Package ‘webbioc’

May 4, 2024

Version 1.76.0
Date 2009-02-05
Title Bioconductor Web Interface
Author Colin A. Smith <colin@colinsmith.org>
Maintainer Colin A. Smith <colin@colinsmith.org>
Depends R (>= 1.8.0), Biobase, affy, multtest, annaffy, vsn, gcrma, qvalue
Imports multtest, qvalue, stats, utils, BiocManager
SystemRequirements Unix, Perl (>= 5.6.0), Netpbm
Description An integrated web interface for doing microarray analysis using several of the Bioconductor packages. It is intended to be deployed as a centralized bioinformatics resource for use by many users. (Currently only Affymetrix oligonucleotide analysis is supported.)
License GPL (>= 2)
URL http://www.bioconductor.org/
LazyLoad yes
biocViews Infrastructure, Microarray, OneChannel, DifferentialExpression
git_url https://git.bioconductor.org/packages/webbioc
git_branch RELEASE_3_19
git_last_commit 0dc07a7
git_last_commit_date 2024-04-30
Repository Bioconductor 3.19
Date/Publication 2024-05-03

Contents

installReps ... 2
mt.wrapper ... 2
installReps

Install all repository packages

Description

Using reposTools, install/update all packages from given repositories.

Usage

```r
installReps(repNames = "aData", lib = .libPaths()[1],
            type = getOption("pkgType"))
```

Arguments

- `repNames`: A character vector containing repository names. A listing of known repository names can be found with the getReposOption() function.
- `lib`: A path to install/update the packages. If this directory does not exist, it will be created (if possible).
- `type`: Type of package to download.

Author(s)

Colin A. Smith <webbioc@colinsmith.org>

mt.wrapper

Multiple Testing Wrapper Function

Description

A wrapper for some of the functionality for the multtest package. It also includes hooks to calculate q-values with John D. Storey’s ‘q-value.R’ code.

Usage

```r
mt.wrapper(proc, X, classlabel, test="t", rawpcalc="Parametric", side="abs", ...)
```
Arguments

proc A character string containing the name of the multiple testing procedure for which adjusted \(p \)-values are to be computed. This vector should include any of the following: "Bonferroni", "Holm", "Hochberg", "SidakSS", "SidakSD", "BH", "BY", "maxT", "minP", "q".

X A data frame or matrix, with \(m \) rows corresponding to variables (hypotheses) and \(n \) columns to observations. In the case of gene expression data, rows correspond to genes and columns to mRNA samples. The data can be read using \texttt{read.table}.

classlabel A vector of integers corresponding to observation (column) class labels. For \(k \) classes, the labels must be integers between 0 and \(k - 1 \). For the \texttt{blockf} test option, observations may be divided into \(n/k \) blocks of \(k \) observations each. The observations are ordered by block, and within each block, they are labeled using the integers 0 to \(k - 1 \).

test A character string specifying the statistic to be used to test the null hypothesis of no association between the variables and the class labels. If \texttt{test="t"}, the tests are based on two-sample Welch t-statistics (unequal variances). If \texttt{test="t.equalvar"}, the tests are based on two-sample t-statistics with equal variance for the two samples. The square of the t-statistic is equal to an F-statistic for \(k = 2 \). If \texttt{test="wilcoxon"}, the tests are based on standardized rank sum Wilcoxon statistics. If \texttt{test="f"}, the tests are based on F-statistics. If \texttt{test="pairt"}, the tests are based on paired t-statistics. The square of the paired t-statistic is equal to a block F-statistic for \(k = 2 \). If \texttt{test="blockf"}, the tests are based on F-statistics which adjust for block differences (cf. two-way analysis of variance).

rawpcalc A character string specifying how to calculate nominal/raw \(p \)-values. The possible choices are "Parametric" or "Permutation".

side A character string specifying the type of rejection region. If \texttt{side="abs"}, two-tailed tests, the null hypothesis is rejected for large absolute values of the test statistic. If \texttt{side="upper"}, one-tailed tests, the null hypothesis is rejected for large values of the test statistic. If \texttt{side="lower"}, one-tailed tests, the null hypothesis is rejected for small values of the test statistic.

... Further arguments for \texttt{mt.maxT}, \texttt{mt.minP}, \texttt{qvalue}.

Value

A data frame with components

index Vector of row indices, between 1 and \(nrow(X) \), where rows are sorted first according to their adjusted \(p \)-values, next their unadjusted \(p \)-values, and finally their test statistics.
teststat Vector of test statistics, ordered according to index. To get the test statistics in the original data order, use teststat[order(index)].

rawp Vector of raw (unadjusted) p-values, ordered according to index.

adjp Vector of adjusted p-values, ordered according to index.

plower For \texttt{mt.minP} function only, vector of "adjusted p-values", where ties in the permutation distribution of the successive minima of raw p-values with the observed p-values are counted only once. Note that procedures based on \texttt{plower} do not control the FWER. Comparison of \texttt{plower} and \texttt{adjp} gives an idea of the discreteness of the permutation distribution. Values in \texttt{plower} are ordered according to index.

Author(s)

Colin A. Smith <webbioc@colinsmith.org>
Index

* file
 installReps, 2
 mt.wrapper, 2

installReps, 2

mt.minP, 4
mt.wrapper, 2

read.table, 3