GWAS-based Mendelian Randomization Path Analysis

Yuan-De Tan
tanyuande@gmail.com

May 1, 2024

Abstract

GMRP can perform analyses of Mendelian randomization (MR), correlation, path of causal variables onto disease of interest and SNP annotation analysis. MR includes SNP selection with given criteria and regression analysis of causal variables on the disease to generate beta values of causal variables on the disease. Using the beta vectors, GMRP performs correlation and path analyses to construct path diagrams of causal variables to the disease. GMRP consists of 8 R functions: chrp, fmerge, mkttable, pathdiagram, pathdiagram2, path, snpPosiAnnot, ucsannot and 5 datasets: beta.data, cad.data, lpd.data, SNP358.data, SNP368annot.data. chrp is used to separate string vector hg19 into two numeric vectors: chromosome number and SNP chromosome position. Function fmerge is used to merge two GWAS result datasets into one dataset. Function mkttable performs SNP selection and creates a standard beta table for function path to do MR and path analyses. Function pathdiagram is used to create a path diagram of causal variables onto a given disease or onto outcome. Function pathdiagram2 can merge two-level pathdiagrams into one nested pathdiagram where inner pathdiagram is a pathdiagram of causal variables contributing to outcome and the outside pathdiagram is a path diagram of causal variables including outcome onto the disease. The five datasets provide examples for running these functions. lpd.data and cad.data provide an example to create a standard beta dataset for path function to do path analysis and SNP data for SNP annotation analysis by performing mkttable and fmerge. beta.data are a standard beta dataset for path analysis. SNP358.data provide an example for snpPosiAnnot to do SNP position annotation analysis and SNP368annot.data are for ucsannot to perform SNP function annotation analysis.

Contents

1 Introduction ... 2
2 Loading Data .. 3
3 Preparation of Standard Beta Table 5
4 Two-way Scatter Plots for Beta Values of Disease and Undefined Causal Variables 8
5 MR and Path Analysis .. 9
1 Introduction

As an example of human disease, coronary artery disease (CAD) is one of the causes leading to death and infirmity worldwide [1]. Low-density lipoprotein cholesterol (LDL) and triglycerides (TG) are viewed as risk factors causing CAD. In epidemiological studies, plasma concentrations of increasing TG and LDL and deceasing high-density lipoprotein cholesterol (HDL) have been observed to be associated with risk for CAD [2, 3]. However, from observational studies, one could not directly infer that these cholesterol concentrations in plasma are risk factors causing CAD [4, 3, 5, 6]. A big limitation of observational studies is to difficultly distinguish between causal and spurious associations due to confounding [7]. An efficient approach to overcome this limitation is Mendelian Randomization (MR) analysis [5, 8] where genetic variants are used as instrumental variables. For this reason, many investigators tried to use genetic variants to assess causality and estimate the causal effects on the diseases.

MR analysis can perfectly exclude confounding factors associated with disease. However, when we expand one causal variable to many, MR analysis becomes challenged and complicated because the genetic variant would have additional effects on the other risk factors, which violate assumption of no pleiotropy. An unknown genetic variant in MR analysis possibly provides a false instrument for causal effect assessment of risk factors on the disease. The reason is that if this genetic variant is in LD with another gene that is not used but has effect on the disease of study [5, 9]. It then violates the third assumption. These two problems can be addressed by using multiple instrumental variables. For this reason, Do et al (2013) developed statistic approach to address this issue [4]. However, method of Do et al [4] cannot disentangle correlation effects among the multiple undefined risk factors on the disease of study. The beta values obtained from regression analyses are not direct causal effects because their effects are entangled with correlations among these undefined risk factors.

The best way to address the entanglement of multiple causal effects is path analysis that was developed by Wright [12, 11]. This is because path analysis can dissect beta values into direct and indirect effects of causal variables on the disease. However, path analysis has not broadly been applied to diseases because diseases are usually binary variable. The method of Do [4] makes it possible to apply path analysis to disentangle causal effects of undefined risk factors on diseases. For doing so, we here provide R package GMRP (GWAS-based MR and path analysis) to solve the above issues.

This vignette is intended to give a rapid introduction to the commands used in implementing MR analysis, regression analysis, and path analysis, including SNP annotation and chromosomal position analysis by means of the GMRP package.

We assume that user has the GWAS result data from GWAS analysis or GWAS meta analysis of SNPs associated with risk or confounding factors and a disease of study. If all studied causal variables of GWAS data are separately saved in different sheet files, then files are assumed to have the same sheet format and they are required to be merged by using function fmerge into one sheet file without disease GWAS data. After a standard beta table is created
GWAS-based Mendelian Randomization Path Analysis

with `mktable`, user can use function `path` to perform RM and path analyses. Using the result of path analysis, user can draw path `plot(pathdiagram)` with functions `pathdiagram` and `pathdiagram2`. These will be introduced in detail in the following examples.

We begin by loading the `GMRP` package.

```r
> library(GMRP)
```

Loading Data

`GMRP` provides five data files: `beta.data`, `cad.data`, `lpd.data`, `SNP358.data` and `SNP368annot.data` where

- `lpd.data` was a subset (1069 SNPs) of four GWAS result datasets for LDL, HDL, TG and TC. These GWAS result data sheets were downloaded from the website\(^1\) where there are 120165 SNPs on 23 chromosomes and 40 variables. Four GWAS result datasets for LDL, HDL, TG and TC were merged into one data sheet by using `fmerge(fl1, fl2, ID1, ID2, A, B, method)` where `fl1` and `fl2` are two GWAS result data sheets. `ID1` and `ID2` are key id in files `fl1` and `fl2`, respectively, and required. `A` and `B` are respectively postfix for `fl1` and `fl2`. Default values are `A`="" and `B"=". `method` is method for merging. In the current version, there are four methods: `method="No"` or "no" or "NO" or "N" or "n" means that the data with unmatched SNPs in file1 and file 2 are not saved in the merged file; `method="ALL"` or "All" or "all" or "A" or "a" indicates that the data with all unmatched SNPs in file1 and file 2 are saved in the unpaired way in the merged data file; If `method="file1"`, then those with unmatched SNPs only from file1 are saved or if `method="file2"`, `fmerge` will save the data with unmatched SNPs only from file2". Here is a simple example:

```r
> data1 <- matrix(NA, 20, 4)
> data2 <- matrix(NA, 30, 7)
> SNPID1 <- paste("rs", seq(1:20), sep="")
> SNPID2 <- paste("rs", seq(1:30), sep="")
> data1[,1:4] <- c(round(runif(20), 4), round(runif(20), 4), round(runif(20), 4), round(runif(20), 4))
> data2[,1:4] <- c(round(runif(30), 4),round(runif(30), 4), round(runif(30), 4), round(runif(30), 4))
> data2[,5:7] <- c(seq(30)*round(runif(30), 4), seq(30)*runif(30), 4), seq(30))
> data1 <- cbind(SNPID1, as.data.frame(data1))
> data2 <- cbind(SNPID2, as.data.frame(data2))
> dim(data1)
> dim(data2)
> colnames(data1) <- c("SNP", "var1", "var2", "var3", "var4")
> colnames(data2) <- c("SNP", "var1", "var2", "var3", "var4", "V1", "V2", "V3")
> data1 <- DataFrame(data1)
> data2 <- DataFrame(data2)
> data2 <- fmerge(f1=data1, f2=data2, ID1="SNP", ID2="SNP", A=".dat1", B=".dat2", method="No")
```

User can take the following approach to merge all four lipid files into a data sheet: `LDLHDL<-fmerge(fl1=LDLfile, fl2=HDLfile, ID1="SNP", ID2="SNP", A=".LDL", B=".HDL", method="No")`

`TGTC<-fmerge(fl1=TGfile, fl2=TCfile, ID1="SNP", ID2="SNP", A=".TG", B=".TC", method="No")`

`lpd<-fmerge(fl1=LDLHDL, fl2=TGTC, ID1="SNP", ID2="SNP", A="", B="", method="No")`

`cad.data` was also a subset (1069 SNPs) of original GWAS meta-analyzed dataset that was downloaded from the website\(^2\) and contains 2420360 SNPs and 12 variables.

\(^1\)http://csg.sph.umich.edu/abecasis/public/lipids2013/

\(^2\)http://www.cardiogramplusc4d.org/downloads/
GWAS-based Mendelian Randomization Path Analysis

beta.data that was created by using function mktable and fmerge from lpd.data and cad.data is a standard beta table for MR and path analyses.

SNP358.data contains 358 SNPs selected by mktable for SNP position annotation analysis.

SNP368annot.data is the data obtained from function analysis with http://snp-nexus.org/index.htmlSNP Annotation Tool and provides example of performing function uscanno to draw a 3D pie and output the results of proportions of SNPs coming from gene function various elements.

```r
> data(cad.data)
> #cad <- DataFrame(cad.data)
> cad <- cad.data
> head(cad)

SNP    chr_pos_b36 reference_allele other_allele ref_allele_frequency pvalue
1  rs3091242 chr1:25547372 C     T         0.4630502   0.9036396
2  rs926438  chr1:25626225 C     T         0.4661719   0.4769371
3  rs11802413 chr1:25633507 C     T         0.4651288   0.4698333
4  rs7541095  chr1:25633878 C     T         0.5329650   0.8293105
5  rs10903129 chr1:25641524 G     A         0.5345702   0.3804964
6  rs12746810 chr1:26885720 G     A         0.8749898   0.0945896

het_pvalue log_odds log_odds_se N_case N_control model
1 0.90432143 -0.0018321 0.0151330 17085 58384 FE
2 0.97388037 -0.0098335 0.0138259 21913 62220 FE
3 0.95992310 -0.0100090 0.0138485 21885 62197 FE
4 0.83943112 0.0030565 0.0141775 20039 60965 FE
5 0.95534970 0.0122634 0.0139836 21600 59352 FE
6 0.04893363 -0.0409198 0.0244784 19722 60854 FE

> data(lpd.data)
> #lpd <- DataFrame(lpd.data)
> lpd <- lpd.data
> head(lpd)

SNP_hg18.HDL SNP_hg19.HDL rsid.HDL A1.HDL A2.HDL beta.HDL se.HDL N.HDL
1  chr19:19379316 chr19:19518316 rs1000237 a t       0.0083  0.0051 92630.00
2  chr4:88283455  chr4:88064431 rs10023050 g a       0.0174  0.0049 92768.00
3  chr5:156366229 chr5:156433651 rs10036890 t a       0.0044  0.0062 92464.98
4  chr19:11085181 chr19:11224181 rs1003723 t c       0.0051  0.0050 86071.10
5  chr5:74753409  chr5:74717653 rs10038723 t c       0.0043  0.0059 92790.02
6  chr11:116227036 chr11:116721826 rs10047459 t c      0.0203  0.0070 76329.02

1   0.127300       0.3272 chr19:19379316 chr19:19518316 rs1000237 t
2   0.001186       0.4222 chr4:88283455  chr4:88064431 rs10023050 a
3   0.551000       0.8417 chr5:156366229 chr5:156433651 rs10036890 t
4   0.337800       0.4578 chr19:11085181 chr19:11224181 rs1003723 t
5   0.488600       0.2375 chr5:74753409  chr5:74717653 rs10038723 t
6   0.013370       0.8074 chr11:116227036 chr11:116721826 rs10047459 c

A2.LDL beta.LDL se.LDL N.LDL P.value.LDL Freq.A1.1000G.EUR.LDL SNP_hg18.TG
1   a 0.0373   0.0054 82908.98  2.755e-11  0.6728 chr19:19379316
2   g 0.0141   0.0052 83123.00   1.457e-02  0.5778 chr4:88283455
3   a 0.0245   0.0066 83022.99   3.848e-04  0.8417 chr5:156366229
4   c 0.0335   0.0053 77777.00   1.508e-09  0.4578 chr19:11085181
```
3 Preparation of Standard Beta Table

The standard beta table for MR and path analyses must have the standard format. It has columns: \(\text{chrn} \), \(\text{posit} \), \(\text{rsid} \), \(\text{a1.x} \), \(\text{a2.x} \), \(\cdots \), \(\text{an.x} \), \(\text{freq.x} \), \(\text{sd.x} \), \(\beta.x \), \(\text{pvj} \), \(\text{N.x} \), \(\text{pdj} \), \(\text{hg.d} \), \(\text{SNP.d} \), \(\text{freq.d} \), \(\text{beta.d} \), \(\text{N.d} \), \(\text{freq.case} \), \(\text{pd} \) where \(x_1, x_2, \cdots, x_n \) are variables.

- \(\beta \) is vector of beta values of SNPs on variable vector \(X=(x_1, x_2, \cdots, x_n) \).
- \(\text{freq} \) is vector of frequency of allele 1 with respect to variable vector \(X=(x_1, x_2, \cdots, x_n) \).
- \(\text{sd} \) is vector of standard deviations of variable \((x_1, x_2, \cdots, x_n) \) specific to SNP. If \(\text{sd} \) does not specifically correspond to SNP, then \(\text{sd.x} \) has the same value for all SNPs.
- \(d \) denotes disease.
- \(N \) is sample size.
- \(\text{freq.case} \) is frequency of disease.
- \(\text{chrn} \) is vector of chromosome number.
- \(\text{posit} \) is position vector of SNPs on chromosomes. Some time, \(\text{chrn} \) and posit are combined into string \(\text{hg19} \) or \(\text{hg18} \).
- \(\text{pvj} \) is defined as \(p \)-value, \(\text{pcj} \) and \(\text{pdj} \) as proportions of sample size for SNP \(j \) to the maximum sample size in causal variables and in disease, respectively.

We use function \texttt{mktable} to choose SNPs and make a standard beta table for MR and path analyses. For convenience, we first assign \texttt{lpd.data} to \texttt{lpd} and \texttt{cad.data} to \texttt{cad}:
GWAS-based Mendelian Randomization Path Analysis

The standard beta table will be created via 15 steps:

Step 1: calculate $p_v j$

```r
> pvalue.LDL <- lpd$P.value.LDL
> pvalue.HDL <- lpd$P.value.HDL
> pvalue.TG <- lpd$P.value.TG
> pvalue.TC <- lpd$P.value.TC
> pv <- cbind(pvalue.LDL, pvalue.HDL, pvalue.TG, pvalue.TC)
> pvj <- apply(pv, 1, min)
```

Step 2: retrieve causal variables from data `lpd` and construct a matrix for beta:

```r
> beta.LDL <- lpd$beta.LDL
> beta.HDL <- lpd$beta.HDL
> beta.TG <- lpd$beta.TG
> beta.TC <- lpd$beta.TC
> beta <- cbind(beta.LDL, beta.HDL, beta.TG, beta.TC)
```

Step 3: construct a matrix for allele1:

```r
> a1.LDL <- lpd$A1.LDL
> a1.HDL <- lpd$A1.HDL
> a1.TG <- lpd$A1.TG
> a1.TC <- lpd$A1.TC
> alle1 <- cbind(a1.LDL, a1.HDL, a1.TG, a1.TC)
```

Step 4: give sample sizes of causal variables and calculate $p_c j$

```r
> N.LDL <- lpd$N.LDL
> N.HDL <- lpd$N.HDL
> N.TG <- lpd$N.TG
> N.TC <- lpd$N.TC
> ss <- cbind(N.LDL, N.HDL, N.TG, N.TC)
> sm <- apply(ss, 1, sum)
> pcj <- round(sm/max(sm), 6)
```

Step 5: Construct matrix for frequency of allele1 in each causal variable in 1000G.EUR

```r
> freq.LDL <- lpd$Freq.A1.1000G.EUR.LDL
> freq.HDL <- lpd$Freq.A1.1000G.EUR.HDL
> freq.TG <- lpd$Freq.A1.1000G.EUR.TG
> freq.TC <- lpd$Freq.A1.1000G.EUR.TC
> freq <- cbind(freq.LDL, freq.HDL, freq.TG, freq.TC)
```

Step 6: construct matrix for sd of each causal variable (here sd is not specific to SNP j). The following sd values for LDL, HDL, TG and TC were means of standard deviations of these lipoprotein concentrations in plasma over 63 studies from Willer et al [10].

```r
> sd.LDL <- rep(37.42, length(pvj))
> sd.HDL <- rep(14.87, length(pvj))
> sd.TG <- rep(92.73, length(pvj))
> sd.TC <- rep(42.74, length(pvj))
> sd <- cbind(sd.LDL, sd.HDL, sd.TG, sd.TC)
```
GWAS-based Mendelian Randomization Path Analysis

Step 7: SNP ID and position are retrieved from `lpd` data:

```r
> hg19 <- lpd$SNP_hg19.HDL
> rsid <- lpd$rsid.HDL
```

Step 8: separate chromosome number and SNP position using `chrp`:

```r
> chr <- chrp(hg=hg19)
```

Step 9: get new data:

```r
> newdata <- cbind(freq, beta, sd, pvj, ss, pcj)
> newdata <- cbind(chr, rsid, allele, as.data.frame(newdata))
> dim(newdata)
```

Step 10: retrieve data from `cad` and calculate `pdj` and frequency of coronary artery disease `cad`, `freq.case` in case population:

```r
> hg18.d <- cad$chr_pos_b36
> SNP.d <- cad$SNP #SNPID
> a1.d <- tolower(cad$reference_allele)
> freq.d <- cad$ref_allele_frequency
> pvalue.d <- cad$pvalue
> beta.d <- cad$log_odds
> N.case <- cad$N_case
> N.ctr <- cad$N_control
> N.d <- N.case + N.ctr
> freq.case <- N.case / N.d
```

Step 11: combine these `cad` variables into new data sheet using `cbind`:

```r
> newcad <- cbind(freq.d, beta.d, N.case, N.ctr, freq.case)
> newcad <- cbind(hg18.d, SNP.d, a1.d, as.data.frame(newcad))
> dim(newcad)
```

Step 12: give name vector of causal variables:

```r
> varname <- c("CAD", "LDL", "HDL", "TG", "TC")
```

Step 13: choose SNPs using parameters `LG`, `Pv`, `Pc` and `Pd` and create standard beta table using `mktable`:

```r
> mktable(cdata, ddata, rt, varname, LG, Pv, Pc, Pd) where
```

`cdata` is beta data of SNPs regressed on causal variables. Here `cdata=newdata`.

`ddata` is beta data of SNPs regressed on the disease (here `CAD`). Here `ddata=newcad`.

`LG`: a numeric parameter. `LG` is used to choose SNPs with given interval threshold for linkage disequilibrium (LD). Default `LG = 10`.

`Pv`: a numeric parameter. `Pv` is used to choose SNPs with a given p-value cutoff. Default `Pv = 5 × 10^{-8}`.

`Pc`: a numeric parameter. `Pc` is used to choose SNPs with a given cutoff for the proportion of sample size to maximum sample size in causal variable data. Default `Pc = 0.979`.

`Pd`: a numeric parameter. `Pd` is used to choose SNP with a given cutoff for the proportion of sample size to the maximum sample size in disease data. Default `Pd = 0.979`.
GWAS-based Mendelian Randomization Path Analysis

rt has two options: "beta" and "path". If rt="beta" or "Beta" or "B", then mktable return a beta coefficient matrix of SNPs regressed on causal variables and disease, if rt="path" or "Path" or "P" it returns a path coefficient matrix of SNPs directly contributing to causal variables and disease.

```r
> mybeta <- mktable(cdata=newdata, ddata=newcad, rt="beta", varname=varname, LG=1, Pv=0.00000005, Pc=0.979, Pd=0.979)
> dim(mybeta)
> beta <- mybeta[,4:8]  # standard beta table for path analysis
> snp <- mybeta[,1:3]   # snp data for annotation analysis
> beta<-DataFrame(beta)
> head(beta)
```

4 Two-way Scatter Plots for Beta Values of Disease and Undefined Causal Variables

To roughly display relationship of the undefined causal variables to disease of study, we use simple R `plot` function to create two-way plots of beta of multiple SNP regressed on the undefined causal variable versus the disease.

```r
> data(beta.data)
> beta.data<-DataFrame(beta.data)
> CAD <- beta.data$cad
> LDL <- beta.data$ldl
> HDL <- beta.data$hdl
> TG <- beta.data$tg
> TC <- beta.data$tc

> par(mfrow=c(2, 2), mar=c(5.1, 4.1, 4.1, 2.1), oma=c(0, 0, 0, 0))
> plot(LDL,CAD, pch=19, col="blue", xlab="beta of SNPs on LDL", ylab="beta of SNP on CAD", cex.lab=1.5, cex.axis=1.5, cex.main=2)
> abline(lm(CAD~LDL), col="red", lwd=2)
> plot(HDL, CAD, pch=19,col="blue", xlab="beta of SNPs on HDL", ylab="beta of SNP on CAD", cex.lab=1.5, cex.axis=1.5, cex.main=2)
> abline(lm(CAD~HDL), col="red", lwd=2)
> plot(TG, CAD, pch=19, col="blue", xlab="beta of SNPs on TG", ylab="beta of SNP on CAD", cex.lab=1.5, cex.axis=1.5, cex.main=2)
> abline(lm(CAD~TG), col="red", lwd=2)
> plot(TC, CAD, pch=19, col="blue", xlab="beta of SNPs on TC", ylab="beta of SNP on CAD", cex.lab=1.5, cex.axis=1.5, cex.main=2)
> abline(lm(CAD~TC), col="red", lwd=2)
```
GWAS-based Mendelian Randomization Path Analysis

Figure 1: Scatter plots of lipid versus coronary artery disease (CAD) based on beta values of 368 SNPs regression analyses.

5 MR and Path Analysis

After standard beta table was successfully created by mktable, user can use function path to perform RM analysis (regression analysis of causal variable beta values on the disease or outcome beta values), correlation among the undefined causal variables and disease and path analyses with model of

\[y \sim x_1 + x_2 + \cdots + x_m \]

where \(y \) is disease or outcome variable, \(x_i \) is undefined causal variable \(i \). Path analysis is based on RM analysis (regression coefficients of the causal beta on the disease beta). path will produce three tables: beta coefficients, \(sd \) values and \(t \)-test results of causal variables on disease or outcome, correlation matrix and path matrix (direct and indirect path coefficients).

```r
> data(beta.data)
> mybeta <- DataFrame(beta.data)
> mod <- CAD~LDL+HDL+TG+TC
> pathvalue <- path(betav=mybeta, model=mod, outcome="CAD")
```
6 Create Path Diagram

Once user finished performance of path, user will have correlation matrix and direct path coefficients of undefined causal variable onto the disease. User is required to open a csv file saving results of path analysis and make table in R Console or copy correlation matrix without disease correlation coefficients to excel and copy direct path coefficients to the last column. Here is an example of making correlation and path table:

```r
> mypath <- matrix(NA, 3, 4)
> mypath[1,] <- c(1.000000, -0.066678, 0.420036, 0.764638)
> mypath[2,] <- c(-0.066678, 1.000000, -0.559718, 0.496831)
> mypath[3,] <- c(0.420036, -0.559718, 1.000000, 0.414346)
> colnames(mypath) <- c("LDL", "HDL", "TG", "path")
> mypath<-as.data.frame(mypath)
> mypath

<table>
<thead>
<tr>
<th></th>
<th>LDL</th>
<th>HDL</th>
<th>TG</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.00</td>
<td>-0.07</td>
<td>0.42</td>
<td>0.76</td>
</tr>
<tr>
<td>2</td>
<td>-0.07</td>
<td>1.00</td>
<td>-0.56</td>
<td>0.50</td>
</tr>
<tr>
<td>3</td>
<td>0.42</td>
<td>-0.56</td>
<td>1.00</td>
<td>0.41</td>
</tr>
</tbody>
</table>
```

The last column is direct path coefficients, we use "path" to name this column. With this table (for example, `mypath`), user can use function `pathdiagram(pathdata,disease,R2,range)` to create path diagram. Here

`pathdata` is path result data consisting of causal correlation matrix and direct path coefficient vectors.

`disease` is a string that specifies disease name. If the disease name is long or has multiple words, then we suggest an abbreviated name, for example, coronary artery disease are shorted as "CAD".

`R2`, a numeric parameter, is R-square obtained from path analysis.

`range` is range of specified columns for correlation matrix. For example, `range = c(2:4)` means the correlation coefficient begins with column 2 and end at column 4. For our current example, `range=c(1:3)`.

```r
> library(diagram)

> pathdiagram(pathdata=mypath, disease="CAD", R2=0.988243, range=c(1:3))
```
7 Create Two-level Nested Path Diagram

Consider one of the causal variables is outcome of the other causal variables, but we also concern if all variables are risk factors for the disease of study. In this case we want to construct two-level nested path diagram using function `pathdiagram2(pathD,pathO,rangeD,rangeO,disease,R2D,R2O)` where

`pathD` is a R object that is disease path result data consisting of correlation matrix of undefined causal variables to be identified in Mendelian randomization analysis and path coefficient vector of these variables directly causing the disease of study.

`pathO` is a R object that is outcome path result data consisting of correlation matrix of undefined causal variables and path coefficient vector of these variables directly contributing to outcome. This outcome variable may be one of risk factors or causal variables in disease path data. These variables in `pathO` are the same with those in `pathD`.

`rangeD` is numeric vector, specifies column range for correlation coefficient matrix in `pathD`, for example, `rangeD=c(2:4)` means the correlation coefficient begins with column 2 and end at column 4.

Figure 2: Path diagram demo. This path diagram shows the direct risk effects of causal variables LDL, HDL and TG on the disease CAD and their correlations.
GWAS-based Mendelian Randomization Path Analysis

`rangeO` is numeric vector, specifies column range for correlation coefficient matrix in `pathO`, see example in `rangeD`.

disease is a string that specifies disease name. If the disease name is long or has multiple words, then we suggest an abbreviated name, for example, "coronary artery disease" can be shortened as "CAD".

Here is an example of `pathD` data:

```r
> pathD<-matrix(NA,4,5)
> pathD[1,] <- c(1, -0.070161, 0.399038, 0.907127, 1.210474)
> pathD[2,] <- c(-0.070161, 1, -0.552106, 0.212201, 0.147933)
> pathD[3,] <- c(0.399038, -0.552106, 1, 0.44100, 0.64229)
> pathD[4,] <- c(0.907127, 0.212201, 0.441007, 1, -1.035677)
> colnames(pathD) <- c("LDL", "HDL", "TG", "TC", "path")
> pathD<-as.data.frame(pathD)
> pathD

          LDL    HDL     TG     TC    path
1 1.0000000 -0.070161 0.399038 0.907127 1.210474
2 -0.070161 1.000000 -0.552106 0.212201 0.147933
3 0.399038 -0.552106 1.000000 0.441000 0.642290
4 0.907127 0.212201 0.441007 1.000000 -1.035677
```

Using `pathD` and `mypath`, we can perform function `pathdiagram2` to create a two-level nested path diagram:

```r
> pathdiagram2(pathD=pathD,path0=mypath,rangeD=c(1:4),rangeO=c(1:3),disease="CAD", R2D=0.536535,R2O=0.988243)
```

Note that in the current version, GMRP can just create two-level nested path diagram, maybe in the later version, GMRP will create more complex path diagrams such as more than one inner path diagram and/or multiple-disease path diagram using structure equations.
GWAS-based Mendelian Randomization Path Analysis

Figure 3: Demo of two-level nested path diagram. The outside path diagram shows the direct risk effects of undefined causal variables LDL, HDL, TG and TC on the disease CAD, the inner path diagram indicates the direct contributions of LDL, HDL and TG to TC and the correlation relationships among these variables.

8 SNP Annotation Analysis

SNPs chosen will be annotated in function and chromosome position. Position annotation analysis will give position information of these selected SNPs on chromosomes including chromosome distribution and averaged intervals between SNPs. We use `snpposit` to perform SNP position annotation. This package provides 358 SNPs selected by `mktable`.

```r
> data(SNP358.data)
> SNP358 <- as.data.frame(SNP358.data)
> head(SNP358)
rsid chr posit
1 rs10056022 5 74969415
2 rs10059560 5 156405784
3 rs10061689 5 74771387
4 rs10115928 9 107650843
5 rs10161126 12 107650843
6 rs10161126 12 110042348
```
GWAS-based Mendelian Randomization Path Analysis

`head` displays data format required by `snpposit`. User can create similar table for `SNP` position annotation analysis. To create chromosome position histogram, we need `graphics`:

```r
> library(graphics)
```

With SNP data `SNP358`, we can perform `SNP` position annotation using function `snpPositAnnot` (`SNPdata,SNPhg19,main`) where

`SNPdata` is R object that may be `hg19` that is a string vector(`chr#:##:###`) or two numeric vectors (chromosome number and `SNP` position).

`SNPhg19` is a string parameter. It may be "hg19" or "chr". If `SNPhg19"="hg19"`, then `SNPdata` contains a string vector of `hg19` or if `SNPhg19="chr"`, then `SNPdata` consists of at lest two numeric columns: `chr` and `posit`. `chr` is chromosome number and `posit` is SNP physical position on chromosomes. Note that "chr" and "posit" are required column names in `SNPdata` if `SNPhg19="chr"`.

`main` is a string which is title of graph. If no title is given, then man="". Its default is "A".

```r
> snpPositAnnot(SNPdata=SNP358,SNP_hg19="chr",main="A")
```

![Figure 4: Chromosomal histogram of 358 selected SNPs. Averaged lengths of SNP intervals on chromosome mean that the SNPs on a chromosome have their averaged lengths of intervals between them. All averaged lengths over 2000kb on chromosomes were truncated, the SNPs on these chromosomes have at least 2000kbp length of interval. Numbers above chr columns are numbers of SNP distributed on the chromosomes](image-url)
SNP function annotation analysis has two steps:

Step 1: copy SNP IDs selected to Batch Query box in SNP Annotation Tool. After setting parameters and running by clicking run button, SNP annotation result will be obtained after running for a while. Choose consequence sheet of UCSC and copy the results to excel sheet. "Predicted function" column name is changed to "functionunit" name and save it as csv format.

Step2: input the csv file into R Console using R function read.csv. In GMRP package, we have provided data for SNP function annotation analysis.

```r
> data(SNP368annot.data)
> SNP368<-as.data.frame(SNP368annot.data)
> SNP368[1:10, ]
SNP Allele Strand Symbol Gene function_unit
1 rs10056022 G|A 1 POC5 uc003keg.4 3downstream
2 rs10056022 G|A 1 POC5 uc003keh.4 3downstream
3 rs10056022 G|A 1 ANKDD1B uc010itz.4 3downstream
4 rs10056022 G|A 1 POC5 uc010izu.3 3downstream
5 rs10061689 G|A 1 COL4A3BP uc003kds.3 intronic
6 rs10061689 G|A 1 COL4A3BP uc003kdt.3 intronic
7 rs10061689 G|A 1 COL4A3BP uc003kdu.2 intronic
8 rs10061689 G|A 1 COL4A3BP uc011csu.2 intronic
9 rs10075465 C|G 1 POC5 uc003keg.4 intronic
10 rs10075465 C|G 1 POC5 uc003keh.4 intronic
```

We perform function ucscannot to summarize proportions of SNPs coming from gene various elements such as code region, introns, etc, and then create 3D pie using pie3D of plotrix.

```r
> library(plotrix)
```

ucscannot has four parameters to be inputted: SNPn, A, B and C, a method and UCSC annotated data:

UCSCannot is annotation data obtained by performing SNP tools.

SNPn is numeric parameter for number of SNPs contained in UCSCannot

A is numeric parameter for title size, default=2.5.

B is numeric parameter for label size, default=1.5.

C is numeric parameter for labelrad distance, default=1.3.

method is numeric parameter for choosing figure output methods. It has two options: method=1 has no legend but color and pie components are labeled with gene elements, method=2 has legend over pie. The default = 1.

```r
> ucscannot(UCSCannot=SNP368,SNPn=368)
genes exons introns TUR3 UTR5 intergenes upstream downstream
[1,] 166 0.01234568 0.8138651 0.01424501 0.001899335 0.004748338 0.05508072 0.09781576
> ucscannot(UCSCannot=SNP368,SNPn=368,A=3,B=2,C=1.3,method=2)
genes exons introns TUR3 UTR5 intergenes upstream downstream
[1,] 166 0.01234568 0.8138651 0.01424501 0.001899335 0.004748338 0.05508072 0.09781576
```
GWAS-based Mendelian Randomization Path Analysis

<table>
<thead>
<tr>
<th>genes</th>
<th>exons</th>
<th>introns</th>
<th>TUR3</th>
<th>UTR5</th>
<th>intergenes</th>
<th>upstream</th>
<th>downstream</th>
</tr>
</thead>
<tbody>
<tr>
<td>166</td>
<td>0.01234568</td>
<td>0.8138651</td>
<td>0.01424501</td>
<td>0.001899335</td>
<td>0.004748338</td>
<td>0.05508072</td>
<td>0.09781576</td>
</tr>
</tbody>
</table>

Distribution of 368 SNPs within 166 genes

- **Intron**: 81.4%
- **Exon**: 1.2%
- **3'UTR**: 5.5%
- **5'UTR**: 0.2%
- **3'Downstream**: 1.4%
- **5'Upstream**: 0.5%
- **Intergene**: 0.5%
- **5'Upstream**: 1.2%

Figure 5: Distribution of the selected SNPs in gene function elements.
GWAS-based Mendelian Randomization Path Analysis

<table>
<thead>
<tr>
<th>genes</th>
<th>exons</th>
<th>introns</th>
<th>TUR3</th>
<th>UTR5</th>
<th>intergenes</th>
<th>upstream</th>
<th>downstream</th>
</tr>
</thead>
<tbody>
<tr>
<td>166</td>
<td>0.01234568</td>
<td>0.8138651</td>
<td>0.01424501</td>
<td>0.001899335</td>
<td>0.004748338</td>
<td>0.05508072</td>
<td>0.09781576</td>
</tr>
</tbody>
</table>

Distribution of 368 SNPs within 166 genes

- 81.4% intron
- 0.5% exon
- 0.2% 3'downstream
- 5.5% 3'UTR
- 1.4% 5'upstream
- 0.8% 5'UTR
- 0.9% intergene
- 1.2%

Figure 6: Distribution of the selected SNPs in gene function elements.
GWAS-based Mendelian Randomization Path Analysis

9 Session Info

> sessionInfo()
R version 4.4.0 beta (2024-04-15 r86425)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 22.04.4 LTS

Matrix products: default
BLAS: /home/biocbuild/bbs-3.19-bioc/R/lib/libRblas.so
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en.US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS=C
[10] LC_TELEPHONE=C LC_MEASUREMENT=en.US.UTF-8 LC_IDENTIFICATION=C

time zone: America/New_York
tzcode source: system (glibc)

attached base packages:
[1] stats4 stats graphics grDevices utils datasets methods base

other attached packages:
[1] GMRP_1.32.0 GenomicRanges_1.56.0 GenomeInfoDb_1.40.0 IRanges_2.38.0
[5] S4Vectors_0.42.0 BiocGenerics_0.50.0 plotrix_3.8-4 diagram_1.6.5
[9] shape_1.4.6.1

loaded via a namespace (and not attached):
[1] httr_1.4.7 cli_3.6.2 knitr_1.46
[4] rlang_1.1.3 xfun_0.43 UCSC.utils_1.0.0
[7] jsonlite_1.8.8 BiocStyle_2.32.0 htmltools_0.5.8.1
[10] rmarkdown_2.26 evaluate_0.23 fastmap_1.1.1
[13] yaml_2.3.8 BiocManager_1.30.22 compiler_4.4.0
[16] XVector_0.44.0 digest_0.6.35 R6_2.5.1
[19] GenomeInfoDbData_1.2.12 tools_4.4.0 zlibbioc_1.50.0

References

GWAS-based Mendelian Randomization Path Analysis

