DMRcate for bisulfite sequencing

Peters TJ

June 16, 2024

Summary

Worked example to find DMRs from whole genome bisulfite sequencing data.

```r
if (!require("BiocManager"))
  install.packages("BiocManager")
BiocManager::install("DMRcate")
```

Load DMRcate into the workspace:

```r
library(DMRcate)
```

Bisulfite sequencing assays are fundamentally different to arrays, because methylation is represented as a pair of methylated and unmethylated reads per sample, instead of a single beta value. Although we could simply take the logit-transformed fraction of methylated reads per CpG, this removes the effect of varying read depth across the genome. For example, a sampling depth of 30 methylated reads and 10 unmethylated reads is a much more precise estimate of the methylation level of a given CpG site than 3 methylated and 1 unmethylated. Hence, we take advantage of the fact that the overall effect can be expressed as an interaction between the coefficient of interest and a two-level factor representing methylated and unmethylated reads [1].

The example shown here will be performed on a BSseq object containing bisulfite sequencing of regulatory T cells from various tissues as part of the tissueTreg package[2], imported using ExperimentHub. First, we will import the data:

```r
library(ExperimentHub)
eh <- ExperimentHub()
bis_1072 <- eh[["EH1072"]]
bis_1072
```

An object of type 'BSseq' with
21867550 methylation loci
15 samples
has been smoothed with
BSmooth (ns = 70, h = 1000, maxGap = 100000000)
All assays are in-memory

`colnames(bis_1072)`

```r
## [1] "Fat-Treg-R1"  "Fat-Treg-R2"  "Fat-Treg-R3"  "Liver-Treg-R1"
## [5] "Liver-Treg-R2" "Liver-Treg-R3"  "Skin-Treg-R1"  "Skin-Treg-R2"
## [9] "Skin-Treg-R3"  "Lymph-N-Tcon-R1" "Lymph-N-Tcon-R2" "Lymph-N-Tcon-R3"
## [13] "Lymph-N-Treg-R1" "Lymph-N-Treg-R2" "Lymph-N-Treg-R3"
```

The data contains 15 samples: 3 (unmatched) replicates of mouse Tregs from fat, liver, skin and lymph node, plus a group of 3 CD4+ conventional lymph node T cells (Tcon). We will annotate the BSseq object to reflect this phenotypic information:

```r
bsseq::pData(bis_1072) <- data.frame(replicate=gsub(".*-", "", colnames(bis_1072)),
                                      tissue=substr(colnames(bis_1072), 1,
                                                    nchar(colnames(bis_1072))-3),
                                      row.names=colnames(bis_1072))

colData(bis_1072)$tissue <- gsub("-", ",", colData(bis_1072)$tissue)
as.data.frame(colData(bis_1072))
```

```r
## replicate tissue
## Fat-Treg-R1  R1 Fat_Treg
## Fat-Treg-R2  R2 Fat_Treg
## Fat-Treg-R3  R3 Fat_Treg
## Liver-Treg-R1 R1 Liver_Treg
## Liver-Treg-R2 R2 Liver_Treg
## Liver-Treg-R3 R3 Liver_Treg
## Skin-Treg-R1  R1 Skin_Treg
## Skin-Treg-R2  R2 Skin_Treg
## Skin-Treg-R3  R3 Skin_Treg
## Lymph-N-Tcon-R1 R1 Lymph_N_Tcon
## Lymph-N-Tcon-R2 R2 Lymph_N_Tcon
## Lymph-N-Tcon-R3 R3 Lymph_N_Tcon
## Lymph-N-Treg-R1  R1 Lymph_N_Treg
## Lymph-N-Treg-R2  R2 Lymph_N_Treg
## Lymph-N-Treg-R3  R3 Lymph_N_Treg
```

For standardisation purposes (and for `DMR.plot` to recognise the genome) we will change the chromosome naming convention to UCSC:

```
```
For demonstration purposes, we will retain CpGs on chromosome 19 only:

```r
bis_1072 <- renameSeqlevels(bis_1072, mapSeqlevels(seqlevels(bis_1072), "UCSC"))

For demonstration purposes, we will retain CpGs on chromosome 19 only:

```r
tissue <- factor(pData(bis_1072)$tissue)
tissue <- relevel(tissue, "Liver_Treg")
```

Now we can prepare the model to be fit for `sequencing.annotate()`. The arguments are equivalent to `cpg.annotate()` but for a couple of exceptions:

- There is an extra argument `all.cov` giving an option whether to retain only CpGs where all samples have non-zero coverage, or whether to retain CpGs with only partial sample representation.
- The design matrix should be constructed to reflect the 2-factor structure of methylated and unmethylated reads. Fortunately, `edgeR::modelMatrixMeth()` can take a regular design matrix and transform it into the appropriate structure ready for model fitting.

```r
design <- model.matrix(~tissue)
colnames(design) <- gsub("tissue", "", colnames(design))
colnames(design)[1] <- "Intercept"
rownames(design) <- colnames(bis_1072)
design
```
```
Lymph-N-Tcon-R1 1 0 1 0 0
Lymph-N-Tcon-R2 1 0 1 0 0
Lymph-N-Tcon-R3 1 0 1 0 0
Lymph-N-Treg-R1 1 0 0 1 0
Lymph-N-Treg-R2 1 0 0 1 0
Lymph-N-Treg-R3 1 0 0 1 0
attr(,"assign")
[1] 0 1 1 1 1
attr(,"contrasts")
attr(,"contrasts")$tissue
[1] "contr.treatment"

Methylation matrix design
methdesign <- edgeR::modelMatrixMeth(design)
methdesign
```

```
Sample1 Sample2 Sample3 Sample4 Sample5 Sample6 Sample7 Sample8 Sample9
1 1 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0
4 0 0 1 0 0 0 0 0 0
5 0 0 0 1 0 0 0 0 0
6 0 0 0 0 1 0 0 0 0
7 0 0 0 1 0 0 0 0 0
8 0 0 0 1 0 0 0 0 0
9 0 0 0 0 1 0 0 0 0
10 0 0 0 0 1 0 0 0 0
11 0 0 0 0 0 1 0 0 0
12 0 0 0 0 0 0 1 0 0
13 0 0 0 0 0 0 0 1 0
14 0 0 0 0 0 0 0 0 1
15 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 0
29 0 0 0 0 0 0 0 0 0
```
<table>
<thead>
<tr>
<th></th>
<th>Sample10</th>
<th>Sample11</th>
<th>Sample12</th>
<th>Sample13</th>
<th>Sample14</th>
<th>Sample15</th>
<th>Intercept</th>
<th>Fat_Treg</th>
<th>Lymph_N_Tcon</th>
<th>Lymph_N_Treg</th>
<th>Skin_Treg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>28</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>29</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>0</td>
</tr>
</tbody>
</table>

## 5
Just like for `cpg.annotate()`, we can specify a contrast matrix to find our comparisons of interest.

```r
cont.mat <- limma::makeContrasts(
treg_vs_tcon = Lymph_N_Treg - Lymph_N_Tcon,
fat_vs_ln = Fat_Treg - Lymph_N_Treg,
skin_vs_ln = Skin_Treg - Lymph_N_Treg,
fat_vs_skin = Fat_Treg - Skin_Treg,
levels = methdesign)
cont.mat
```

<table>
<thead>
<tr>
<th>Levels</th>
<th>treg_vs_tcon</th>
<th>fat_vs_ln</th>
<th>skin_vs_ln</th>
<th>fat_vs_skin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sample2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sample3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sample4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sample5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sample6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sample7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sample8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sample9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sample10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sample11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sample12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sample13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sample14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sample15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Say we want to find DMRs between the regulatory and conventional T cells from the lymph node. First we would fit the model, where `sequencing.annotate()` transforms counts into log2CPMs (via `limma::voom()`) and uses `limma` under the hood to generate per-CpG $t$-statistics, indexing the FDR at 0.05:

```r
seq_annot <- sequencing.annotate(bis_1072, methdesign, all.cov = TRUE,
 contrasts = TRUE, cont.matrix = cont.mat,
 coef = "treg_vs_tcon", fdr=0.05)
```

And then, just like before, we can call DMRs with `dmrcate()`:

```r
dmrcate.res <- dmrcate(seq_annot, C=2, min.cpgs = 5)
```

## Intercept 0 0 0 0
## Fat_Treg 0 1 0 1
## Lymph_N_Tcon -1 0 0 0
## Lymph_N_Treg 1 -1 -1 0
## Skin_Treg 0 0 1 -1

And then, just like before, we can call DMRs with `dmrcate()`:
Looks like the top DMR is associated with the *Jak2* locus and hypomethylated in the Treg cells (since `meandiff < 0`). We can plot it like so:

```r
cols <- as.character(plyr::mapvalues(tissue, unique(tissue),
 c("darkorange", "maroon", "blue",
 "black", "magenta")))

names(cols) <- tissue

DMR.plot(treg_vs_tcon.ranges, dmr = 1,
 CpGs=bis_1072[,tissue %in% c("Lymph_N_Tcon", "Lymph_N_Treg")],
 phen.col = cols[tissue %in% c("Lymph_N_Tcon", "Lymph_N_Treg")],
 genome="mm10")
```
Now, let’s find DMRs between fat and skin Tregs.

```r
seq_annot <- sequencing.annotate(bis_1072, methdesign, all.cov = TRUE,
 contrasts = TRUE, cont.matrix = cont.mat,
 coef = "fat_vs_skin", fdr=0.05)
```

## Filtering out all CpGs where at least one sample has zero coverage...
## Processing BSseq object...
## Transforming counts...
## Fitting model...

## Your contrast returned 5 individually significant CpGs; a small but real effect. Consider increasing the ‘fdr’ parameter using changeFDR(), but be warned there is an increased risk of Type I errors.

Because this comparison is a bit more subtle, there are very few significantly differential CpGs at this threshold. So we can use `changeFDR()` to relax the
FDR to 0.25, taking into account that there is an increased risk of false positives.

```r
seq_annot <- changeFDR(seq_annot, 0.25)
```

## Threshold is now set at FDR=0.25, resulting in 63 significantly differential CpGs.

```r
dmrcate.res <- dmrcate(seq_annot, C=2, min.cpgs = 5)
```

## Fitting chr19...
## Demarcating regions...
## Done!

```r
fat_vs_skin.ranges <- extractRanges(dmrcate.res, genome="mm10")
```

## see ?DMRcatedata and browseVignettes('DMRcatedata') for documentation
## loading from cache

Now let’s plot the top DMR with not only fat and skin, but with all samples:

```r
cols
```

```
Fat_Treg Fat_Treg Fat_Treg Liver_Treg Liver_Treg Liver_Treg
"darkorange" "darkorange" "darkorange" "maroon" "maroon" "maroon"
Skin_Treg Skin_Treg Skin_Treg Lymph_N_Tcon Lymph_N_Tcon Lymph_N_Tcon
"blue" "blue" "blue" "black" "black" "black"
Lymph_N_Treg Lymph_N_Treg Lymph_N_Treg
"magenta" "magenta" "magenta"
```

```r
DMR.plot(fat_vs_skin.ranges, dmr = 1, CpGs=bis_1072, phen.col = cols, genome="mm10")
```
Here we can see the methylation of skin cells over this region near the *Gcnt1* promoter is hypomethylated not only relative to fat, but to the other tissues as well.
## LC_TIME=en_GB  LC_COLLATE=C
## LC_MONETARY=en_US.UTF-8  LC_MESSAGES=en_US.UTF-8
## LC_PAPER=en_US.UTF-8  LC_NAME=C
## LC_ADDRESS=C  LC_TELEPHONE=C
## LC_MEASUREMENT=en_US.UTF-8  LC_IDENTIFICATION=C
##
## time zone: America/New_York
## tzcode source: system (glibc)
##
## attached base packages:
## [1] parallel  stats4   stats   graphics   grDevices   utils   datasets
## [8] methods   base
##
## other attached packages:
## [1] bsseq_1.40.0
## [2] tissueTreg_1.24.0
## [3] DMRcatedata_2.22.0
## [4] IlluminaHumanMethylationEPICanno.nlm10b4.hg19_0.6.0
## [5] IlluminaHumanMethylationEPICmanifest_0.3.0
## [7] minfi_1.50.0
## [8] bumphunter_1.46.0
## [9] locfit_1.5-9.9
## [10] iterators_1.0.14
## [11] foreach_1.5.2
## [12] Biostrings_2.72.1
## [13] XVector_0.44.0
## [14] SummarizedExperiment_1.34.0
## [15] Biobase_2.64.0
## [16] MatrixGenerics_1.16.0
## [17] matrixStats_1.3.0
## [18] GenomicRanges_1.56.1
## [19] GenomeInfoDb_1.40.1
## [20] IRanges_2.38.0
## [21] S4Vectors_0.42.0
## [22] ExperimentHub_2.12.0
## [23] AnnotationHub_3.12.0
## [24] BiocFileCache_2.12.0
## [25] dbplyr_2.5.0
## [26] BiocGenerics_0.50.0
## [27] DMRcate_3.0.2
##
## loaded via a namespace (and not attached):
## [1] splines_4.4.0
## [3] bitops_1.0-7
## [4] filelock_1.0.3
## [5] cellranger_1.1.0
## [6] tibble_3.2.1
## [8] preprocessCore_1.66.0
## [9] XML_3.99-0.16.1
## [10] rpart_4.1.23
## [11] lifecycle_1.0.4
## [12] httr2_1.0.1
## [13] edgeR_4.2.0
## [14] base64_2.0.1
## [15] MASS_7.3-61
## [16] lattice_0.22-6
## [17] ensembldb_2.28.0
## [18] scrime_1.3.5
## [19] backports_1.5.0
## [20] magrittr_2.0.3
## [21] limma_3.60.3
## [22] Hmisc_5.1-3
## [23] rmarkdown_2.27
## [24] yaml_2.3.8
## [25] doRNG_1.8.6
## [26] askpass_1.2.0
## [27] Gviz_1.48.0
## [28] DBI_1.2.3
## [29] RColorBrewer_1.1-3
## [30] abind_1.4-5
## [31] zlibbioc_1.50.0
## [32] quadprog_1.5-8
## [33] purrr_1.0.2
## [34] R.utils_2.12.3
## [35] AnnotationFilter_1.28.0
## [36] biovizBase_1.52.0
## [37] RCurl_1.98-1.14
## [38] nnet_7.3-19
## [39] VariantAnnotation_1.50.0
## [40] rappdirs_0.3.3
## [41] GenomeInfoDbData_1.2.12
## [42] genefilter_1.86.0
## [43] annotate_1.82.0
## [44] permute_0.9-7
## [45] DelayedMatrixStats_1.26.0
## [46] codetools_0.2-20
## [47] DelayedArray_0.30.1
## [48] xml2_1.3.6
## [49] tidyselect_1.2.1
## [50] UCSC.utils_1.0.0
## [51] beanplot_1.3.1
## [52] base64enc_0.1-3
## [53] illuminaio_0.46.0
## [54] GenomicAlignments_1.40.0
## [55] jsonlite_1.8.8
## [56] multtest_2.60.0
## [57] Formula_1.2-5
## [58] survival_3.7-0
## [59] missMethyl_1.38.0
## [60] tools_4.4.0
## [61] progress_1.2.3
## [62] Rcpp_1.0.12
## [63] glue_1.7.0
## [64] gridExtra_2.3
## [65] SparseArray_1.4.8
## [66] xfun_0.44
## [67] dplyr_1.1.4
## [68] HDF5Array_1.32.0
## [69] withr_3.0.0
## [70] IlluminaHumanMethylation450kanno.ilmn12.hg19_0.6.1
## [71] BiocManager_1.30.23
## [72] fastmap_1.2.0
## [73] latticeExtra_0.6-30
## [74] rhdf5filters_1.16.0
## [75] fansi_1.0.6
## [76] openssl_2.2.0
## [77] digest_0.6.35
## [78] mime_0.12
## [79] R6_2.5.1
## [80] colorspace_2.1-0
## [81] gtools_3.9.5
## [82] jpeg_0.1-10
## [83] dichromat_2.0-0.1
## [84] biomaRt_2.60.0
## [85] RSQLite_2.3.7
## [86] R.methodsS3_1.8.2
## [87] tidyr_1.3.1
## [88] utf8_1.2.4
## [89] generics_0.1.3
## [90] data.table_1.15.4
## [91] rtracklayer_1.64.0
## [92] prettyunits_1.2.0
## [93] httr_1.4.7
## [94]htmlwidgets_1.6.4
## [95]S4Arrays_1.4.1
## [96]pkgconfig_2.0.3
## [97]gtable_0.3.5
## [98]blob_1.2.4
## [99]siggenes_1.78.0
## [100]htmltools_0.5.8.1
## [101]ProtGenerics_1.36.0
## [102]scales_1.3.0
## [103]png_0.1-8
## [104]knitr_1.47
## [105]rstudioapi_0.16.0
## [106]tzdb_0.4.0
## [107]rjson_0.2.21
## [108]nlme_3.1-165
## [109]checkmate_2.3.1
## [110]curl_5.2.1
## [111]org.Hs.eg.db_3.19.1
## [112]cachem_1.1.0
## [113]rhdf5_2.48.0
## [114]stringr_1.5.1
## [115]BiocVersion_3.19.1
## [116]foreign_0.8-86
## [117]AnnotationDbi_1.66.0
## [118]restfulr_0.0.15
## [119]GEOquery_2.72.0
## [120]pillar_1.9.0
## [121]grid_4.4.0
## [122]reshape_0.8.9
## [123]vctrs_0.6.5
## [124]xtable_1.8-4
## [125]cluster_2.1.6
## [126]htmlTable_2.4.2
## [127]evaluate_0.24.0
## [128]readr_2.1.5
## [129]GenomicFeatures_1.56.0
## [130]cli_3.6.2
## [131]compiler_4.4.0
## [132]Rsamtools_2.20.0
## [133]rngtools_1.5.2
## [134]rlang_1.1.4
## [135]crayon_1.5.2
## [136]nor1mix_1.3-3
## [137]mclust_6.1.1
## References
