Package ‘zenith’

March 28, 2024

Type Package

Title Gene set analysis following differential expression using linear (mixed) modeling with dream

Version 1.4.2

Date 2023-11-07

Description Zenith performs gene set analysis on the result of differential expression using linear (mixed) modeling with dream by considering the correlation between gene expression traits. This package implements the camera method from the limma package proposed by Wu and Smyth (2012). Zenith is a simple extension of camera to be compatible with linear mixed models implemented in variancePartition::dream().

VignetteBuilder knitr

License Artistic-2.0

Encoding UTF-8

URL https://DiseaseNeuroGenomics.github.io/zenith

BugReports https://github.com/DiseaseNeuroGenomics/zenith/issues

Suggests BiocStyle, BiocGenerics, knitr, pander, rmarkdown, tweeDEseqCountData, edgeR, kableExtra, RUnit

biocViews RNASeq, GeneExpression, GeneSetEnrichment, DifferentialExpression, BatchEffect, QualityControl, Regression, Epigenetics, FunctionalGenomics, Transcriptomics, Normalization, Preprocessing, Microarray, ImmunoOncology, Software

Depends R (>= 4.2.0), limma, methods

Imports variancePartition (>= 1.26.0), EnrichmentBrowser (>= 2.22.0), GSEABase (>= 1.54.0), msigdbr (>= 7.5.1), Rfast, ggplot2, tidyr, reshape2, progress, utils, Rdpack, stats

RdMacros Rdpack

RoxygenNote 7.2.3

git_url https://git.bioconductor.org/packages/zenith

git_branch RELEASE_3_18
Two Sample Wilcoxon-Mann-Whitney Rank Sum Test Allowing For Correlation

Description
Same as limma::.rankSumTestWithCorrelation, but returns effect size.

Usage
.rankSumTestWithCorrelation(index, statistics, correlation = 0, df = Inf)

Arguments
index any index vector such that statistics[index] contains the values of the statistic for the test group.
statistics numeric vector giving values of the test statistic.
correlation numeric scalar, average correlation between cases in the test group. Cases in the second group are assumed independent of each other and other the first group.
df degrees of freedom which the correlation has been estimated.

Details
See limma::.rankSumTestWithCorrelation
corInGeneSet

Value
data.frame storing results of hypothesis test

Description
Evaluate mean correlation between residuals in gene set based on results from dream

Usage
corInGeneSet(fit, idx, squareCorr = FALSE)

Arguments
fit
result of differential expression with dream
idx
indices or rownames to extract
squareCorr
compute the mean squared correlation instead

Value
list storing correlation and variance inflation factor

geneOntology

Description
Load Gene Ontology genesets

Usage
geneOntology(
 onto = c("BP", "MF", "CC"),
 to = "ENSEMBL",
 includeOffspring = TRUE,
 org = "hsa"
)
get_MSigDB

Arguments

onto array of categories to load

to convert gene names to this type using EnrichmentBrowser::idMap(). See EnrichmentBrowser::idTypes(org="hsa") for valid types

includeOffspring if TRUE, follow the GO hierarchy down and include all genes in offspring sets for a given gene set

org organism. human ('hsa'), mouse ('mmu'), etc

Details

This function loads the GO gene sets using the packages EnrichmentBrowser and GO.db. It can take a minute to load because converting gene name type is slow.

Value

Gene sets stored as GeneSetCollection

Examples

load GO Biological Process
gs = get_GeneOntology('BP')

load all gene sets
gs = get_GeneOntology()

get_MSigDB Load MSigDB genesets

Description

Load MSigDB genesets

Usage

get_MSigDB(
 cat = unique(msigdbr_collections()$gs_cat),
 to = "ENSEMBL",
 org = "hsa"
)

Arguments

cat array of categories to load. Defaults to array of all MSigDB categories

to convert gene names to this type using EnrichmentBrowser::idMap(). See EnrichmentBrowser::idTypes(org="hsa") for valid types

org organism. human ('hsa'), mouse ('mmu'), etc
plotZenithResults

Details

This function loads the MSigDB gene sets using the packages EnrichmentBrowser and msigdb. It can take a mintue to load because converting gene name type is slow.

Value

Gene sets stored as GeneSetCollection

Examples

load Hallmark gene sets
gs = get_MSigDB('H')

load all gene sets
gs = get_MSigDB()

plotZenithResults Heatmap of zenith results using ggplot2

Description

Heatmap of zenith results showing genesets that have the top and bottom t-statistics from each assay.

Usage

plotZenithResults(
 df,
 ntop = 5,
 nbottom = 5,
 label.angle = 45,
 zmax = NULL,
 transpose = FALSE,
 sortByGeneset = TRUE
)

Arguments

df result data.frame from zenith_gsa
ntop number of gene sets with highest t-statistic to show
nbottom number of gene sets with lowest t-statistic to show
label.angle angle of x-axis label
zmax maximum of the color scales. If not specified, used range of the observed t-statistics
transpose transpose the axes of the plot
sortByGeneset use hierarchical clustering to sort gene sets. Default is TRUE
Value

Heatmap showing enrichment for gene sets and cell types

Examples

```r
# Load packages
library(edgeR)
library(variancePartition)
library(tweeDEseqCountData)

# Load RNA-seq data from LCL's
data(pickrell)
geneCounts = exprs(pickrell.eset)
df_metadata = pData(pickrell.eset)

# Filter genes
# Note this is low coverage data, so just use as code example
dsgn = model.matrix(~ gender, df_metadata)
keep = filterByExpr(geneCounts, dsgn, min.count=5)

# Compute library size normalization
dge = DGEList(counts = geneCounts[keep,])
dge = calcNormFactors(dge)

# Estimate precision weights using voom
vobj = voomWithDreamWeights(dge, ~ gender, df_metadata)

# Apply dream analysis
fit = dream(vobj, ~ gender, df_metadata)
fit = eBayes(fit)

# Load Hallmark genes from MSigDB
# use gene 'SYMBOL', or 'ENSEMBL' id
# use get_GeneOntology() to load Gene Ontology
gs = get_MSigDB("H", to="ENSEMBL")

# Run zenith analysis
res.gsa = zenith_gsa(fit, gs, 'gendermale', progressbar=FALSE)

# Show top gene sets
head(res.gsa, 2)

# for each cell type select 3 genesets with largest t-statistic
# and 1 geneset with the lowest
# Grey boxes indicate the gene set could not be evaluated because
# to few genes were represented
plotZenithResults(res.gsa)
```
Description

Perform gene set analysis on the result of differential expression using linear (mixed) modeling with variancePartition::dream by considering the correlation between gene expression traits. This package is a slight modification of limma::camera to 1) be compatible with dream, and 2) allow identification of gene sets with log fold changes with mixed sign.

Usage

```r
zenith(
  fit, 
  coef, 
  index, 
  use.ranks = FALSE, 
  allow.neg.cor = FALSE, 
  progressbar = TRUE, 
  inter.gene.cor = 0.01 
)
```

Arguments

- `fit`: result of differential expression with dream
- `coef`: coefficient to test using `topTable(fit, coef)`
- `index`: an index vector or a list of index vectors. Can be any vector such that `fit[index,]` selects the rows corresponding to the test set. The list can be made using `ids2indices`.
- `use.ranks`: do a rank-based test (TRUE) or a parametric test ('FALSE')?
- `allow.neg.cor`: should reduced variance inflation factors be allowed for negative correlations?
- `progressbar`: if TRUE, show progress bar
- `inter.gene.cor`: if NA, estimate correlation from data. Otherwise, use specified value

Details

`zenith` gives the same results as `camera(..., inter.gene.cor=NA)` which estimates the correlation with each gene set.

For differential expression with dream using linear (mixed) models see Hoffman and Roussos (2020). For the original camera gene set test see Wu and Smyth (2012).
Value

- **NGenes**: number of genes in this set
- **Correlation**: mean correlation between expression of genes in this set
- **delta**: difference in mean t-statistic for genes in this set compared to genes not in this set
- **se**: standard error of delta
- **p.less**: p-value for hypothesis test of $H_0: \delta < 0$
- **p.greater**: p-value for hypothesis test of $H_0: \delta > 0$
- **PValue**: p-value for hypothesis test $H_0: \delta \neq 0$
- **Direction**: direction of effect based on sign(delta)
- **FDR**: false discovery rate based on Benjamini-Hochberg method in `p.adjust`

References

Examples

```r
library(variancePartition)

# simulate meta-data
info <- data.frame(Age=c(20, 31, 52, 35, 43, 45), Group=c(0,0,0,1,1,1))

# simulate expression data
y <- matrix(rnorm(1000*6),1000,6)
rownames(y) = paste0("gene", 1:1000)
colnames(y) = rownames(info)

# First set of 20 genes are genuinely differentially expressed
index1 <- 1:20
y[index1,4:6] <- y[index1,4:6]+1

# Second set of 20 genes are not DE
index2 <- 21:40

# perform differential expression analysis with dream
fit = dream(y, ~ Age + Group, info)
fit = eBayes(fit)

# perform gene set analysis testing Age
res = zenith(fit, "Age", list(set1=index1,set2=index2) )

head(res)
```
zenithPR_gsa

Gene set analysis using pre-computed test statistic

Description
Perform gene set analysis on the result of a pre-computed test statistic. Test whether statistics in a
gene set are larger/smaller than statistics not in the set.

Usage
zenithPR_gsa(
 statistics,
 ids,
 geneSets,
 use.ranks = FALSE,
 n_genes_min = 10,
 progressbar = TRUE,
 inter.gene.cor = 0.01
)

Arguments
statistics: pre-computed test statistics
ids: name of gene for each entry in statistics
geneSets: GeneSetCollection
use.ranks: do a rank-based test TRUE or a parametric test FALSE? default: FALSE
n_genes_min: minimum number of genes in a geneset
progressbar: if TRUE, show progress bar
inter.gene.cor: correlation of test statistics with in gene set

Details
This is the same as zenith_gsa(), but uses pre-computed test statistics. Note that zenithPR_gsa() may give slightly different results for small samples sizes, if zenithPR_gsa() is fed t-statistics instead of z-statistics.

Value
- NGenes: number of genes in this set
- Correlation: mean correlation between expression of genes in this set
- delta: difference in mean t-statistic for genes in this set compared to genes not in this set
- se: standard error of delta
- p.less: p-value for hypothesis test of H0: delta < 0
- p.greater: p-value for hypothesis test of H0: delta > 0
• PValue: p-value for hypothesis test $H_0: \delta \neq 0$
• Direction: direction of effect based on sign(\delta)
• FDR: false discovery rate based on Benjamini-Hochberg method in \textit{p.adjust}

\textbf{See Also}

\texttt{zenith_gsa()}

\begin{verbatim}
zenith_gsa

\textbf{Description}

Perform a competitive gene set analysis accounting for correlation between genes.

\textbf{Usage}

\texttt{zenith_gsa(fit, geneSets, coefs, use.ranks = FALSE, n_genes_min = 10, inter.gene.cor = 0.01, progressbar = TRUE, ...)
}

\texttt{# S4 method for signature 'MArrayLM,GeneSetCollection'
zenith_gsa(fit, geneSets, coefs, use.ranks = FALSE, n_genes_min = 10, inter.gene.cor = 0.01, progressbar = TRUE, ...)
}

\textbf{Arguments}

\begin{verbatim}
fit results from \texttt{dream()}
geneSets \texttt{GeneSetCollection}
coefs list of coefficients to test using \texttt{topTable(fit, coef=coefs[[i]])}
use.ranks do a rank-based test \texttt{TRUE} or a parametric test \texttt{FALSE}? default: \texttt{FALSE}
\end{verbatim}
zenith_gsa

n_genes_min minimum number of genes in a geneset
inter.gene.cor if NA, estimate correlation from data. Otherwise, use specified value
progressbar if TRUE, show progress bar
... other arguments

Details
This code adapts the widely used camera() analysis (Wu and Smyth 2012) in the limma package (Ritchie et al. 2015) to the case of linear (mixed) models used by variancePartition::dream().

Value
data.frame of results for each gene set and cell type

References

See Also
limma::camera

Examples

Load packages
library(edgeR)
library(variancePartition)
library(tweeDEseqCountData)

Load RNA-seq data from LCL's
data(pickrell)
geneCounts = exprs(pickrell.eset)
df_metadata = pData(pickrell.eset)

Filter genes
Note this is low coverage data, so just use as code example
dsgn = model.matrix(~ gender, df_metadata)
keep = filterByExpr(geneCounts, dsgn, min.count=5)

Compute library size normalization
dge = DGEList(counts = geneCounts[keep,])
dge = calcNormFactors(dge)

Estimate precision weights using voom
vobj = voomWithDreamWeights(dge, ~ gender, df_metadata)
```r
# Apply dream analysis
fit = dream(vobj, ~ gender, df_metadata)
fit = eBayes(fit)

# Load Hallmark genes from MSigDB
# use gene 'SYMBOL', or 'ENSEMBL' id
# use get_GeneOntology() to load Gene Ontology
gs = get_MSigDB("H", to="ENSEMBL")

# Run zenith analysis
res.gsa = zenith_gsa(fit, gs, 'gendermale', progressbar=FALSE )

# Show top gene sets
head(res.gsa, 2)

# for each cell type select 3 genesets with largest t-statistic
# and 1 geneset with the lowest
# Grey boxes indicate the gene set could not be evaluated because
# to few genes were represented
plotZenithResults(res.gsa)
```
Index

.rankSumTestWithCorrelation, 2

corInGeneSet, 3

get_GeneOntology, 3
get_MSigDB, 4

plotZenithResults, 5

zenith, 7
zenith_gsa, 5, 10
zenith_gsa,MArrayLM,GeneSetCollection,ANY-method (zenith_gsa), 10
zenith_gsa,MArrayLM,GeneSetCollection-method (zenith_gsa), 10
zenithPR_gsa, 9