asNNGraph

Maintainer Lyla Atta <lylaatta@jhmi.edu>

R topics documented:

asNNGraph .. 2
buildVeloviz .. 3
graphViz ... 5
normalizeDepth ... 7
normalizeVariance .. 7
pancreas ... 9
plotEmbedding .. 9
plotVeloviz ... 11
projectedNeighbors ... 12
reduceDimensions ... 13
vel ... 14
veloviz ... 15

Index 16

asNNGraph Function to produce idx and dist representation of a VeloViz graph

Description

Function to produce idx and dist representation of a VeloViz graph

Usage

asNNGraph(vig)

Arguments

vig output of buildVeloviz

Value

idx numVertices x numNeighbors matrix, where each row i contains indices of vertex i’s neighbors
dist numVertices x numNeighbors matrix, where each row i contains distances from vertex i to its neighbors
Examples

data(vel)
curr <- vel$current
proj <- vel$projected

vv <- buildVeloviz(curr = curr, proj = proj, normalize.depth = TRUE,
use.ods.genes = FALSE, alpha = 0.05, pca = TRUE, nPCs = 3, center = TRUE,
scale = TRUE, k = 10, similarity.threshold = -1, distance.weight = 1,
distance.threshold = 1, weighted = TRUE, verbose = FALSE)
asNNGraph(vv)

Description

Creates VeloViz graph and FDG layout from PC scores of current and projected transcriptional states.

Usage

buildVeloviz(
curr,
proj,
normalize.depth = TRUE,
depth = 1e+06,
use.ods.genes = TRUE,
max.ods.genes = 2000,
alpha = 0.05,
pca = TRUE,
center = TRUE,
scale = TRUE,
nPCs = 10,
k = 10,
similarity.threshold = 0,
distance.weight = 1,
distance.threshold = 1,
weighted = TRUE,
remove.unconnected = TRUE,
verbose = FALSE,
details = FALSE)
Arguments

- **curr**
 - Genes (rows) x cells (columns) matrix of observed current transcriptional state

- **proj**
 - Genes (rows) x cells (columns) matrix of predicted future transcriptional state

- **normalize.depth**
 - Logical to normalize raw counts to counts per million, default = TRUE

- **depth**
 - Depth scaling, default = 1e6 for counts per million (CPM)

- **use.ods.genes**
 - Use only overdispersed genes to create VeloViz graph, default = TRUE

- **max.ods.genes**
 - Number of most highly expressed overdispersed genes to use to create VeloViz graph, default = 2000

- **alpha**
 - Significance threshold for overdispersed genes, default = 0.05

- **pca**
 - Logical to use PC scores to create VeloViz graph, default = TRUE. FALSE = use gene expression to create VeloViz graph

- **center**
 - Logical to mean center gene expression before PCA, default = TRUE

- **scale**
 - Logical to scale gene expression variance before PCA, default = TRUE

- **nPCs**
 - Number of principal components to use to create VeloViz graph, default = 10

- **k**
 - Number of nearest neighbors to assign each cell

- **similarity.threshold**
 - Similarity threshold below which to remove edges, default = -1 i.e. no edges removed

- **distance.weight**
 - Weight of distance component of composite distance, default = 1

- **distance.threshold**
 - Quantile threshold for distance component above which to remove edges, default = 1 i.e. no edges removed

- **weighted**
 - Logical indicating whether to compute VeloViz edges based on composite distance, default = TRUE. FALSE = all edges are of equal weight

- **remove.unconnected**
 - Logical indicating whether to remove cells with no edges in the VeloViz graph from the output embedding, default = TRUE (removed)

- **verbose**
 - Logical for verbosity setting, default = FALSE

- **details**
 - Logical to return detailed data frame or names of genes, default = FALSE

Value

- **graph**
 - Igraph object of VeloViz graph

- **fdg.coords**
 - Cells (rows) x 2 coordinates of force-directed layout of VeloViz graph

- **projectedNeighbors**
 - Output of `projectedNeighbors`

See Also

- `projectedNeighbors`
graphViz

Examples

data(vel)
curr <- vel$current
proj <- vel$projected

buildVeloviz(curr = curr, proj = proj, normalize.depth = TRUE,
use.ods.genes = TRUE, alpha = 0.05, pca = TRUE, nPCs = 20, center = TRUE,
scale = TRUE, k = 5, similarity.threshold = 0.25, distance.weight = 1,
distance.threshold = 0.5, weighted = TRUE, verbose = FALSE)

graphViz

Visualize as velocity informed force directed graph

Description

Visualize as velocity informed force directed graph

Usage

graphViz(
 observed,
 projected,
 k,
 distance_metric = "L2",
 similarity_metric = "cosine",
 distance_weight = 1,
 distance_threshold = 1,
 similarity_threshold = -1,
 weighted = TRUE,
 remove_unconnected = TRUE,
 return_graph = FALSE,
 plot = TRUE,
 cell.colors = NA,
 title = NA
)

Arguments

observed
 PCs (rows) x cells (columns) matrix of observed transcriptional state projected
 into PC space

projected
 PCs (rows) x cells (columns) matrix of projected transcriptional states. Cell
 should be in same order as in observed

k
 Number of nearest neighbors to assign each cell

distance_metric
 Method to compute distance component of composite distance. "L1" or "L2",
 default = "L2"
graphViz

similarity_metric
Method to compute similarity between velocity and cell transition matrices. "cosine" or "pearson", default = "cosine"

distance_weight
Weight of distance component of composite distance, default = 1

distance_threshold
quantile threshold for distance component above which to remove edges, default = 1 i.e. no edges removed

similarity_threshold
similarity threshold below which to remove edges, default = -1 i.e. no edges removed

weighted
if TRUE, assigns edge weights based on composite distance, if FALSE assigns equal weights to all edges, default = TRUE

remove_unconnected
if TRUE, does not plot cells with no edges, default = TRUE

return_graph
if TRUE, returns igraph object graph, force-directed layout coordinates fdg_coords, and projected_neighbors object detailing composite distance values and components, default = FALSE

plot
if TRUE, plots graph and force-directed layout

cell.colors
cell.colors to use for plotting

title
title to use for plot

Value

graph igraph object of VeloViz graph

dfg_coords cells (rows) x 2 coordinates of force-directed layout of VeloViz graph

projectedNeighbors output of projectedNeighbors

See Also

projectedNeighbors

Examples

data(vel)
curr = vel$current
proj = vel$projected

m <- log10(curr+1)
pca <- RSpectra::svds(A = Matrix::t(m), k=3, opts = list(center = FALSE, scale = FALSE, maxitr = 2000, tol = 1e-10))
pca.curr <- Matrix::t(m) %*% pca$v[,1:3]

m <- log10(proj+1)
pca.proj <- Matrix::t(m) %*% pca$v[,1:3]

graphViz(t(pca.curr), t(pca.proj), k=10,
normalizeDepth

Normalize counts to CPM

Description
Normalizes raw counts to counts per million

Usage
normalizeDepth(counts, depthScale = 1e+06, verbose = TRUE)

Arguments
- counts: Read count matrix. The rows correspond to genes, columns correspond to individual cells
- depthScale: Depth scaling. Using a million for CPM (default: 1e6)
- verbose: Boolean for verbosity setting (default: TRUE)

Value
a normalized matrix

Examples
data(vel)
curr <- vel$current
normalizeDepth(curr)

normalizeVariance
Identify overdispersed genes by normalizing counts per million (CPM) gene expression variance relative to transcriptome-wide expectations (Modified from SCDE/PAGODA2 code)

Description
Normalizes gene expression magnitudes to with respect to its ratio to the transcriptome-wide expectation as determined by local regression on expression magnitude
normalizeVariance

Usage

normalizeVariance(
 cpm,
 gam.k = 5,
 alpha = 0.05,
 max.adjusted.variance = 1000,
 min.adjusted.variance = 0.001,
 verbose = TRUE,
 plot = FALSE,
 details = FALSE
)

Arguments

cpm
Counts per million (CPM) matrix. Rows are genes, columns are cells.
gam.k
Generalized additive model parameter; the dimension of the basis used to represent the smooth term (default: 5)
alpha
Significance threshold for overdispersed genes (default: 0.05)
max.adjusted.variance
Ceiling on maximum variance after normalization to prevent infinites (default: 1e3)
min.adjusted.variance
Floor on minimum variance after normalization (default: 1e-3)
verbose
Boolean for verbosity setting (default: TRUE)
plot
Boolean to plot mean variance plots before and after correction
details
Boolean to return detailed data frame or names of genes (default: FALSE)

Value

A list with two items: (1) an adjusted CPM matrix with the same dimensions as the input and (2) a dataframe with the summary statistics for each gene.

Examples

data(vel)
curr <- vel$current

normalizeDepth(curr)
pancreas

<table>
<thead>
<tr>
<th>pancreas</th>
<th>Pancreas scRNA-seq data</th>
</tr>
</thead>
</table>

Description

Pancreatic endocrinogenesis scRNA-seq from Bastidas-Ponce et al., Development 2019 accessed via scVelo package and subsampled to 739 cells.

Usage

```r
pancreas
```

Format

- list of 4 objects:
 - spliced matrix, 7192 genes x 739 cells of spliced counts
 - unspliced matrix, 7192 genes x 739 cells of unspliced counts
 - pcs matrix, 739 x 50 cell scores in 50 PCs
 - clusters factor of cell type annotations from scVelo

Source

https://dev.biologists.org/content/146/12/dev173849.long

plotEmbedding

<table>
<thead>
<tr>
<th>plotEmbedding</th>
<th>Plot 2D embedding From scde/pagoda2/MUDAN</th>
</tr>
</thead>
</table>

Description

Plot 2D embedding From scde/pagoda2/MUDAN

Usage

```r
plotEmbedding(
  emb,
  groups = NULL,
  colors = NULL,
  cex = 0.6,
  alpha = 0.4,
  gradientPalette = NULL,
  zlim = NULL,
  s = 1,
  v = 0.8,
  min.group.size = 1,
)```
show.legend = FALSE,
mark.clusters = FALSE,
mark.cluster.cex = 2,
shuffle.colors = FALSE,
legend.x = "topright",
gradient.range.quantile = 0.95,
verbose = TRUE,
unclassified.cell.color = "gray70",
group.level.colors = NULL,
...)

Arguments

emb dataframe with x and y coordinates
groups factor annotations for rows on emb for visualizing cluster annotations
colors color or numeric values for rows on emb for visualizing gene expression
cex point size
alpha point opacity
gradientPalette palette for colors if numeric values provided
zlim range for colors
s saturation of rainbow for group colors
v value of rainbow for group colors
min.group.size minimum size of group in order for group to be colored
show.legend whether to show legend
mark.clusters whether to mark clusters with name of cluster
mark.cluster.cex cluster marker point size
shuffle.colors whether to shuffle group colors
legend.x legend position ie. 'topright', 'topleft', 'bottomleft', 'bottomright'
gradient.range.quantile quantile for mapping colors to gradient palette
verbose verbosity
unclassified.cell.color cells not included in groups will be labeled in this color
group.level.colors set group level colors. Default uses rainbow.
... Additional parameters to pass to BASE::plot

Value

embedding plot
Examples

data(vel)
curr <- vel$current
proj <- vel$projected

vv <- buildVeloviz(curr = curr, proj = proj, normalize.depth = TRUE, use.ods.genes = TRUE, alpha = 0.05, pca = TRUE, nPCs = 20, center = TRUE, scale = TRUE, k = 5, similarity.threshold = 0.25, distance.weight = 1, distance.threshold = 0.5, weighted = TRUE, verbose = FALSE)

plotEmbedding(vv$fdg_coords)

plotVeloviz

Plot function

Description
Plot function

Usage

plotVeloviz(
  vig, 
  layout.method = igraph::layout_with_fr, 
  clusters = NA, 
  cluster.method = igraph::cluster_louvain, 
  col = NA, 
  alpha = 0.05, 
  verbose = TRUE 
)

Arguments

vig output of buildVeloviz
layout.method igraph method to use for generating 2D graph representation, default = igraph::layout_with_fr
clusters cluster annotations for cells in data
cluster.method igraph method to use for clustering if clusters are not provided, default = igraph::cluster_louvain
col colors to use for plotting
alpha transparency for plotting graph nodes
verbose logical for verbosity setting, default = FALSE

Value

cells (rows) x 2 coordinates of force-directed layout of VeloViz graph
Examples

data(vel)
curr <- vel$current
proj <- vel$projected

vv <- buildVeloviz(curr = curr, proj = proj, normalize.depth = TRUE,
use.ods.genes = TRUE, alpha = 0.05, pca = TRUE, nPCs = 20, center = TRUE,
scale = TRUE, k = 5, similarity.threshold = 0.25, distance.weight = 1,
distance.threshold = 0.5, weighted = TRUE, verbose = FALSE)

plotVeloviz(vv)

projectedNeighbors

Computes composite distances between all cell pairs and returns k-nearest neighbors and edge weights needed to build VeloViz graph.

Description

Computes composite distances between all cell pairs and returns k-nearest neighbors and edge weights needed to build VeloViz graph.

Usage

projectedNeighbors(
  observed,
  projected,
  k,
  distance_metric = "L2",
  similarity_metric = "cosine",
  distance_weight = 1,
  distance_threshold = 1,
  similarity_threshold = -1
)

Arguments

observed PCs (rows) x cells (columns) matrix of observed transcriptional state projected into PC space
projected PCs (rows) x cells (columns) matrix of projected transcriptional states. Cells should be in same order as in observed
k Number of nearest neighbors to assign each cell
distance_metric Method to compute distance component of composite distance. "L1" or "L2", default = "L2"
reduceDimensions

similarity_metric
  Method to compute similarity between velocity and cell transition matrices. "cosine" or "pearson", default = "cosine"

distance_weight
  Weight of distance component of composite distance, default = 1

distance_threshold
  Quantile threshold for distance component above which to remove edges, default = 1 i.e. no edges removed

similarity_threshold
  Similarity threshold below which to remove edges, default = -1 i.e. no edges removed

Value

kNNs cells (rows) x k (columns) matrix of indices of each cell’s nearest neighbors computed based on composite distance. Edges removed based on distance or similarity threshold will be NA.

edge_weights cells (rows) x k (columns) matrix of edge weights computed based on composite distance. Edges removed based on distance or similarity threshold will be NA.

all_dists cells x cells matrix of all pairwise composite distances

dist_comp components of composite distance: invDist distance component, negSim similarity component

See Also

graphViz

Examples

```r
data(vel)
curr <- vel$current
proj <- vel$projected

projectedNeighbors(curr, proj, 10)
```

---

**reduceDimensions**

*Reduce dimension using Principal Components Analysis via svds from RSpectra*

**Description**

Reduce dimension using Principal Components Analysis via svds from RSpectra
Usage

reduceDimensions(
    matnorm,
    center = TRUE,
    scale = TRUE,
    max.ods.genes = 2000,
    nPCs = 50,
    verbose = TRUE,
    plot = FALSE,
    details = FALSE
)

Arguments

- **matnorm**: matrix on which to perform PCA
- **center**: logical to mean center gene expression before PCA, default = TRUE
- **scale**: logical to scale gene expression variance before PCA, default = TRUE
- **max.ods.genes**: number of most highly expressed overdispersed genes to include, default = 2000
- **nPCs**: number of principal components to reduce to return, default = 50
- **verbose**: logical for verbosity setting, default = TRUE
- **plot**: plot singular values vs number of components
- **details**: logical to return pca object, default = FALSE

Value

matrix of cell scores in nPCs components

Examples

data(vel)
curr <- vel$current
curr.norm <- normalizeDepth(curr)
curr.norm <- log10(curr.norm+1)
reduceDimensions(curr.norm, nPCs=3)

vel

MERFISH velocity subset

Description

output of velocyto.R::gene.relative.velocity.estimates for 40 cell subset of MERFISH data. Used to run examples
veloviz

Usage

vel

Format

list of 1:

vel velocity output containing current observed ("current") and predicted future ("projected") estimates

Source

https://www.pnas.org/content/116/39/19490

----------------------------------------

veloviz veloviz

Description

Package for creating RNA velocity informed embeddings for single cell transcriptomics
Index

* datasets
  pancreas, 9
  vel, 14

asNNGraph, 2

buildVeloviz, 3

graphViz, 5, 13

normalizeDepth, 7
normalizeVariance, 7

pancreas, 9
plotEmbedding, 9
plotVeloviz, 11
projectedNeighbors, 4, 6, 12

reduceDimensions, 13

vel, 14
veloviz, 15