Package ‘uSORT’

February 27, 2024

Title uSORT: A self-refining ordering pipeline for gene selection

Version 1.28.0

Author Mai Chan Lau, Hao Chen, Jinmiao Chen

Description This package is designed to uncover the intrinsic cell progression path from single-cell RNA-seq data. It incorporates data pre-processing, preliminary PCA gene selection, preliminary cell ordering, feature selection, refined cell ordering, and post-analysis interpretation and visualization.

Maintainer Hao Chen <chen_hao@immunol.a-star.edu.sg>

biocViews ImmunoOncology, RNASeq, GUI, CellBiology, DNASEq

Depends R (>= 3.3.0), tcltk

VignetteBuilder knitr

Suggests knitr, RUnit, testthat, ggplot2

Imports igraph, Matrix, RANN, RSpectra, VGAM, gplots, parallel, plyr, methods, cluster, Biobase, fpc, BiocGenerics, monocle, grDevices, graphics, stats, utils

License Artistic-2.0

Encoding UTF-8

LazyData true

RoxygenNote 5.0.1

git_url https://git.bioconductor.org/packages/uSORT

git_branch RELEASE_3_18

git_last_commit 84d19e1

git_last_commit_date 2023-10-24

Repository Bioconductor 3.18

Date/Publication 2024-02-26
R topics documented:

autoSPIN .. 3
clusterGenes1 ... 4
compareModels1 ... 5
diff_test_helper1 ... 5
differentialGeneTest1 6
distance.function 7
driving_force_gene_selection 7
eïbrow_detection .. 8
EXP_to_CellDataSet 9
fluidigmSC_analyzeGeneDetection 9
fluidigmSC_identifyExpOutliers 10
fluidigmSC_isElementIgnoreCase 11
fluidigmSC_readLinearExp 12
fluidigmSC_removeGenesByLinearExpForAllType 12
fluidigmSC_removeGenesByLinearExpForAllType_log2 13
monocle_wrapper 13
neighborhood_sorting 14
neighborhood_sorting_wrapper 15
neighborhood_sortingcost 15
pca_gene_selection 16
Rwanderlust .. 17
scattering_quantification_per_gene 18
sorting_method_parameter_GUI 18
SPIN .. 19
STS_sorting ... 20
STS_sorting_wrapper 20
STS_sortingcost 21
summed_local_variance 22
summed_local_variance_cyclical 22
summed_local_variance_linear 23
sWanderlust .. 23
trajectory_landmarks 24
uSORT .. 25
uSORT_GUI ... 28
uSORT_parameters_GUI 28
uSORT_preProcess 29
uSORT_sorting_wrapper 30
uSORT_write_results 31
variability_per_gene 32
wanderlust_wrapper 32

Index ... 34
autoSPIN

A wrapper function for autoSPIN sorting method

Description

A wrapper function for autoSPIN method which implements optimized local refinement using the selected SPIN sorting method, i.e. STS or Neighborhood.

Usage

autoSPIN(data, data_type = c("linear", "cyclical"),
 sorting_method = c("STS", "neighborhood"), alpha = 0.2, sigma_width = 1,
 no_randomization = 20, window_perc_range = c(0.1, 0.9),
 window_size_incre_perct = 0.05)

Arguments

data An log2 transformed expression matrix containing n-rows of cells and m-cols of genes.
data_type A character string indicating the type of progression, i.e. 'linear' (strictly linear) or 'cyclical' (cyclically linear).
sorting_method A character string indicating the choice of SPIN sorting method, i.e. 'STS' (Side-to-Side) or 'Neighborhood'.
alpha A fraction value denoting the size of locality used for calculating the summed local variance.
sigma_width An integer number denoting the degree of spread of the gaussian distribution which is used for computing weight matrix for Neighborhood sorting method.
no_randomization An integer number indicating the number of repeated sorting, each of which uses randomly selected initial cell position.
window_perc_range A fraction value indicating the range of window size to be examined during local refinement.
window_size_incre_perct A fraction value indicating the step size at each iteration for incrementing window size.

Value

A data frame containing single column of ordered sample IDs.
clusterGenes1

A modified monocle's function

Description

A modified monocle's function for 'compareModels' which identifies and removes genes whose reduced_models is better than full_models in term of likelihood

Usage

clusterGenes1(expr_matrix, krange, method = function(x) { as.dist((1 - cor(t(x)))/2) }, ...)

Arguments

expr_matrix Expression matrix.
krange krange.
method method function.
... Other parameters.

Value

test_res a dataframe containing status of modeling and adjusted p-value

Author(s)

MaiChan Lau
compareModels1
A modified monocle’s function

Description

A modified monocle’s function for ‘compareModels’ which identifies and removes genes whose reduced_models is better than full_models in term of likelihood.

Usage

`compareModels1(full_models, reduced_models)`

Arguments

- `full_models`: a Monocle’s vgam full model
- `reduced_models`: a Monocle’s vgam reduced/ null model

Value

- `test_res`: a dataframe containing status of modeling and adjusted p-value

Author(s)

MaiChan Lau

diff_test_helper1
A modified monocle’s helper function

Description

A modified monocle’s function for 'diff_test_helper1' which includes more attempts on finding models and also compute max. magnitude change in expression values predicted by GLM model.

Usage

`diff_test_helper1(x, fullModelFormulaStr, reducedModelFormulaStr, expressionFamily, lowerDetectionLimit = 0.1, type_ordering = "linear")`
differentialGeneTest1

differential gene test

Description
modified from FludigmSC package

Usage
differentialGeneTest1(cds,
 fullModelFormulaStr = "expression~sm.ns(Pseudotime, df=3)",
 reducedModelFormulaStr = "expression~1", cores = 1)

Arguments
cds Input object.
fullModelFormulaStr Full model formula.
reducedModelFormulaStr Reduced model formula.
cores Number of cores will be used.

Value
test results
distance.function

A distance function A distance function computes cell-to-cell distance matrix.

Description

A distance function A distance function computes cell-to-cell distance matrix.

Usage

```r
distance.function(expr, method = c("Euclidean", "Correlation", "eJaccard", "none"))
```

Arguments

- `expr`: An expression matrix containing n-rows of cells and m-cols of genes.
- `method`: A character string indicating the distance function.

Value

A matrix containing n-by-n cell distance.

driving_force_gene_selection

A feature/ gene selection function

Description

A feature/ gene selection function (1) removes sparsely expressed genes, (2) identifies differentially expressed genes based on preliminary cell ordering, (3) removes highly dispersed genes from the identified DEGs, (4) further picks genes which are expected to have large expression difference on the 2 extreme ends of preliminary cell ordering.

Usage

```r
driving_force_gene_selection(cds, scattering.cutoff.prob = 0.75, driving.force.cutoff = NULL, qval_cutoff = 0.05, min_expr = 0.1, data_type = c("linear", "cyclical"), nCores = 1)
```
elbow_detection

Arguments

- **cds**: a Monocle’s CellDataSet object
- **scattering.cutoff.prob**: probability used for removing largely dispersed genes
- **driving.force.cutoff**: a value used for removing genes which do not change much along cell progress path
- **qval_cutoff**: a user-defined adjusted p-value below which genes are retained
- **min_expr**: the minimum expression value
- **data_type**: a character indicating the type of underlying cell progression, i.e. linear or cyclical.
- **nCores**: Number of cores to use.

Value

- **integer**

Author(s)

- MaiChan Lau

Examples

```r
# dir <- system.file('extdata', package='uSORT')
# file <- list.files(dir, pattern='.txt$', full=TRUE)
# #exprs <- uSORT_preProcess(exprs_file = file)
# #exp_raw <- t(exprs$exprs_raw)
# #exp_trimmed <- t(exprs$exprs_log_trimed)
# #cds <- uSORT:::EXP_to_CellDataSet(exp_trimmed, exp_raw)
# #driver_genes <- driving_force_gene_selection(cds = cds)
```

elbow_detection

An elbow detection function

Description

An elbow detection function detects the elbow/knee of a given vector of values. Values will be sorted descendingly before detection, and the ID of those values above the elbow will be returned.

Usage

```r
elbow_detection(scores, if_plot = FALSE)
```

Arguments

- **scores**: A vector of numeric scores.
- **if_plot**: Boolean determine if plot the results.
Value

a vector of selected elements IDs

Examples

scores <- c(10, 9, 8, 6, 3, 2, 1, 0.1)
elbow_detection(scores, if_plot = TRUE)

EXP_to_CellDataSet

A function for constructing a Monocle’s CellDataSet object from an expression matrix

Description

A function for constructing a Monocle’s CellDataSet object from an expression matrix

Usage

`EXP_to_CellDataSet(log2_exp = NULL, expression_data_raw = NULL, lod = 1)`

Arguments

- `log2_exp`: An log2 transformed expression matrix containing n-rows of cells and m-cols of genes.
- `expression_data_raw`: A data frame containing raw expression values, with rownames of cells and colnames of genes.
- `lod`: A value of limit of detection in the unit of TPM/CPM/RPKM.

Value

A CellDataSet object.

fluidigmSC_analyzeGeneDetection

A gene detection function

Description

A gene detection function computes the fraction of genes detected in each cell, reproduced from FluidigmSC package.

Usage

`fluidigmSC_analyzeGeneDetection(expression_data, threshold = 1)`
Arguments

expression_data
A data frame containing raw expression values, with rownames of genes and colnames of cells.

threshold
A limit of detection in the unit of TPM/CPM/RPMK.

Value
A data frame containing a column of number of genes detected, and a column of the corresponding percentage of gene detection, rownames of cells.

Description
An outlier detection function identifies cells with median expression below that of the bulk, reproduced from FluidigmSC package.

Usage

fluidigmSC_identifyExpOutliers(log2ex_data, expression_data_raw, threshold, step, fine_step, num_fine_test, pct_goodsample_threshold = 0.5, quantile_threshold = 0.95, low_quantile_threshold = 0.25, min_gene_number = 25, lod)

Arguments

log2ex_data
A data frame containing log2 tranformed expression values, with rownames of genes and colnames of cells.

expression_data_raw
A data frame containing raw expression values, with rownames of genes and colnames of cells.

threshold
A value in raw expression used as the starting threshold value.

step
An integer number indicating the increment of threshold value at each iteration.

done_fine_test
An integer number indicating the increment of threshold value at each iteration, at the refining stage.

pct_goodsample_threshold
A fraction value indicating the minimum percentage of samples on which the representative genes are detectable.

quantile_threshold
A probability of gene detection rate above which a sample is considered as good sample.
low_quantile_threshold
A probability of average gene expression value below which a sample is taken as an outlier.

min_gene_number
An integer indicating the minimum size of representative genes.

lod A value of limit of detection in the unit of TPM/CPM/RPKM.

Value
A vector of character stating the IDs of outlier cells.

Description
A gene finding function looking for genes in the target set x from the source set y, reproduced from FluidigmSC package.

Usage
fluidigmSC_isElementIgnoreCase(x, y, ignore_case = TRUE)

Arguments
x A vector of characters representing gene names (target genes).
y A vector of characters representing gene names (source genes).
ignore_case Boolean, if TRUE ignores letter case.

Value
A vector of characters representing gene names.
fluidigmSC_readLinearExp

An expression reading function

Description

An expression reading function which imports expression data from .txt file, and then computes log2 transformed data, reproduced from FluidigmSC package.

Usage

```r
fluidigmSC_readLinearExp(exp_file = TRUE, lod = 1)
```

Arguments

- `exp_file` (Input file name in txt format, with rownames of cells and colnames of genes.)
- `lod` (A value of limit of detection in the unit of TPM/CPM/RPKM. It will be used as the starting value for outlier cell detection and the basis for removing scarce genes.)

Value

A list containing `expression_data_raw` (data frame), `log2ex_data` (data frame), and `log2ex_avg_data` (data frame).

fluidigmSC_removeGenesByLinearExpForAllType

A gene trimming function

Description

A gene trimming function removes genes whose average expression value is below the log2(threshold), and also present in at least 10

Usage

```r
fluidigmSC_removeGenesByLinearExpForAllType(log2ex_data, log2ex_avg_data, threshold)
```

Arguments

- `log2ex_data` (A data frame containing log2 tranformed expression values, with rownames of genes and colnames of cells.)
- `log2ex_avg_data` (A data frame containing log2 tranformed average expression values for individual gene.)
- `threshold` (A limit of detection in the unit of TPM/CPM/RPMK.)
fluidigmSC_removeGenesByLinearExpForAllType_log2

Description

A gene trimming function removes genes whose average expression value is below the \(\log_2(\text{threshold}) \); reproduced from FluidigmSC package.

Usage

\[
\text{fluidigmSC_removeGenesByLinearExpForAllType_log2}(\text{log2ex_data}, \text{threshold})
\]

Arguments

- `log2ex_data`: A data frame containing \(\log_2 \) transformed expression values, with rownames of genes and colnames of cells.
- `threshold`: A limit of detection in the unit of TPM/CPM/RPKM.

Value

A vector of character containing gene names of those passed the filtering.

monocle_wrapper

Description

A wrapper function for Monocle sorting method

Usage

\[
\text{monocle_wrapper}(\text{log2_exp}, \text{expression_data_raw}, \text{lod} = 1)
\]

Arguments

- `log2_exp`: An \(\log_2 \) transformed expression matrix containing \(n \)-rows of cells and \(m \)-cols of genes.
- `expression_data_raw`: A data frame containing raw expression values, with rownames of cells and colnames of genes.
- `lod`: A value of limit of detection in the unit of TPM/CPM/RPKM.
neighborhood_sorting

A sorting function using the Neighborhood algorithm

Description

A sorting function using the Neighborhood algorithm

Usage

neighborhood_sorting(d, weights_mat = NULL, max_iter = 100)

Arguments

d A matrix containing n-by-n cell distance.
weights_mat A weight matrix of size n-by-n.
max_iter An integer number indicating the maximum number of iteration if sorting does not converge.

Value

A list containing ordering(a vector of re-ordered sequence) and cost(a numeric value).
neighborhood_sorting_wrapper

A wrapper function for Neighborhood sorting.

Description

A wrapper function for Neighborhood sorting as proposed in [Tsafrir et al. 2005].

Usage

```r
neighborhood_sorting_wrapper(expr, sigma_width = 1, no_randomization = 10)
```

Arguments

- `expr` : An expression matrix containing n-rows of cells and m-cols of genes.
- `sigma_width` : An integer number determining the degree of spread of the gaussian distribution which is used for computing weight matrix for Neighborhood sorting method.
- `no_randomization` : An integer number indicating the number of repeated sorting, each of which uses a randomly selected initial cell ordering.

Value

A list containing `permutated.expr`(data frame) and `best.cost`(a numeric value).

neighborhood_sortingcost

A cost computation function for Neighborhood algorithm

Description

A cost computation function for Neighborhood algorithm

Usage

```r
neighborhood_sortingcost(expr = NULL, sigma_width = 1, method = c("Euclidean", "Correlation", "Jaccard", "none"))
```

Arguments

- `expr` : An expression matrix containing n-rows of cells and m-cols of genes.
- `sigma_width` : An integer number determining the degree of spread of the gaussian distribution which is used for computing weight matrix for Neighborhood sorting method.
- `method` : A character string indicating the distance function.
Value

A numeric value of sorting cost.

Examples

```r
set.seed(15)
d <- iris[,1:4]
randomOrdering_cost <- neighborhood_sortingcost(d, method='Euclidean')
randomOrdering_cost
da <- iris
d <- d[,1:4]
properOrdering_cost <- neighborhood_sortingcost(d, method='Euclidean')
properOrdering_cost
```

pca_gene_selection

Gene selection using PCA technique

Description

Gene selection using PCA technique

Usage

```r
pca_gene_selection(data)
```

Arguments

- **data** A matrix of data.frame with row.name of cells, and col.name of genes

Value

- a vector of the names of selected genes.

Examples

```r
dir <- system.file('extdata', package='uSORT')
file <- list.files(dir, pattern='.txt$', full=TRUE)
exprs <- uSORT_preProcess(exprs_file = file)
exp_trimmed <- t(exprs$exprs_log_trimed)
PCA_selected_genes <- pca_gene_selection(exp_trimmed)
```
Description

R implementation of wanderlust

Usage

Rwanderlust(data, s, l = 15, k = 15, num_graphs = 1,
 num_waypoints = 250, waypoints_seed = 123, flock_waypoints = 2,
 metric = "euclidean", voting_scheme = "exponential",
 band_sample = FALSE, partial_order = NULL, verbose = TRUE)

Arguments

data Input data matrix.
s Starting point ID.
l l nearest neighbours.
k k nearest neighbours, k < l.
num_graphs Number of repeated graphs.
num_waypoints Number of waypoints to guide the trajectory detection.
waypoints_seed The seed for reproducing the results.
flock_waypoints The number of times for flocking the waypoints, default is 2.
metric Distance calculation metric for nearest neighbour detection.
voting_scheme The scheme of voting.
band_sample Boolean, if band the sample
partial_order default NULL
verbose Boolean, if print the details

Value

a list containing Trajectory, Order, Waypoints

Author(s)

Hao Chen
Examples

```r
set.seed(15)
shuffled_iris <- iris[sample(150, 150, replace = FALSE), ]
data <- shuffled_iris[,1:4]
data_label <- shuffled_iris[,5]
wishbone <- Rwanderlust(data = data, num_waypoints = 100, waypoints_seed = 2)
pd1 <- data.frame(id = wishbone$Trajectory, label=data_label, stringsAsFactors = FALSE)
pd2 <- data.frame(id = seq_along(row.names(data)), label=data_label, stringsAsFactors = FALSE)
#ggplot(pd1, aes(x=id, y=id, colour = label)) + geom_point() + theme_bw()
#ggplot(pd2, aes(x=id, y=id, colour = label)) + geom_point() + theme_bw()
```

Scattering quantification per gene

An expression scattering measurement function

Description

An expression scattering measurement function computes the level of scattering for individual genes along the cell ordering.

Usage

```r
scattering_quantification_per_gene(CDS = NULL)
```

Arguments

- `CDS`
 a Monocle’s CellDataSet object

Value

integer

Author(s)

MaiChan Lau

Sorting method parameter GUI

GUI for sorting method parameters

Description

The parameters appeared on GUI are based on input method, this function is called by `uSORT_parameters_GUI`. For internal use only.
Usage

 sorting_method_parameter_GUI(method = c("autoSPIN", "sWanderlust", "monocle", "Wanderlust", "SPIN", "none"))

Arguments

method method name.

Value

a list of parameters.

Author(s)

Hao Chen

SPIN A wrapper function for SPIN sorting method

Description

A wrapper function for SPIN method provides a R version of SPIN [Tsafrir et al. 2005].

Usage

SPIN(data, sorting_method = c("STS", "neighborhood"), sigma_width = 1)

Arguments

data An log2 transformed expression matrix containing n-rows of cells and m-cols of genes.

sorting_method A character string indicating the choice of sorting method, i.e. 'STS' (Side-to-Side) or 'Neighborhood'.

sigma_width An integer number determining the degree of spread of the gaussian distribution which is used for computing weight matrix for Neighborhood sorting method.

Value

A data frame containing single column of ordered sample IDs.
Examples

```r
set.seed(15)
da <- iris[sample(150, 150, replace = FALSE), ]
rownames(da) <- paste0('spl_', seq(1, nrow(da)))
d <- da[, 1:4]
dl <- da[, 5, drop=FALSE]
res <- SPIN(data = d)
dl <- dl[match(res$SampleID, rownames(dl)), ]
annot <- data.frame(id = seq(1, nrow(res)), label=dl, stringsAsFactors = FALSE)
#ggplot(annot, aes(x=id, y=id, colour = label)) + geom_point() + theme_bw()
```

STS_sorting

An R function that implements the Side-to-Side (STS) sorting algorithm.

Description

A sorting function using the Side-to-Side (STS) algorithm.

Usage

```r
STS_sorting(d, max_iter = 10)
```

Arguments

- `d` A matrix containing n-by-n cell distance.
- `max_iter` An integer number indicating the maximum number of iteration if sorting does not converge.

Value

A list containing `ordering` (a vector of re-ordered sequence) and `cost` (a numeric value).

STS_sorting_wrapper

A wrapper function for Side-to-Side (STS) sorting.

Description

A wrapper function for Side-to-Side (STS) sorting as proposed in [Tsafrir et al. 2005].

Usage

```r
STS_sorting_wrapper(expr, no_randomization = 10)
```
Arguments

expr An expression matrix containing n-rows of cells and m-cols of genes.
no_randomization
An integer number indicating the number of repeated sorting, each of which uses a randomly selected initial cell ordering.

Value
A list containing permuted.expr (data frame) and best.cost (a numeric value).

STS_sortingcost A cost computation function for Side-to-Side (STS) algorithm

Description
A cost computation function for Side-to-Side (STS) algorithm

Usage

```r
STS_sortingcost(expr = NULL, method = c("Euclidean", "Correlation", "eJaccard", "none"))
```

Arguments

expr An expression matrix containing n-rows of cells and m-cols of genes.
method A character string indicating the distance function.

Value
A numeric value of sorting cost.

Examples

```r
set.seed(15)
da <- iris[sample(150, 150, replace = FALSE), ]
d <- da[,1:4]
randomOrdering_cost <- STS_sortingcost(d, method='Euclidean')
randomOrdering_cost
da <- iris
d <- da[,1:4]
properOrdering_cost <- STS_sortingcost(d, method='Euclidean')
properOrdering_cost
```
Description
A summed local variance function

Usage
summed_local_variance(expr = NULL, alpha = NULL, data_type = "linear")

Arguments
- expr: An expression matrix containing n-rows of cells and m-cols of genes.
- alpha: A fraction value indicating the size of window for local variance measurement.
- data_type: A character string indicating the type of progression, i.e. 'linear' (strictly linear) or 'cyclical' (cyclically linear).

Value
A numeric value of the summed local variance.

Description
A summed local variance function for cyclical linear data type

Usage
summed_local_variance_cyclical(d, alpha = 0.3)

Arguments
- d: A cell-to-cell distance matrix.
- alpha: A fraction value indicating the size of window for local variance measurement.

Value
A numeric value of the summed local variance.
summed_local_variance_linear

A summed local variance function for strictly linear data type

Description

A summed local variance function for strictly linear data type

Usage

summed_local_variance_linear(d, alpha = 0.3)

Arguments

d A cell-to-cell distance matrix.
alpha A fraction value indicating the size of window for local variance measurement.

Value

A numeric value of the summed local variance.

sWanderlust

autoSPIN guided wanderlust. Specifically, we use autoSPIN to help find the starting point for wanderlust.

Usage

sWanderlust(data, data_type = c("linear", "cyclical"),
 SPIN_option = c("STS", "neighborhood"), alpha = 0.2, sigma_width = 1,
 diffusionmap_components = 4, l = 15, k = 15, num_waypoints = 150,
 flock_waypoints = 2, waypoints_seed = 2711)

Arguments

data data Input data matrix.
data_type The data type which guides the autoSPIN sorting, including linear, cyclical.
SPIN_option SPIN contains two options including STS(default), neighborhood.
alpha alpha parameter for autoSPIN, default is 0.2.
sigma_width Sigma width parameter for SPIN, default is 1.
trajectory_landmarks

diffusionmap_components

Number of components from diffusion map used for wanderlust analysis, default is 4.

l

Number of nearest neighbors, default is 15.

k

Number of nearest neighbors for repeating graphs, default is 15, should be less than or equal to l.

num_waypoints

Number of waypoint used for wanderlust, default is 150.

flock_waypoints

The number of times for flocking the waypoints, default is 2.

waypoints_seed

The seed for reproducing the results.

Value

a vector of the sorted order.

Author(s)

Hao Chen

Examples

set.seed(15)
shuffled_iris <- iris[sample(150, 150, replace = FALSE),]
data <- shuffled_iris[,1:4]
data_label <- shuffled_iris[,5]
wishbone <- sWanderlust(data = data, num_waypoints = 100)

trajectory_landmarks determining initial trajectory and landmarks

description

determining initial trajectory and landmarks

Usage

trajectory_landmarks(knn, data, s, partial_order = NULL, waypoints = 250, waypoints_seed = 123, metric = "euclidean", flock_waypoints = 2, band_sample = FALSE)

Arguments

knn

A sparse matrix of knn.
data

data.
s

The ID of starting point.
partial_order

A vector of IDs specified as recommended waypoints, NULL to ignore.
waypoints
Either the number of waypoints, or specify the waypoint IDs.

waypoints_seed
Random sampling seed, for reproducible results.

metric
Distance calculation metric for nearest neighbour detection.

flock_waypoints
Iteration of using nearest points around waypoint to adjust its position.

band_sample
if give more chance to nearest neighbours of starting point in randomly waypoints selection.

uSORT: A self-refining ordering pipeline for gene selection

Description
This package is designed to uncover the intrinsic cell progression path from single-cell RNA-seq data.

The main function of uSORT package which provides a workflow of sorting scRNA-seq data.

Usage
```r
uSORT(exprs_file, log_transform = TRUE, remove_outliers = TRUE,
       preliminary_sorting_method = c("autoSPIN", "sWanderlust", "monocle",
                                   "Wanderlust", "SPIN", "none"),
       refine_sorting_method = c("autoSPIN", "sWanderlust", "monocle",
                                "Wanderlust", "SPIN", "none"),
       project_name = "uSORT", result_directory = getwd(), nCores = 1,
       save_results = TRUE, reproduce_seed = 1234,
       scattering_cutoff_prob = 0.75, driving_force_cutoff = NULL,
       qval_cutoff_featureSelection = 0.05, pre_data_type = c("linear",
                                                             "cyclical"),
       pre_SPIN_option = c("STS", "neighborhood"),
       pre_SPIN_sigma_width = 1, pre_autoSPIN_alpha = 0.2,
       pre_autoSPIN_randomization = 20, pre_wanderlust_start_cell = NULL,
       pre_wanderlust_dfmap_components = 4, pre_wanderlust_l = 15,
       pre_wanderlust_num_waypoints = 150, pre_wanderlust_waypoints_seed = 2711,
       pre_wanderlust_flock_waypoints = 2, ref_data_type = c("linear",
                                                              "cyclical"),
       ref_SPIN_option = c("STS", "neighborhood"),
       ref_SPIN_sigma_width = 1, ref_autoSPIN_alpha = 0.2,
       ref_autoSPIN_randomization = 20, ref_wanderlust_start_cell = NULL,
       ref_wanderlust_dfmap_components = 4, ref_wanderlust_l = 15,
       ref_wanderlust_num_waypoints = 150, ref_wanderlust_flock_waypoints = 2,
       ref_wanderlust_waypoints_seed = 2711)
```
Arguments

exprs_file
Input file name in txt format, with rownames of cells and colnames of genes.

log_transform
Boolean, if log transform the data.

remove_outliers
Boolean, if remove the outliers.

preliminary_sorting_method
Method name for preliminary sorting, including autoSPIN, sWanderlust, monocle, Wanderlust, SPIN, or none.

refine_sorting_method
Method name for refined sorting, including autoSPIN, sWanderlust, monocle, Wanderlust, SPIN, or none.

project_name
A character name as the prefix of the saved result file.

result_directory
The directory indicating where to save the results.

nCores
Number of cores that will be employed for drive gene selection (parallel computing), default is 1.

save_results
Boolean determining if save the results.

reproduce_seed
A seed used for reproducing the result.

scattering_cutoff_prob
Scattering cutoff value probability for gene selection, default 0.75.

driving_force_cutoff
Driving force cutoff value for gene selection, default NULL(automatically).

qval_cutoff_featureSelection
Q value cutoff for gene selection, default 0.05.

pre_data_type
The data type which guides the autoSPIN sorting, including linear, cyclical.

pre_SPIN_option
SPIN contains two options including STS(default), neighborhood.

pre_SPIN_sigma_width
Sigma width parameter for SPIN, default is 1.

pre_autoSPIN_alpha
alpha parameter for autoSPIN, default is 0.2.

pre_autoSPIN_randomization
Number of randomizations for autoSPIN, default is 20.

pre_wanderlust_start_cell
The name of starting cell for wanderlust, default is the first cell from the data.

pre_wanderlust_dfmap_components
Number of components from diffusion map used for wanderlust analysis, default is 4.

pre_wanderlust_l
Number of nearest neighbors used for wanderlust, default is 15.

pre_wanderlust_num_waypoints
Number of way point used for wanderlust, default is 150.

pre_wanderlust_waypoints_seed
The seed for reproducing the wanderlust results.
pre_wanderlust_flock_waypoints
 The number of times for flocking the waypoints, default is 2.
ref_data_type
 The data type which guides the autoSPIN sorting, including linear, cyclical.
ref_SPIN_option
 SPIN contains two options including STS(default), neighborhood.
ref_SPIN_sigma_width
 Sigma width parameter for SPIN, default is 1.
ref_autoSPIN_alpha
 alpha parameter for autoSPIN, default is 0.2.
ref_autoSPIN_randomization
 Number of randomizations for autoSPIN, default is 20.
ref_wanderlust_start_cell
 The name of starting cell for wanderlust, default is the first cell from the data.
ref_wanderlust_dfmap_components
 Number of components from diffusion map used for wanderlust analysis, default is 4.
ref_wanderlust_l
 Number of nearest neighbors used for wanderlust, default is 15.
ref_wanderlust_num_waypoints
 Number of waypoint used for wanderlust, default is 150
ref_wanderlust_flock_waypoints
 The number of times for flocking the waypoints, default is 2.
ref_wanderlust_waypoints_seed
 The seed for reproducing the wanderlust results.

Details

This package incorporates data pre-processing, preliminary PCA gene selection, preliminary cell ordering, feature selection, refined cell ordering, and post-analysis interpretation and visualization. The uSORT workflow can be implemented through calling the main function or the GUI. uSORT.

Value

results object (a list)

See Also

uSORT-package, uSORT_GUI

Examples

dir <- system.file('extdata', package='uSORT')
file <- list.files(dir, pattern='.txt$', full=TRUE)
#remove the # symbol of the following codes to test
#uSORT_results <- uSORT(exprs_file = file, project_name = "test",
preliminary_sorting_method = "autoSPIN",
refine_sorting_method = "sWanderlust",
save_results = FALSE)
uSORT_GUI
The user friendly GUI for uSORT-package

Description
This GUI provides an easy way for applying the uSORT package.

Usage
uSORT_GUI()

Value
the GUI for uSORT-package

Author(s)
Hao Chen

References
http://JinmiaoChenLab.github.io/uSORT/

See Also
uSORT-package, uSORT

Examples

```r
interactive()
# if(interactive()) uSORT_GUI()  # remove the hash symbol to run
```

uSORT_parameters_GUI
The GUI for inputting parameters for uSORT

Description
This is a function for generating the GUI for uSORT, it’s called by uSORT_GUI. For internal use only.

Usage
uSORT_parameters_GUI()

Value
a list of parameters.
uSORT_preProcess

Author(s)

Hao Chen

Description

A data loading and pre-processing function which firstly identifies outlier cells and scarcely expressed genes.

Usage

```r
uSORT_preProcess(exprs_file, log_transform = TRUE, remove_outliers = TRUE, lod = 1)
```

Arguments

- `exprs_file` Input file name in txt format, with rownames of cells and colnames of genes.
- `log_transform` Boolean, if TRUE log transform the data.
- `remove_outliers` Boolean, if TRUE remove the outliers.
- `lod` A value of limit of detection in the unit of TPM/CPM/RPKM. It will be used as the starting value for outlier cell detection and the basis for removing scarce genes.

Value

A list containing `exprs_raw`(data frame) and `exprs_log_trimed`(data.frame).

Examples

```r
dir <- system.file('extdata', package='uSORT')
file <- list.files(dir, pattern='*.txt$', full=TRUE)
exprs <- uSORT_preProcess(exprs_file = file)
```
uSORT_sorting_wrapper
wrapper of all available sorting methods in uSORT

Description

Sorting methods include autoSPIN, sWanderlust, monocle, Wanderlust, SPIN. Any of the sorting method can be called directly using this function.

Usage

uSORT_sorting_wrapper(data, data_raw, method = c("autoSPIN", "sWanderlust", "monocle", "Wanderlust", "SPIN", "none"), data_type = c("linear", "cyclical"), SPIN_option = c("STS", "neighborhood"), SPIN_sigma_width = 1, autoSPIN_alpha = 0.2, autoSPIN_randomization = 20, wanderlust_start_cell = NULL, wanderlust_dfmap_components = 4, wanderlust_l = 15, wanderlust_num_waypoints = 150, wanderlust_waypoints_seed = 2711, wanderlust_flock_waypoints = 2)

Arguments

data
Input preprocessed data matrix with row.name of cells and col.name of genes.
data_raw
Input raw data matrix with row.name of cells and col.name of genes, for monocle method.
method
The name of the sorting method to use, including autoSPIN, sWanderlust, monocle, Wanderlust, SPIN and none.
data_type
The type of the data, either linear or cyclical.
SPIN_option
The running option of SPIN, STS or neighborhood.
SPIN_sigma_width
Sigma width for SPIN.
autoSPIN_alpha
alpha for autoSPIN.
autoSPIN_randomization
Number of randomization for autoSPIN.
wanderlust_start_cell
The id of the starting cell for wanderlust.
wanderlust_dfmap_components
The number of components from diffusionmap for wanderlust.
wanderlust_l
The number of nearest neighbors used for wanderlust.
wanderlust_num_waypoints
The number of waypoints for wanderlust.
wanderlust_waypoints_seed
The seed for reproducible analysis.
wanderlust_flock_waypoints
The number of flock times for wanderlust.
Value

return the order of sorting results.

Examples

dir <- system.file('extdata', package='uSORT')
file <- list.files(dir, pattern='*.txt$', full=TRUE)
exprs <- uSORT_preProcess(exprs_file = file)
exp_trimated <- t(exprs$exprs_log_trimated)
PCA_selected_genes <- pca_gene_selection(exp_trimated)
exp_PCA_genes <- exp_trimated[, PCA_selected_genes]
#order <- uSORT_sorting_wrapper(data = exp_PCA_genes, method = 'autoSPIN')

Description

Save result object into a RData file. Save cell to cell distance heatmap for both preliminary and refined results. Creat plot of driver gene profiles on final ordering using heatmap.

Usage

uSORT_write_results(uSORT_results, project_name, result_directory)

Arguments

uSORT_results Result object from uSort function, a list.
project_name A prefix for the saving files.
result_directory The path where to save the results.

Value

save the results.

Examples

dir <- system.file('extdata', package='uSORT')
file <- list.files(dir, pattern='*.txt$', full=TRUE)
#remove the # symbol of the following codes to test
#uSORT_results <- uSORT(exprs_file = file,
project_name = 'test',
preliminary_sorting_method = 'autoSPIN',
refine_sorting_method = 'sWanderlust',
save_results = FALSE)
#uSORT_write_results(uSORT_results,
project_name = 'test',
result_directory = getwd())
variability_per_gene A utility function for scattering_quantification_per_gene

Description
A utility function for scattering_quantification_per_gene which computes the degree of scattering for single gene, whereby the value is computed by summing over the local values of smaller local windows

Usage
variability_per_gene(logExp = NULL, min_expr = 0.1, window_size_perct = 0.1, nonZeroExpr_perct = 0.1)

Arguments
logExp a log-scale expression vector of a gene
min_expr a minimum expression value
window_size_perct a window size (in dispersion level
nonZeroExpr_perct a minimum amount of cells (in expression, otherwise the associated window will be assigned to 0 disperson value

Value
integer

Author(s)
MaiChan Lau

wanderlust_wrapper a wrapper of wanderlust for sWanderlust

Description
a wrapper of wanderlust for sWanderlust

Usage
wanderlust_wrapper(data, s, diffusionmap_components = 4, l = 15, k = 15, num_graphs = 1, num_waypoints = 150, waypoints_seed = 123, flock_waypoints = 2)
Arguments

- **data**: Input data matrix.
- **s**: The ID of starting point.
- **diffusionmap_components**: Number of components from diffusion map used for wanderlust analysis, default is 4.
- **l**: Number of nearest neighbors, default is 15.
- **k**: Number of nearest neighbors for repeating graphs, default is 15, should be less than or equal to l.
- **num_graphs**: Number of repeated graphs.
- **num_waypoints**: Number of waypoint used for wanderlust, default is 150.
- **waypoints_seed**: The seed for reproducing the results.
- **flock_waypoints**: The number of times for flocking the waypoints, default is 2.

Value

sorted order.

Author(s)

Hao Chen
Index

autoSPIN, 3
clusterGenes1, 4
cmpareModels1, 5
diff_test_helper1, 5
differentialGeneTest1, 6
distance_function, 7
driving_force_gene_selection, 7
elbow_detection, 8
EXP_to_CellDataSet, 9
fluidigmSC_analyzeGeneDetection, 9
fluidigmSC_identifyExpOutliers, 10
fluidigmSC_isElementIgnoreCase, 11
fluidigmSC_readLinearExp, 12
fluidigmSC_removeGenesByLinearExpForAllType, 12
fluidigmSC_removeGenesByLinearExpForAllType_log2, 13
monocle_wrapper, 13
neighborhood_sorting, 14
neighborhood_sorting_wrapper, 15
neighborhood_sortingcost, 15
pca_gene_selection, 16
Rwanderlust, 17
scattering_quantification_per_gene, 18
sorting_method_parameter_GUI, 18
SPIN, 19
STS_sorting, 20
STS_sorting_wrapper, 20
STS_sortingcost, 21
summed_local_variance, 22
summed_local_variance_cyclical, 22
summed_local_variance_linear, 23
sWanderlust, 23
trajectory_landmarks, 24
uSORT, 25, 27, 28
uSORT-package (uSORT), 25
uSORT_GUI, 27, 28, 28
uSORT_parameters_GUI, 18, 28
uSORT_preProcess, 29
uSORT_sorting_wrapper, 30
uSORT_write_results, 31
variability_per_gene, 32
wanderlust_wrapper, 32