Package ‘zenith’

May 27, 2024

Type Package

Title Gene set analysis following differential expression using linear (mixed) modeling with dream

Version 1.6.0

Date 2024-03-08

Description Zenith performs gene set analysis on the result of differential expression using linear (mixed) modeling with dream by considering the correlation between gene expression traits. This package implements the camera method from the limma package proposed by Wu and Smyth (2012). Zenith is a simple extension of camera to be compatible with linear mixed models implemented in variancePartition::dream().

VignetteBuilder knitr

License Artistic-2.0

Encoding UTF-8

URL https://DiseaseNeuroGenomics.github.io/zenith

BugReports https://github.com/DiseaseNeuroGenomics/zenith/issues

Suggests BiocStyle, BiocGenerics, knitr, pander, rmarkdown, tweeDEseqCountData, edgeR, kableExtra, RUnit

biocViews RNASeq, GeneExpression, GeneSetEnrichment, DifferentialExpression, BatchEffect, QualityControl, Regression, Epigenetics, FunctionalGenomics, Transcriptomics, Normalization, Preprocessing, Microarray, ImmunoOncology, Software

Depends R (>= 4.2.0), limma, methods

Imports variancePartition (>= 1.26.0), EnrichmentBrowser (>= 2.22.0), GSEABase (>= 1.54.0), msigdb (>= 7.5.1), Rfast, ggplot2, tidyr, reshape2, progress, utils, Rdpack, stats

RdMacros Rdpack

RoxygenNote 7.2.3

git_url https://git.bioconductor.org/packages/zenith

git_branch RELEASE_3_19
Two Sample Wilcoxon-Mann-Whitney Rank Sum Test Allowing For Correlation

Description

Same as limma::.rankSumTestWithCorrelation, but returns effect size.

Usage

.rankSumTestWithCorrelation(index, statistics, correlation = 0, df = Inf)

Arguments

index any index vector such that statistics[index] contains the values of the statistic for the test group.

statistics numeric vector giving values of the test statistic.

correlation numeric scalar, average correlation between cases in the test group. Cases in the second group are assumed independent of each other and other the first group.

df degrees of freedom which the correlation has been estimated.

Details

See limma::.rankSumTestWithCorrelation
corInGeneSet

Value

data.frame storing results of hypothesis test

corInGeneSet

Evaluate mean correlation between residuals in gene set

Description

Evaluate mean correlation between residuals in gene set based on results from dream

Usage

corInGeneSet(fit, idx, squareCorr = FALSE)

Arguments

- **fit**: result of differential expression with dream
- **idx**: indeces or rownames to extract
- **squareCorr**: compute the mean squared correlation instead

Value

list storing correlation and variance inflation factor

get_GeneOntology

Load Gene Ontology genesets

Description

Load Gene Ontology genesets

Usage

get_GeneOntology(
 onto = c("BP", "MF", "CC"),
 to = "ENSEMBL",
 includeOffspring = TRUE,
 org = "hsa"
)
get_MSigDB

Load MSigDB genesets

description
Load MSigDB genesets

Usage

get_MSigDB(
 cat = unique(msigdb_collections()$gs_cat),
 to = "ENSEMBL",
 org = "hsa"
)

Arguments

 cat array of categories to load. Defaults to array of all MSigDB categories
 to convert gene names to this type using EnrichmentBrowser::idMap(). See
 EnrichmentBrowser::idTypes(org="hsa") for valid types
 org organism. human ("hsa"), mouse ("mmu"), etc

Arguments

Onto array of categories to load
To convert gene names to this type using EnrichmentBrowser::idMap(). See
EnrichmentBrowser::idTypes(org="hsa") for valid types
IncludeOffspring if TRUE, follow the GO hierarchy down and include all genes in offspring sets
for a given gene set
Org organism. human ("hsa"), mouse ("mmu"), etc

Details

This function loads the GO gene sets using the packages EnrichmentBrowser and GO.db. It can take a minute to load because converting gene name type is slow.

Value

Gene sets stored as GeneSetCollection

Examples

load GO Biological Process
gs = get_GeneOntology('BP')

load all gene sets
gs = get_GeneOntology()
Details

This function loads the MSigDB gene sets using the packages `EnrichmentBrowser` and `msigdb`. It can take a minute to load because converting gene name type is slow.

Value

Gene sets stored as `GeneSetCollection`

Examples

```R
# load Hallmark gene sets
gs = get_MSigDB('H')

# load all gene sets
# gs = get_MSigDB()
```

plotZenithResults
Heatmap of zenith results using ggplot2

Description

Heatmap of zenith results showing genesets that have the top and bottom t-statistics from each assay.

Usage

```R
plotZenithResults(
  df,
  ntop = 5,
  nbottom = 5,
  label.angle = 45,
  zmax = NULL,
  transpose = FALSE,
  sortByGeneset = TRUE
)
```

Arguments

- `df`: result data.frame from `zenith_gsa`
- `ntop`: number of gene sets with highest t-statistic to show
- `nbottom`: number of gene sets with lowest t-statistic to show
- `label.angle`: angle of x-axis label
- `zmax`: maximum of the color scales. If not specified, used range of the observed t-statistics
- `transpose`: transpose the axes of the plot
- `sortByGeneset`: use hierarchical clustering to sort gene sets. Default is TRUE
Heatmap showing enrichment for gene sets and cell types

Examples

```r
# Load packages
library(edgeR)
library(variancePartition)
library(tweeDEseqCountData)

# Load RNA-seq data from LCL's
data(pickrell)
geneCounts = exprs(pickrell.eset)
df_metadata = pData(pickrell.eset)

# Filter genes
# Note this is low coverage data, so just use as code example
dsgn = model.matrix(~ gender, df_metadata)
keep = filterByExpr(geneCounts, dsgn, min.count=5)

# Compute library size normalization
dge = DGEList(counts = geneCounts[keep,])
dge = calcNormFactors(dge)

# Estimate precision weights using voom
vobj = voomWithDreamWeights(dge, ~ gender, df_metadata)

# Apply dream analysis
fit = dream(vobj, ~ gender, df_metadata)
fit = eBayes(fit)

# Load Hallmark genes from MSigDB
# use gene 'SYMBOL', or 'ENSEMBL' id
# use get_GeneOntology() to load Gene Ontology
gs = get_MSigDB("H", to="ENSEMBL")

# Run zenith analysis
res.gsa = zenith_gsa(fit, gs, 'gendermale', progressbar=FALSE)

# Show top gene sets
head(res.gsa, 2)

# for each cell type select 3 genesets with largest t-statistic
# and 1 geneset with the lowest
# Grey boxes indicate the gene set could not be evaluated because
# to few genes were represented
plotZenithResults(res.gsa)
```
zenith

Gene set analysis following differential expression with dream

Description

Perform gene set analysis on the result of differential expression using linear (mixed) modeling with variancePartition::dream by considering the correlation between gene expression traits. This package is a slight modification of limma::camera to 1) be compatible with dream, and 2) allow identification of gene sets with log fold changes with mixed sign.

Usage

zenith(
 fit,
 coef,
 index,
 use.ranks = FALSE,
 allow.neg.cor = FALSE,
 progressbar = TRUE,
 inter.gene.cor = 0.01
)

Arguments

fit result of differential expression with dream
coef coefficient to test using topTable(fit, coef)
index an index vector or a list of index vectors. Can be any vector such that fit[index,] selects the rows corresponding to the test set. The list can be made using ids2indices.
use.ranks do a rank-based test (TRUE) or a parametric test ('FALSE')?
allow.neg.cor should reduced variance inflation factors be allowed for negative correlations?
progressbar if TRUE, show progress bar
inter.gene.cor if NA, estimate correlation from data. Otherwise, use specified value

Details

zenith gives the same results as camera(..., inter.gene.cor=NA) which estimates the correlation with each gene set.

For differential expression with dream using linear (mixed) models see Hoffman and Roussos (2020). For the original camera gene set test see Wu and Smyth (2012).
Value
- NGenes: number of genes in this set
- Correlation: mean correlation between expression of genes in this set
- delta: difference in mean t-statistic for genes in this set compared to genes not in this set
- se: standard error of delta
- p.less: p-value for hypothesis test of $H_0: \delta < 0$
- p.greater: p-value for hypothesis test of $H_0: \delta > 0$
- PValue: p-value for hypothesis test $H_0: \delta \neq 0$
- Direction: direction of effect based on sign(delta)
- FDR: false discovery rate based on Benjamini-Hochberg method in \texttt{p.adjust}

References

Examples
library(variancePartition)

simulate meta-data
info <- data.frame(Age=c(20, 31, 52, 35, 43, 45),Group=c(0,0,0,1,1,1))

simulate expression data
y <- matrix(rnorm(1000*6),1000,6)
rownames(y) = paste0("gene", 1:1000)
colnames(y) = rownames(info)

First set of 20 genes are genuinely differentially expressed
index1 <- 1:20
y[index1,4:6] <- y[index1,4:6]+1

Second set of 20 genes are not DE
index2 <- 21:40

perform differential expression analysis with \texttt{dream}
fit = dream(y, ~ Age + Group, info)
fit = eBayes(fit)

perform gene set analysis testing Age
res = zenith(fit, "Age", list(set1=index1,set2=index2))

head(res)
zenithPR_gsa

Gene set analysis using pre-computed test statistic

Description

Perform gene set analysis on the result of a pre-computed test statistic. Test whether statistics in a gene set are larger/smaller than statistics not in the set.

Usage

```r
zenithPR_gsa(
  statistics,          # pre-computed test statistics
  ids,                # name of gene for each entry in statistics
  geneSets,           # GeneSetCollection
  use.ranks = FALSE,  # do a rank-based test TRUE or a parametric test FALSE? default: FALSE
  n_genes_min = 10,   # minimum number of genes in a geneset
 progressbar = TRUE,  # if TRUE, show progress bar
  inter.gene.cor = 0.01,  # correlation of test statistics with in gene set
  coef.name = "zenithPR"  # name of column to store test statistic
)
```

Arguments

- `statistics`: pre-computed test statistics
- `ids`: name of gene for each entry in `statistics`
- `geneSets`: GeneSetCollection
- `use.ranks`: do a rank-based test TRUE or a parametric test FALSE? default: FALSE
- `n_genes_min`: minimum number of genes in a geneset
- `progressbar`: if TRUE, show progress bar
- `inter.gene.cor`: correlation of test statistics with in gene set
- `coef.name`: name of column to store test statistic

Details

This is the same as `zenith_gsa()`, but uses pre-computed test statistics. Note that `zenithPR_gsa()` may give slightly different results for small samples sizes, if `zenithPR_gsa()` is fed t-statistics instead of z-statistics.

Value

- `NGenes`: number of genes in this set
- `Correlation`: mean correlation between expression of genes in this set
- `delta`: difference in mean t-statistic for genes in this set compared to genes not in this set
- `se`: standard error of `delta`
• p.less: p-value for hypothesis test of $H_0: \delta < 0$
• p.greater: p-value for hypothesis test of $H_0: \delta > 0$
• PValue: p-value for hypothesis test $H_0: \delta \neq 0$
• Direction: direction of effect based on sign(δ)
• FDR: false discovery rate based on Benjamini-Hochberg method in p.adjust
• coef.name: name for pre-computed test statistics. Default: zenithPR

See Also
zenith_gsa(), limma::cameraPR()

Examples

Load packages
library(edgeR)
library(variancePartition)
library(tweeDEseqCountData)

Load RNA-seq data from LCL's
data(pickrell)
geneCounts = exprs(pickrell.eset)
df_metadata = pData(pickrell.eset)

Filter genes
Note this is low coverage data, so just use as code example
dsgn = model.matrix(~ gender, df_metadata)
keep = filterByExpr(geneCounts, dsgn, min.count=5)

Compute library size normalization
dge = DGEList(counts = geneCounts[keep,])
dge = calcNormFactors(dge)

Estimate precision weights using voom
vobj = voomWithDreamWeights(dge, ~ gender, df_metadata)

Apply dream analysis
fit = dream(vobj, ~ gender, df_metadata)
fit = eBayes(fit)

Load Hallmark genes from MSigDB
use gene 'SYMBOL', or 'ENSEMBL' id
use get_GeneOntology() to load Gene Ontology
gs = get_MSigDB("H", to="ENSEMBL")

Run zenithPR analysis with a test statistic for each gene
tab = topTable(fit, coef='gendermale', number=Inf)
res.gsa = zenithPR_gsa(tab$t, rownames(tab), gs)
zenith_gsa

Perform gene set analysis using zenith

Description

Perform a competitive gene set analysis accounting for correlation between genes.

Usage

zenith_gsa(
 fit,
 geneSets,
 coefs,
 use.ranks = FALSE,
 n_genes_min = 10,
 inter.gene.cor = 0.01,
 progressbar = TRUE,
 ...
)

S4 method for signature 'MArrayLM,GeneSetCollection'
zenith_gsa(
 fit,
 geneSets,
 coefs,
 use.ranks = FALSE,
 n_genes_min = 10,
 inter.gene.cor = 0.01,
 progressbar = TRUE,
 ...
)

Arguments

- `fit`: results from dream()
- `geneSets`: GeneSetCollection
- `coefs`: list of coefficients to test using topTable(fit, coef=coefs[[i]])
- `use.ranks`: do a rank-based test TRUE or a parametric test FALSE? default: FALSE
- `n_genes_min`: minimum number of genes in a geneset
- `inter.gene.cor`: if NA, estimate correlation from data. Otherwise, use specified value
- `progressbar`: if TRUE, show progress bar
- `...`: other arguments
Details

This code adapts the widely used `camera()` analysis (Wu and Smyth 2012) in the `limma` package (Ritchie et al. 2015) to the case of linear (mixed) models used by `variancePartition::dream()`.

Value

data.frame of results for each gene set and cell type

References

See Also

limma::camera

Examples

```r
# Load packages
library(edgeR)
library(variancePartition)
library(tweeDEseqCountData)

# Load RNA-seq data from LCL's
data(pickrell)
geneCounts = exprs(pickrell.eset)
df_metadata = pData(pickrell.eset)

# Filter genes
# Note this is low coverage data, so just use as code example
dsgn = model.matrix(~ gender, df_metadata)
keep = filterByExpr(geneCounts, dsgn, min.count=5)

dge = DGEList(counts = geneCounts[keep,])
dge = calcNormFactors(dge)

# Estimate precision weights using voom
vobj = voomWithDreamWeights(dge, ~ gender, df_metadata)

# Apply dream analysis
fit = dream(vobj, ~ gender, df_metadata)
fit = eBayes(fit)

# Load Hallmark genes from MSigDB
# use gene 'SYMBOL', or 'ENSEMBL' id
```
use get_GeneOntology() to load Gene Ontology
gs = get_MSigDB("H", to="ENSEMBL")

Run zenith analysis
res.gsa = zenith_gsa(fit, gs, 'gendermale', progressbar=FALSE)

Show top gene sets
head(res.gsa, 2)

for each cell type select 3 genesets with largest t-statistic
and 1 geneset with the lowest
Grey boxes indicate the gene set could not be evaluated because
to few genes were represented
plotZenithResults(res.gsa)
Index

.rankSumTestWithCorrelation, 2

corInGeneSet, 3

get_GeneOntology, 3
get_MSigDB, 4

plotZenithResults, 5

zenith, 7
zenith_gsa, 5, 11
zenith_gsa, MArrayLM, GeneSetCollection, ANY-method (zenith_gsa), 11
zenith_gsa, MArrayLM, GeneSetCollection-method (zenith_gsa), 11
zenithPR_gsa, 9