Package ‘uSORT’

May 22, 2024

Title uSORT: A self-refining ordering pipeline for gene selection

Version 1.30.0

Author Mai Chan Lau, Hao Chen, Jinmiao Chen

Description This package is designed to uncover the intrinsic cell progression path from single-cell RNA-seq data. It incorporates data pre-processing, preliminary PCA gene selection, preliminary cell ordering, feature selection, refined cell ordering, and post-analysis interpretation and visualization.

Maintainer Hao Chen <chen_hao@immunol.a-star.edu.sg>

biocViews ImmunoOncology, RNASeq, GUI, CellBiology, DNASeq

Depends R (>= 3.3.0), tcltk

VignetteBuilder knitr

Suggests knitr, RUnit, testthat, ggplot2

Imports igraph, Matrix, RANN, RSpectra, VGAM, gplots, parallel, plyr, methods, cluster, Biobase, fpc, BiocGenerics, monocle, grDevices, graphics, stats, utils

License Artistic-2.0

Encoding UTF-8

LazyData true

RoxygenNote 5.0.1

git_url https://git.bioconductor.org/packages/uSORT

git_branch RELEASE_3_19

git_last_commit 9688ccc

git_last_commit_date 2024-04-30

Repository Bioconductor 3.19

Date/Publication 2024-05-21
Contents

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>autoSPIN</td>
<td>3</td>
</tr>
<tr>
<td>clusterGenes1</td>
<td>4</td>
</tr>
<tr>
<td>compareModels1</td>
<td>5</td>
</tr>
<tr>
<td>differentialGeneTest1</td>
<td>5</td>
</tr>
<tr>
<td>diff_test_helper1</td>
<td>6</td>
</tr>
<tr>
<td>distance.function</td>
<td>7</td>
</tr>
<tr>
<td>driving_force_gene_selection</td>
<td>7</td>
</tr>
<tr>
<td>elbow_detection</td>
<td>8</td>
</tr>
<tr>
<td>EXP_to_CellDataSet</td>
<td>9</td>
</tr>
<tr>
<td>fluidigmSC_analyzeGeneDetection</td>
<td>9</td>
</tr>
<tr>
<td>fluidigmSC_identifyExpOutliers</td>
<td>10</td>
</tr>
<tr>
<td>fluidigmSC_isElementIgnoreCase</td>
<td>11</td>
</tr>
<tr>
<td>fluidigmSC_readLinearExp</td>
<td>12</td>
</tr>
<tr>
<td>fluidigmSC_removeGenesByLinearExpForAllType</td>
<td>12</td>
</tr>
<tr>
<td>fluidigmSC_removeGenesByLinearExpForAllType_log2</td>
<td>13</td>
</tr>
<tr>
<td>monocle_wrapper</td>
<td>13</td>
</tr>
<tr>
<td>neighborhood_sorting</td>
<td>14</td>
</tr>
<tr>
<td>neighborhood_sortingcost</td>
<td>15</td>
</tr>
<tr>
<td>neighborhood_sorting_wrapper</td>
<td>15</td>
</tr>
<tr>
<td>pca_gene_selection</td>
<td>16</td>
</tr>
<tr>
<td>Rwanderlust</td>
<td>17</td>
</tr>
<tr>
<td>scattering_quantification_per_gene</td>
<td>18</td>
</tr>
<tr>
<td>sorting_method_parameter_GUI</td>
<td>18</td>
</tr>
<tr>
<td>SPIN</td>
<td>19</td>
</tr>
<tr>
<td>STS_sorting</td>
<td>20</td>
</tr>
<tr>
<td>STS_sortingcost</td>
<td>20</td>
</tr>
<tr>
<td>STS_sorting_wrapper</td>
<td>21</td>
</tr>
<tr>
<td>summed_local_variance</td>
<td>22</td>
</tr>
<tr>
<td>summed_local_variance_cyclical</td>
<td>22</td>
</tr>
<tr>
<td>summed_local_variance_linear</td>
<td>23</td>
</tr>
<tr>
<td>sWanderlust</td>
<td>23</td>
</tr>
<tr>
<td>trajectory_landmarks</td>
<td>24</td>
</tr>
<tr>
<td>uSORT</td>
<td>25</td>
</tr>
<tr>
<td>uSORT_GUI</td>
<td>28</td>
</tr>
<tr>
<td>uSORT_parameters_GUI</td>
<td>28</td>
</tr>
<tr>
<td>uSORT_preProcess</td>
<td>29</td>
</tr>
<tr>
<td>uSORT_sorting_wrapper</td>
<td>30</td>
</tr>
<tr>
<td>uSORT_write_results</td>
<td>31</td>
</tr>
<tr>
<td>variability_per_gene</td>
<td>32</td>
</tr>
<tr>
<td>wanderlust_wrapper</td>
<td>32</td>
</tr>
<tr>
<td>Index</td>
<td>34</td>
</tr>
</tbody>
</table>
autoSPIN

A wrapper function for autoSPIN sorting method

Description

A wrapper function for autoSPIN method which implements optimized local refinement using the selected SPIN sorting method, i.e. STS or Neighborhood.

Usage

```r
autoSPIN(data, data_type = c("linear", "cyclical"),
         sorting_method = c("STS", "neighborhood"), alpha = 0.2, sigma_width = 1,
         no_randomization = 20, window_perc_range = c(0.1, 0.9),
         window_size_incre_perct = 0.05)
```

Arguments

- `data`: An log2 transformed expression matrix containing n-rows of cells and m-cols of genes.
- `data_type`: A character string indicating the type of progression, i.e. 'linear' (strictly linear) or 'cyclical' (cyclically linear).
- `sorting_method`: A character string indicating the choice of SPIN sorting method, i.e. 'STS' (Side-to-Side) or 'Neighborhood'.
- `alpha`: A fraction value denoting the size of locality used for calculating the summed local variance.
- `sigma_width`: An integer number denoting the degree of spread of the gaussian distribution which is used for computing weight matrix for Neighborhood sorting method.
- `no_randomization`: An integer number indicating the number of repeated sorting, each of which uses randomly selected initial cell position.
- `window_perc_range`: A fraction value indicating the range of window size to be examined during local refinement.
- `window_size_incre_perct`: A fraction value indicating the step size at each iteration for incrementing window size.

Value

A data frame containing single column of ordered sample IDs.
Examples

```r
set.seed(15)
da <- iris[sample(150, 150, replace = FALSE), ]
rownames(da) <- paste0('spl_', seq(1, nrow(da)))
d <- da[, 1:4]
dl <- da[, 5, drop=FALSE]
res <- autoSPIN(data = d)
dl <- dl[match(res$SampleID, rownames(dl)), ]
annot <- data.frame(id = seq(1, nrow(res)), label=dl, stringsAsFactors = FALSE)
#ggplot(annot, aes(x=id, y=id, colour = label)) + geom_point() + theme_bw()
```

clusterGenes1
A modified monocle’s function

Description

A modified monocle’s function for 'compareModels' which identifies and removes genes whose reduced_models is better than full_models in term of likelihood.

Usage

```r
clusterGenes1(expr_matrix, krange, method = function(x) { as.dist((1 - cor(t(x)))/2) }, ...)
```

Arguments

- `expr_matrix`
 - Expression matrix.
- `krange`
 - krange.
- `method`
 - method function.
- `...`
 - Other parameters.

Value

- `test_res` a dataframe containing status of modeling and adjusted p-value

Author(s)

MaiChan Lau

compareModels1

A modified monocle's function

Description

A modified monocle’s function for ‘compareModels’ which identifies and removes genes whose reduced_models is better than full_models in term of likelihood

Usage

```r
compareModels1(full_models, reduced_models)
```

Arguments

- `full_models`: a Monocle’s vgam full model
- `reduced_models`: a Monocle’s vgam reduced/ null model

Value

test_res a dataframe containing status of modeling and adjusted p-value

Author(s)

MaiChan Lau

differentialGeneTest1

differential gene test

Description

modified from FludigmSC package

Usage

```r
differentialGeneTest1(cds,
  fullModelFormulaStr = "expression~sm.ns(Pseudotime, df=3)",
  reducedModelFormulaStr = "expression~1", cores = 1)
```

Arguments

- `cds`: Input object.
- `fullModelFormulaStr`: Full model formula.
- `reducedModelFormulaStr`: Reduced model formula.
- `cores`: Number of cores will be used.
diff_test_helper1

diff_test_helper1
A modified monocle’s helper function

Description

A modified monocle’s function for 'diff_test_helper1' which includes more attempts on finding models and also compute max. magnitude change in expression values predicted by GLM model

Usage

diff_test_helper1(x, fullModelFormulaStr, reducedModelFormulaStr,
expressionFamily, lowerDetectionLimit = 0.1, type_ordering = "linear")

Arguments

- **x**
an expression data
- **fullModelFormulaStr**
a Monocle’s model structure
- **reducedModelFormulaStr**
a Monocle’s model structure
- **expressionFamily**
a Monocle’s family character
- **lowerDetectionLimit**
a threshold value
- **type_ordering**
a character indicating the type of underlying cell progression, i.e. linear or circular

Value

test_res a dataframe containing status of modeling and adjusted p-value

Author(s)

MaiChan Lau
distance.function

An expression matrix containing n-rows of cells and m-cols of genes.

Usage

distance.function(expr, method = c("Euclidean", "Correlation", "eJaccard", "none"))

Arguments

- **expr**: An expression matrix containing n-rows of cells and m-cols of genes.
- **method**: A character string indicating the distance function.

Value

A matrix containing n-by-n cell distance.

driving_force_gene_selection

A feature/ gene selection function

Description

A feature/ gene selection function (1) removes sparsely expressed genes, (2) identifies differentially expressed genes based on preliminary cell ordering, (3) removes highly dispersed genes from the identified DEGs, (4) further picks genes which are expected to have large expression difference on the 2 extreme ends of preliminary cell ordering.

Usage

driving_force_gene_selection(cds, scattering.cutoff.prob = 0.75, driving.force.cutoff = NULL, qval_cutoff = 0.05, min_expr = 0.1, data_type = c("linear", "cyclical"), nCores = 1)
elbow_detection

Arguments

- **cds**: a Monocle's CellDataSet object
- **scattering.cutoff.prob**: probability used for removing largely dispersed genes
- **driving.force.cutoff**: a value used for removing genes which do not change much along cell progress along cell progress path
- **qval_cutoff**: a user-defined adjusted p-value below which genes are retained
- **min_expr**: the minimum expression value
- **data_type**: a character indicating the type of underlying cell progression, i.e. linear or cyclical.
- **nCores**: Number of cores to use.

Value

- **integer**

Author(s)

- MaiChan Lau

Examples

```r
dir <- system.file('extdata', package='uSORT')
file <- list.files(dir, pattern='.txt$', full=TRUE)
#exprs <- uSORT_preProcess(exprs_file = file)
#exp_raw <- t(exprs$exprs_raw)
#exp_trimmed <- t(exprs$exprs_log_trimed)
#cds <- uSORT:::EXP_to_CellDataSet(exp_trimmed, exp_raw)
#driver_genes <- driving_force_gene_selection(cds = cds)
```

elbow_detection

A elbow detection function

Description

An elbow detection function detects the elbow/knee of a given vector of values. Values will be sorted descendingly before detection, and the ID of those values above the elbow will be returned.

Usage

```
elbow_detection(scores, if_plot = FALSE)
```

Arguments

- **scores**: A vector of numeric scores.
- **if_plot**: Boolean determine if plot the results.
Value

a vector of selected elements IDs

Examples

scores <- c(10, 9, 8, 6, 3, 2, 1, 0.1)
elbow_detection(scores, if_plot = TRUE)

EXP_to_CellDataSet

A function for constructing a Monocle’s CellDataSet object from an expression matrix

Description

A function for constructing a Monocle’s CellDataSet object from an expression matrix

Usage

EXP_to_CellDataSet(log2_exp = NULL, expression_data_raw = NULL, lod = 1)

Arguments

log2_exp An log2 transformed expression matrix containing n-rows of cells and m-cols of genes.
expression_data_raw A data frame containing raw expression values, with rownames of cells and colnames of genes.
lod A value of limit of detection in the unit of TPM/CPM/RPKM.

Value

A CellDataSet object.

fluidigmSC_analyzeGeneDetection

A gene detection function

Description

A gene detection function computes the fraction of genes detected in each cell, reproduced from FluidigmSC package.

Usage

fluidigmSC_analyzeGeneDetection(expression_data, threshold = 1)
Arguments

expression_data
A data frame containing raw expression values, with rownames of genes and colnames of cells.

threshold
A limit of detection in the unit of TPM/CPM/RPMK.

Value
A data frame containing a column of number of genes detected, and a column of the corresponding percentage of gene detection, rownames of cells.

Description
An outlier detection function identifies cells with median expression below that of the bulk, reproduced from FluidigmSC package.

Usage

fluidigmSC_identifyExpOutliers(log2ex_data, expression_data_raw, threshold, step, fine_step, num_fine_test, pct_goodsample_threshold = 0.5, quantile_threshold = 0.95, low_quantile_threshold = 0.25, min_gene_number = 25, lod)

Arguments

log2ex_data
A data frame containing log2 transformed expression values, with rownames of genes and colnames of cells.

expression_data_raw
A data frame containing raw expression values, with rownames of genes and colnames of cells.

threshold
A value in raw expression used as the starting threshold value.

step
An integer number indicating the increment of threshold value at each iteration.

fine_step
An integer number indicating the increment of threshold value at each iteration, at the refining stage.

num_fine_test
An integer number indicating the number of iteration of the refining stage.

pct_goodsample_threshold
A fraction value indicating the minimum percentage of samples on which the representative genes are detectable.

quantile_threshold
A probability of gene detection rate above which a sample is considered as good sample.
fluidigmSC_isElementIgnoreCase

```r
A gene finding function
```

Description

A gene finding function looking for genes in the target set `x` from the source set `y`, reproduced from FluidigmSC package.

Usage

```r
fluidigmSC_isElementIgnoreCase(x, y, ignore_case = TRUE)
```

Arguments

- `x` A vector of characters representing gene names (target genes).
- `y` A vector of characters representing gene names (source genes).
- `ignore_case` Boolean, if TRUE ignores letter case.

Value

A vector of characters representing gene names.

low_quantile_threshold

A probability of average gene expression value below which a sample is taken as an outlier.

min_gene_number

An integer indicating the minimum size of representative genes.

lod

A value of limit of detection in the unit of TPM/CPM/RPKM.

Value

A vector of character stating the IDs of outlier cells.
fluidigmSC_readLinearExp

An expression reading function

Description

An expression reading function which imports expression data from .txt file, and then computes log2 transformed data, reproduced from FluidigmSC package.

Usage

```r
fluidigmSC_readLinearExp(exp_file = TRUE, lod = 1)
```

Arguments

- `exp_file` Input file name in txt format, with rownames of cells and colnames of genes.
- `lod` A value of limit of detection in the unit of TPM/CPM/RPMK. It will be used as the starting value for outlier cell detection and the basis for removing scarce genes.

Value

A list containing `expression_data_raw` (data frame), `log2ex_data` (data frame), and `log2ex_avg_data` (data frame).

fluidigmSC_removeGenesByLinearExpForAllType

A gene trimming function

Description

A gene trimming function removes genes whose average expression value is below the log2(threshold), and also present in at least 10

Usage

```r
fluidigmSC_removeGenesByLinearExpForAllType(log2ex_data, log2ex_avg_data, threshold)
```

Arguments

- `log2ex_data` A data frame containing log2 tranformed expression values, with rownames of genes and colnames of cells.
- `log2ex_avg_data` A data frame containing log2 tranformed average expression values for individual gene.
- `threshold` A limit of detection in the unit of TPM/CPM/RPMK.
fluidigmSC_removeGenesByLinearExpForAllType_log2

A gene trimming function

Description
A gene trimming function removes genes whose average expression value is below the log2(threshold); reproduced from FluidigmSC package.

Usage
fluidigmSC_removeGenesByLinearExpForAllType_log2(log2ex_data, threshold)

Arguments
log2ex_data A data frame containing log2 transformed expression values, with rownames of genes and colnames of cells.
threshold A limit of detection in the unit of TPM/CPM/RPMK.

Value
A vector of character containing gene names of those passed the filtering.

monocle_wrapper

A wrapper function for Monocle sorting method

Description
A wrapper function for Monocle sorting method

Usage
monocle_wrapper(log2_exp, expression_data_raw, lod = 1)

Arguments
log2_exp An log2 transformed expression matrix containing n-rows of cells and m-cols of genes.
expression_data_raw A data frame containing raw expression values, with rownames of cells and colnames of genes.
lod A value of limit of detection in the unit of TPM/CPM/RPKM.
neighborhood_sorting

A sorting function using the Neighborhood algorithm

Description

A sorting function using the Neighborhood algorithm

Usage

neighborhood_sorting(d, weights_mat = NULL, max_iter = 100)

Arguments

d A matrix containing n-by-n cell distance.
weights_mat A weight matrix of size n-by-n.
max_iter An integer number indicating the maximum number of iteration if sorting does not converge.

Value

A list containing ordering(a vector of re-ordered sequence) and cost(a numeric value).
neighborhood_sortingcost

A cost computation function for Neighborhood algorithm

Description

A cost computation function for Neighborhood algorithm

Usage

neighborhood_sortingcost(expr = NULL, sigma_width = 1,
method = c("Euclidean", "Correlation", "eJaccard", "none"))

Arguments

expr An expression matrix containing n-rows of cells and m-cols of genes.
sigma_width An integer number determining the degree of spread of the gaussian distribution which is used for computing weight matrix for Neighborhood sorting method.
method A character string indicating the distance function.

Value

A numeric value of sorting cost.

Examples

set.seed(15)
da <- iris[sample(150, 150, replace = FALSE),]
d <- da[,1:4]
randomOrdering_cost <- neighborhood_sortingcost(d, method='Euclidean')
randomOrdering_cost
da <- iris
d <- da[,1:4]
properOrdering_cost <- neighborhood_sortingcost(d, method='Euclidean')
properOrdering_cost

neighborhood_sorting_wrapper

A wrapper function for Neighborhood sorting.

Description

A wrapper function for Neighborhood sorting as proposed in [Tsafrir et al. 2005].
pca_gene_selection

Usage

neighborhood_sorting_wrapper(expr, sigma_width = 1, no_randomization = 10)

Arguments

expr An expression matrix containing n-rows of cells and m-cols of genes.
sigma_width An integer number determining the degree of spread of the gaussian distribution
 which is used for computing weight matrix for Neighborhood sorting method.
no_randomization An integer number indicating the number of repeated sorting, each of which
 uses a randomly selected initial cell ordering.

Value

A list containing permutated.expr(data frame) and best.cost(a numeric value).

pca_gene_selection

Gene selection using PCA technique

Description

Gene selection using PCA technique

Usage

pca_gene_selection(data)

Arguments

data A matrix of data.frame with row.name of cells, and col.name of genes

Value

a vector of the names of selected genes.

Examples

dir <- system.file('extdata', package='uSORT')
file <- list.files(dir, pattern='.txt$', full=TRUE)
exprs <- uSORT_preProcess(exprs_file = file)
exp_trimmed <- t(exprs$exprs_log_trimed)
PCA_selected_genes <- pca_gene_selection(exp_trimmed)
Rwanderlust
R implementation of wanderlust

Description

R implementation of wanderlust

Usage

```r
Rwanderlust(data, s, l = 15, k = 15, num_graphs = 1, num_waypoints = 250, waypoints_seed = 123, flock_waypoints = 2, metric = "euclidean", voting_scheme = "exponential", band_sample = FALSE, partial_order = NULL, verbose = TRUE)
```

Arguments

- **data**
 Input data matrix.
- **s**
 Starting point ID.
- **l**
 l nearest neighbours.
- **k**
 k nearest neighbours, k < l.
- **num_graphs**
 Number of repeated graphs.
- **num_waypoints**
 Number of waypoints to guide the trajectory detection.
- **waypoints_seed**
 The seed for reproducing the results.
- **flock_waypoints**
 The number of times for flocking the waypoints, default is 2.
- **metric**
 Distance calculation metric for nearest neighbour detection.
- **voting_scheme**
 The scheme of voting.
- **band_sample**
 Boolean, if band the sample
- **partial_order**
 default NULL
- **verbose**
 Boolean, if print the details

Value

a list containing Trajectory, Order, Waypoints

Author(s)

Hao Chen
Examples

```r
set.seed(15)
shuffled_iris <- iris[sample(150, 150, replace = FALSE), ]
data <- shuffled_iris[,1:4]
data_label <- shuffled_iris[,5]
wishbone <- Rwanderlust(data = data, num_waypoints = 100, waypoints_seed = 2)
pd1 <- data.frame(id = wishbone$Trajectory, label=data_label, stringsAsFactors = FALSE)
pd2 <- data.frame(id = seq_along(row.names(data)), label=data_label, stringsAsFactors = FALSE)
#ggplot(pd1, aes(x=id, y=id, colour = label)) + geom_point() + theme_bw()
#ggplot(pd2, aes(x=id, y=id, colour = label)) + geom_point() + theme_bw()
```

scattering_quantification_per_gene

An expression scattering measurement function

Description

An expression scattering measurement function computes the level of scattering for individual genes along the cell ordering

Usage

```r
scattering_quantification_per_gene(CDS = NULL)
```

Arguments

- **CDS**

a Monocle’s CellDataSet object

Value

integer

Author(s)

MaiChan Lau

sorting_method_parameter_GUI

GUI for sorting method parameters

Description

The parameters appeared on GUI are based on input method, this function is called by `uSORT_parameters_GUI`. For internal use only.
Usage

```
spinning_method_parameter_GUI(method = c("autoSPIN", "sWanderlust", "monocle",
"Wanderlust", "SPIN", "none"))
```

Arguments

method method name.

Value

a list of parameters.

Author(s)

Hao Chen

SPIN
A wrapper function for SPIN sorting method

Description

A wrapper function for SPIN method provides a R version of SPIN [Tsafrir et al. 2005].

Usage

```
SPIN(data, sorting_method = c("STS", "neighborhood"), sigma_width = 1)
```

Arguments

- **data**: An log2 transformed expression matrix containing n-rows of cells and m-cols of genes.
- **sorting_method**: A character string indicating the choice of sorting method, i.e. 'STS' (Side-to-Side) or 'Neighborhood'.
- **sigma_width**: An integer number determining the degree of spread of the gaussian distribution which is used for computing weight matrix for Neighborhood sorting method.

Value

A data frame containing single column of ordered sample IDs.
Examples

```
set.seed(15)
da <- iris[sample(150, 150, replace = FALSE), ]
rownames(da) <- paste0('spl_',seq(1,nrow(da)))
d <- da[,1:4]
dl <- da[,5,drop=FALSE]
res <- SPIN(data = d)
dl <- dl[match(res$SampleID,rownames(dl)),]
annot <- data.frame(id = seq(1,nrow(res)), label=dl, stringsAsFactors = FALSE)
#ggplot(annot, aes(x=id, y=id, colour = label)) + geom_point() + theme_bw()
```
Description

A wrapper function for Side-to-Side (STS) sorting as proposed in [Tsafrir et al. 2005].

Usage

```r
STS_sorting_wrapper(expr, no_randomization = 10)
```

Arguments

- **expr**: An expression matrix containing n-rows of cells and m-cols of genes.
- **method**: A character string indicating the distance function.
- **no_randomization**: An integer number indicating the number of repeated sorting, each of which uses a randomly selected initial cell ordering.

Value

A list containing `permutated.expr` (data frame) and `best.cost` (a numeric value).
summed_local_variance A summed local variance function

Description
A summed local variance function

Usage
`summed_local_variance(expr = NULL, alpha = NULL, data_type = "linear")`

Arguments
- `expr`: An expression matrix containing n-rows of cells and m-cols of genes.
- `alpha`: A fraction value indicating the size of window for local variance measurement.
- `data_type`: A character string indicating the type of progression, i.e. 'linear' (strictly linear) or 'cyclical' (cyclically linear).

Value
A numeric value of the summed local variance.

summed_local_variance_cyclical A summed local variance function for cyclical linear data type

Description
A summed local variance function for cyclical linear data type

Usage
`summed_local_variance_cyclical(d, alpha = 0.3)`

Arguments
- `d`: A cell-to-cell distance matrix.
- `alpha`: A fraction value indicating the size of window for local variance measurement.

Value
A numeric value of the summed local variance.
summed_local_variance_linear

A summed local variance function for strictly linear data type

Description
A summed local variance function for strictly linear data type

Usage
summed_local_variance_linear(d, alpha = 0.3)

Arguments
- d: A cell-to-cell distance matrix.
- alpha: A fraction value indicating the size of window for local variance measurement.

Value
A numeric value of the summed local variance.

sWanderlust

Description
autoSPIN guided wanderlust. Specifically, we use autoSPIN to help find the starting point for wanderlust.

Usage
sWanderlust(data, data_type = c("linear", "cyclical"),
SPIN_option = c("STS", "neighborhood"), alpha = 0.2, sigma_width = 1,
diffusionmap_components = 4, l = 15, k = 15, num_waypoints = 150,
flock_waypoints = 2, waypoints_seed = 2711)

Arguments
- data: data Input data matrix.
- data_type: The data type which guides the autoSPIN sorting, including linear, cyclical.
- SPIN_option: SPIN contains two options including STS(default), neighborhood.
- alpha: alpha parameter for autoSPIN, default is 0.2.
- sigma_width: Sigma width parameter for SPIN, default is 1.
trajectory_landmarks

Determining initial trajectory and landmarks

Description

determining initial trajectory and landmarks

Usage

```r
trajectory_landmarks(knn, data, s, partial_order = NULL, waypoints = 250, waypoints_seed = 123, metric = "euclidean", flock_waypoints = 2, band_sample = FALSE)
```

Arguments

- **knn**: A sparse matrix of knn.
- **data**: data.
- **s**: The ID of starting point.
- **partial_order**: A vector of IDs specified as recommended waypoints, NULL to ignore.
waypoints Either the number of waypoints, or specify the waypoint IDs.
waypoints_seed Random sampling seed, for reproducible results.
metric Distance calculation metric for nearest neighbour detection.
flock_waypoints Iteration of using nearest points around waypoint to adjust its position.
band_sample if give more chance to nearest neighbours of starting point in randomly waypoints selection.

Value

a list

Description

This package is designed to uncover the intrinsic cell progression path from single-cell RNA-seq data.

The main function of uSORT-package which provides a workflow of sorting scRNA-seq data.

Usage

```r
uSORT(exprs_file, log_transform = TRUE, remove_outliers = TRUE,
preliminary_sorting_method = c("autoSPIN", "sWanderlust", "monocle",
"Wanderlust", "SPIN", "none"), refine_sorting_method = c("autoSPIN",
"sWanderlust", "monocle", "Wanderlust", "SPIN", "none"),
project_name = "uSORT", result_directory = getwd(), nCores = 1,
save_results = TRUE, reproduce_seed = 1234,
scattering_cutoff_prob = 0.75, driving_force_cutoff = NULL,
qval_cutoff_featureSelection = 0.05, pre_data_type = c("linear",
"cyclical"), pre_SPIN_option = c("STS", "neighborhood"),
pre_SPIN_sigma_width = 1, pre_autoSPIN_alpha = 0.2,
pre_autoSPIN_randomization = 20, pre_wanderlust_start_cell = NULL,
pre_wanderlust_dfmap_components = 4, pre_wanderlust_l = 15,
pre_wanderlust_num_waypoints = 150, pre_wanderlust_waypoints_seed = 2711,
pre_wanderlust_flock_waypoints = 2, ref_data_type = c("linear",
"cyclical"), ref_SPIN_option = c("STS", "neighborhood"),
ref_SPIN_sigma_width = 1, ref_autoSPIN_alpha = 0.2,
ref_autoSPIN_randomization = 20, ref_wanderlust_start_cell = NULL,
ref_wanderlust_dfmap_components = 4, ref_wanderlust_l = 15,
ref_wanderlust_num_waypoints = 150, ref_wanderlust_flock_waypoints = 2,
ref_wanderlust_waypoints_seed = 2711)
```
Arguments

exprs_file Input file name in txt format, with rownames of cells and colnames of genes.
log_transform Boolean, if log transform the data.
remove_outliers Boolean, if remove the outliers.
preliminary_sorting_method Method name for preliminary sorting, including autoSPIN, sWanderlust, monocle, Wanderlust, SPIN, or none.
refine_sorting_method Method name for refined sorting, including autoSPIN, sWanderlust, monocle, Wanderlust, SPIN, or none.
project_name A character name as the prefix of the saved result file.
result_directory The directory indicating where to save the results.
nCores Number of cores that will be employed for drive gene selection (parallel computing), default is 1.
save_results Boolean determining if save the results.
reproduce_seed A seed used for reproducing the result.
scattering_cutoff_prob Scattering cutoff value probability for gene selection, default 0.75.
driving_force_cutoff Driving force cutoff value for gene selection, default NULL(automatically).
qval_cutoff_featureSelection Q value cutoff for gene selection, default 0.05.
pre_data_type The data type which guides the autoSPIN sorting, including linear, cyclical.
pre_SPIN_option SPIN contains two options including STS(default), neighborhood.
pre_SPIN_sigma_width Sigma width parameter for SPIN, default is 1.
pre_autoSPIN_alpha alpha parameter for autoSPIN, default is 0.2.
pre_autoSPIN_randomization Number of randomizations for autoSPIN, default is 20.
pre_wanderlust_start_cell The name of starting cell for wanderlust, default is the first cell from the data.
pre_wanderlust_dfmap_components Number of components from diffusion map used for wanderlust analysis, default is 4.
pre_wanderlust_l Number of nearest neighbors used for wanderlust, default is 15.
pre_wanderlust_num_waypoints Number of waypoint used for wanderlust, default is 150.
pre_wanderlust_waypoints_seed The seed for reproducing the wanderlust results.
pre_wanderlust_flock_waypoints
 The number of times for flocking the waypoints, default is 2.
ref_data_type
 The data type which guides the autoSPIN sorting, including linear, cyclical.
ref_SPIN_option
 SPIN contains two options including STS(default), neighborhood.
ref_SPIN_sigma_width
 Sigma width parameter for SPIN, default is 1.
ref_autoSPIN_alpha
 alpha parameter for autoSPIN, default is 0.2.
ref_autoSPIN_randomization
 Number of randomizations for autoSPIN, default is 20.
ref_wanderlust_start_cell
 The name of starting cell for wanderlust, default is the first cell from the data.
ref_wanderlust_dfmap_components
 Number of components from diffusion map used for wanderlust analysis, default is 4.
ref_wanderlust_l
 Number of nearest neighbors used for wanderlust, default is 15.
ref_wanderlust_num_waypoints
 Number of waypoint used for wanderlust, default is 150
ref_wanderlust_flock_waypoints
 The number of times for flocking the waypoints, default is 2.
ref_wanderlust_waypoints_seed
 The seed for reproducing the wanderlust results.

Details

This package incorporates data pre-processing, preliminary PCA gene selection, preliminary cell ordering, feature selection, refined cell ordering, and post-analysis interpretation and visualization. The uSORT workflow can be implemented through calling the main function or the GUI. uSORT.

Value

results object (a list)

See Also

uSORT-package, uSORT_GUI

Examples

dir <- system.file('extdata', package='uSORT')
file <- list.files(dir, pattern='.txt$', full=TRUE)
#remove the # symbol of the following codes to test
#uSORT_results <- uSORT(exprs_file = file, project_name = "test",
preliminary_sorting_method = "autoSPIN",
refine_sorting_method = "sWanderlust",
save_results = FALSE)
uSORT_GUI

The user friendly GUI for uSORT-package

Description

This GUI provides an easy way for applying the uSORT package.

Usage

```r
uSORT_GUI()
```

Value

the GUI for uSORT-package

Author(s)

Hao Chen

References

http://JinmiaoChenLab.github.io/uSORT/

See Also

uSORT-package, uSORT

Examples

```r
interactive()
# if(interactive()) uSORT_GUI()  # remove the hash symbol to run
```

uSORT_parameters_GUI

The GUI for inputting parameters for uSORT

Description

This is a function for generating the GUI for uSORT, it’s called by `uSORT_GUI`. For internal use only.

Usage

```r
uSORT_parameters_GUI()
```

Value

a list of parameters.
Author(s)

Hao Chen

uSORT_preProcess A data loading and pre-processing function

Description

A data loading and pre-processing function which firstly identifies outlier cells and scarcely ex-
pressed genes.

Usage

uSORT_preProcess(exprs_file, log_transform = TRUE, remove_outliers = TRUE,
lod = 1)

Arguments

exprs_file Input file name in txt format, with rownames of cells and colnames of genes.
log_transform Boolean, if TRUE log transform the data.
remove_outliers Boolean, if TRUE remove the outliers.
lod A value of limit of detection in the unit of TPM/CPM/RPKM. It will be used
as the starting value for outlier cell detection and the basis for removing scarce genes.

Value

A list containing exprs_raw(data frame) and exprs_log_trimed(data.frame).

Examples

dir <- system.file(‘extdata’, package=’uSORT’)
file <- list.files(dir, pattern=’.txt$’, full=TRUE)
exprs <- uSORT_preProcess(exprs_file = file)
Description

Sorting methods include autoSPIN, sWanderlust, monocle, Wanderlust, SPIN. Any of the sorting method can be called directly using this function.

Usage

```r
uSORT_sorting_wrapper(data, data_raw, method = c("autoSPIN", "sWanderlust", "monocle", "Wanderlust", "SPIN", "none"), data_type = c("linear", "cyclical"), SPIN_option = c("STS", "neighborhood"), SPIN_sigma_width = 1, autoSPIN_alpha = 0.2, autoSPIN_randomization = 20, wanderlust_start_cell = NULL, wanderlust_dfmap_components = 4, wanderlust_l = 15, wanderlust_num_waypoints = 150, wanderlust_waypoints_seed = 2711, wanderlust_flock_waypoints = 2)
```

Arguments

data: Input preprocessed data matrix with row.name of cells and col.name of genes.
data_raw: Input raw data matrix with row.name of cells and col.name of genes, for monocle method.
method: The name of the sorting method to use, including autoSPIN, sWanderlust, monocle, Wanderlust, SPIN and none.
data_type: The type of the data, either linear or cyclical.
SPIN_option: The running option of SPIN, STS or neighborhood.
SPIN_sigma_width: Sigma width for SPIN.
autoSPIN_alpha: alpha for autoSPIN.
autoSPIN_randomization: Number of randomization for autoSPIN.
wanderlust_start_cell: The id of the starting cell for wanderlust.
wanderlust_dfmap_components: The number of components from diffusionmap for wanderlust.
wanderlust_l: The number of nearest neighbors used for wanderlust.
wanderlust_num_waypoints: The number of waypoints for wanderlust.
wanderlust_waypoints_seed: The seed for reproducible analysis.
wanderlust_flock_waypoints: The number of flock times for wanderlust.
Value

return the order of sorting results.

Examples

dir <- system.file('extdata', package='uSORT')
file <- list.files(dir, pattern='*.txt$', full=TRUE)
exprs <- uSORT_preProcess(exprs_file = file)
exp_trimmed <- t(exprs$exprs_log_trimed)
PCA_selected_genes <- pca_gene_selection(exp_trimmed)
exp_PCA_genes <- exp_trimmed[, PCA_selected_genes]
#order <- uSORT_sorting_wrapper(data = exp_PCA_genes, method = 'autoSPIN')

Description

Save result object into a RData file. Save cell to cell distance heatmap for both preliminary and refined results. Create plot of driver gene profiles on final ordering using heatmap.

Usage

uSORT_write_results(uSORT_results, project_name, result_directory)

Arguments

uSORT_results Result object from uSort function, a list.
project_name A prefix for the saving files.
result_directory The path where to save the results.

Value

save the results.

Examples

dir <- system.file('extdata', package='uSORT')
file <- list.files(dir, pattern='*.txt$', full=TRUE)
#remove the # symbol of the following codes to test
#uSORT_results <- uSORT(exprs_file = file,
project_name = 'test',
preliminary_sorting_method = 'autoSPIN',
refine_sorting_method = 'sWanderlust',
save_results = FALSE)
#uSORT_write_results(uSORT_results,
project_name = 'test',
result_directory = getwd())
variability_per_gene A utility function for scattering_quantification_per_gene

Description
A utility function for scattering_quantification_per_gene which computes the degree of scattering for single gene, whereby the value is computed by summing over the local values of smaller local windows.

Usage
variability_per_gene(logExp = NULL, min_expr = 0.1,
window_size_perct = 0.1, nonZeroExpr_perct = 0.1)

Arguments

logExp a log-scale expression vector of a gene
min_expr a minimum expression value
window_size_perct a window size (in dispersion level
nonZeroExpr_perct a minimum amount of cells (in expression, otherwise the associated window will be assigned to 0 disperson value

Value
integer

Author(s)
MaiChan Lau

wanderlust_wrapper a wrapper of wanderlust for sWanderlust

Description
a wrapper of wanderlust for sWanderlust

Usage
wanderlust_wrapper(data, s, diffusionmap_components = 4, l = 15, k = 15,
num_graphs = 1, num_waypoints = 150, waypoints_seed = 123,
flock_waypoints = 2)
Arguments

data Input data matrix.
s The ID of starting point.
diffusionmap_components
 Number of components from diffusion map used for wanderlust analysis, default is 4.
l Number of nearest neighbors, default is 15.
k Number of nearest neighbors for repeating graphs, default is 15, should be less than or equal to l.
num_graphs Number of repeated graphs.
num_waypoints Number of waypoint used for wanderlust, default is 150.
waypoints_seed The seed for reproducing the results.
flock_waypoints The number of times for flocking the waypoints, default is 2.

Value

sorted order.

Author(s)

Hao Chen
Index

autoSPIN, 3
clusterGenes1, 4
cmpareModels1, 5
diff_test_helper1, 6
differentialGeneTest1, 5
distance.function, 7
driving_force_gene_selection, 7
e1bow_detection, 8
EXP_to_CellDataSet, 9
fluidigmSC_analyzeGeneDetection, 9
fluidigmSC_identifyExpOutliers, 10
fluidigmSC_isElementIgnoreCase, 11
fluidigmSC_readLinearExp, 12
fluidigmSC_removeGenesByLinearExpForAllType,
12
fluidigmSC_removeGenesByLinearExpForAllType_log2,
13
monocle_wrapper, 13
neighborhood_sorting, 14
neighborhood_sorting_wrapper, 15
neighborhood_sortingcost, 15
pca_gene_selection, 16
Rwanderlust, 17
scattering_quantification_per_gene, 18
sorting_method_parameter_GUI, 18
SPIN, 19
STS_sorting, 20
STS_sorting_wrapper, 21
STS_sortingcost, 20
summed_local_variance, 22
summed_local_variance_cyclical, 22
summed_local_variance_linear, 23
sWanderlust, 23
trajectory_landmarks, 24
uSORT, 25, 27, 28
uSORT-package (uSORT), 25
uSORT_GUI, 27, 28, 28
uSORT_parameters_GUI, 18, 28
uSORT_preProcess, 29
uSORT_sorting_wrapper, 30
uSORT_write_results, 31
variability_per_gene, 32
wanderlust_wrapper, 32