%
 keras::layer_dense(1)

 model %>%
 keras::compile(loss = "mean_squared_error",
 optimizer = "adam",
 metrics = custom_metric("pearson_correlation",
 metric_pearson_correlation))
 }
}
```
Description

You are allowed to create a visualization of your model architecture. This architecture displays the information about the name, input shape, and output shape of layers in a flowchart.

Usage

plot_model(x)

Arguments

x  deep learning model

Value

plot for the model architecture

Author(s)

Dongmin Jung

See Also

purrr::map, purrr::map_chr, purrr::pluck, purrr::imap_dfr, DiagrammeR::grViz

Examples

library(reticulate)
if (keras::is_keras_available() & reticulate::py_available()) {
  inputs1 <- layer_input(shape = c(1000))
  inputs2 <- layer_input(shape = c(1000))

  predictions1 <- inputs1 %>%
    layer_dense(units = 128, activation = 'relu') %>%
    layer_dense(units = 64, activation = 'relu') %>%
    layer_dense(units = 32, activation = 'softmax')

  predictions2 <- inputs2 %>%
    layer_dense(units = 128, activation = 'relu') %>%
    layer_dense(units = 64, activation = 'relu') %>%
    layer_dense(units = 32, activation = 'softmax')

  combined <- layer_concatenate(c(predictions1, predictions2)) %>%
    layer_dense(units = 16, activation = 'softmax')
predict_model

```r
model <- keras_model(inputs = c(inputs1, inputs2),
 outputs = combined)
plot_model(model)
```

**predict_model**

*Model prediction*

**Description**

From the result of the function "ttgsea", we can predict enrichment scores. For each new term, lemmatized text, predicted enrichment score, Monte Carlo p-value and adjusted p-value are provided. The function "token_vector" is used for encoding as we did for training. Of course, mapping from tokens to integers should be the same.

**Usage**

```r
predict_model(object, new_text, num_simulations = 1000,
 adj_p_method = "fdr")
```

**Arguments**

- **object**
  - result of "ttgsea"
- **new_text**
  - new text data
- **num_simulations**
  - number of simulations for Monte Carlo p-value (default: 1000)
- **adj_p_method**
  - correction method (default: "fdr")

**Value**

table for lemmatized text, predicted enrichment score, MC p-value and adjusted p-value

**Author(s)**

Dongmin Jung

**See Also**

stats::p.adjust
Examples

```r
library(reticulate)
if (keras::is_keras_available() & reticulate::py_available()) {
 library(fgsea)
 data(examplePathways)
 data(exampleRanks)
 names(examplePathways) <- gsub("_", " ",
 substr(names(examplePathways), 9, 1000))
 set.seed(1)
 fgseaRes <- fgsea(examplePathways, exampleRanks)
 num_tokens <- 1000
 length_seq <- 30
 batch_size <- 32
 embedding_dims <- 50
 num_units <- 32
 epochs <- 1

 ttgseaRes <- fit_model(fgseaRes, "pathway", "NES",
 model = bi_gru(num_tokens,
 embedding_dims,
 length_seq,
 num_units),
 num_tokens = num_tokens,
 length_seq = length_seq,
 epochs = epochs,
 batch_size = batch_size,
 use_generator = FALSE)
 set.seed(1)
 predict_model(ttgseaRes, "Cell Cycle")
}
```

---

**sampling_generator**  
*Generator function*

**Description**

This is a generator function that yields batches of training data then pass the function to the "fit_generator" function.

**Usage**

```
sampling_generator(X_data, Y_data, batch_size)
```

**Arguments**

- **X_data**: inputs
- **Y_data**: targets
- **batch_size**: batch size
Value
generator for "fit_generator"

Author(s)
Dongmin Jung

Examples
X_data <- matrix(rnorm(200), ncol = 2)
Y_data <- matrix(rnorm(100), ncol = 1)
sampling_generator(X_data, Y_data, 32)

text_token  Tokenizing text

Description
An n-gram is used for tokenization. This function can also be used to limit the total number of tokens.

Usage
text_token(text, ngram_min = 1, ngram_max = 1, num_tokens)

Arguments
text: text data
ngram_min: minimum size of an n-gram (default: 1)
ngram_max: maximum size of an n-gram (default: 1)
num_tokens: maximum number of tokens

Value
token: result of tokenizing text
ngram_min: minimum size of an n-gram
ngram_max: maximum size of an n-gram

Author(s)
Dongmin Jung

See Also
tm::removeWords, stopwords::stopwords, textstem::lemmatize_strings, text2vec::create_vocabulary, text2vec::prune_vocabulary
Examples

library(fgsea)
data(examplePathways)
data(exampleRanks)
names(examplePathways) <- gsub("_", " ",
       substr(names(examplePathways), 9, 1000))
set.seed(1)
fgseaRes <- fgsea(examplePathways, exampleRanks)
tokens <- text_token(data.frame(fgseaRes)[,"pathway"],
       num_tokens = 1000)

<table>
<thead>
<tr>
<th>token_vector</th>
<th>Vectorization of tokens</th>
</tr>
</thead>
</table>

Description

A vectorization of words or tokens of text is necessary for machine learning. Vectorized sequences are padded or truncated.

Usage

token_vector(text, token, length_seq)

Arguments

text text data
token result of tokenization (output of "text_token")
length_seq length of input sequences

Value

sequences of integers

Author(s)

Dongmin Jung

See Also

tm::removeWords, stopwords::stopwords, textstem::lemmatize_strings, tokenizers::tokenize_ngrams, keras::pad_sequences
Examples

```r
library(reticulate)
if (keras::is_keras_available() & reticulate::py_available()) {
 library(fgsea)
 data(examplePathways)
 data(exampleRanks)
 names(examplePathways) <- gsub("_", " ",
 substr(names(examplePathways), 9, 1000))
 set.seed(1)
 fgseaRes <- fgsea(examplePathways, exampleRanks)
 tokens <- text_token(data.frame(fgseaRes)[,"pathway"],
 num_tokens = 1000)
 sequences <- token_vector("Cell Cycle", tokens, 10)
}
```
Index

bi_gru, 2
bi_lstm, 3

fit_model, 5

metric_pearson_correlation, 7

plot_model, 8
predict_model, 9

sampling_generator, 10

text_token, 11
token_vector, 12