KEGGgraph: Application Examples

Jitao David Zhang

May 1, 2024

Abstract

In this vignette, we demonstrate the application of KEGGgraph as flexible module in analysis pipelines targeting heterogenous biological questions. For basic use of the KEGGgraph package, please refer to the vignette KEGGgraph: a graph approach to KEGG PATHWAY in R and Bioconductor.

1 Introduction

In many cases, KEGGgraph is used as stand-alone software package to parse KEGG pathway [Kanehisa et al., 2008] into graph models and consequently to analyze them. However, KEGGgraph can also be combined with other tools (within or out of the scope of R and Bioconductor [Gentleman et al., 2004; Carey et al., 2005]), to build flexible analysis pipelines. In this vignette we demonstrate the cooperation between KEGGgraph and other tools with several examples.

2 Parse created or edited pathway

KGML-ED [Klukas and Schreiber, 2007] is a tool designed for the dynamic visualization, interactive navigation and editing of KEGG pathway diagrams. The program is able to modify or even create de novo new pathways and export them into KGML (KEGG XML) files. Since KEGGgraph captures the graph information of KEGG PATHWAY by parsing KGML files, it is also capable to parse the KGML files exported from KGML-ED program. The joint use of the two programs allows user edit KGML files from KEGG (for example, by adding/removing new nodes/edges), or create new pathways from scratch, and then analyse them.

Here we demonstrate the parse of a toy pathway (network motif) created by KGML-ED, which illustrates a feed-forward loop (FFL) [Mangan and Alon, 2003; Alon, 2007].

```r
> library(KEGGgraph)
> toyKGML <- system.file("extdata/kgml-ed-toy.xml", package="KEGGgraph")
> toyGraph <- parseKGML2Graph(toyKGML, genesOnly=FALSE)
> toyGraph
```

1
A graphNEL graph with directed edges
Number of Nodes = 5
Number of Edges = 6

> nodes(toyGraph)

[1] "CRP" "GalS" "galETK" "cAMP" "galactose"

We visualize the graph with \textit{Rgraphviz} in Figure 1.

Figure 1: Visualization of the toy network (incoherent type-1 feed-forward loop, IL1-FFL) created by \textit{KGML-ED} and parsed by \textit{KEGGgraph}. The rectangle nodes represent compounds while ellipse ones represent gene/gene products. Solid and dashed red arrows represent activation and expression, whereas blue represent inhibition and repression. Note that self-inhibition of GalS is presented by a node and an edge pointing to its self.
Similarly, users could create new or modify existing pathways by modifying KGML files with tools including KGML-ED, and these pathways can be consequently parsed, visualized and analyzed consequently by KEGGgraph and other tools for graphs implemented in Bioconductor. In this sense KEGGgraph is not only able to study existing biological pathways constructed by KEGG, but also a tool for modelling pathways and biological networks in R.

3 Microarray analysis

KEGG PATHWAY contains pathway maps for nearly 1000 organisms and has been intensively expanded with pathways including signaling transduction, cellular processes and human diseases in recent years. As the graph-theory based approach to this valuable knowledge-base, KEGGgraph can be built into analysis pipelines where the pathway information could be useful, especially with the graph attributes. To demonstrate this we show one example of microarray analysis, cooperating with another package SPIA [Tarca et al., 2009], a package implementing the Signaling Pathway Impact Analysis (SPIA) algorithm.

The microarray data is described in the vignette of SPIA, here it is only briefly summarized: Affymetrix GeneChip (GEO accession: GSE4107), containing 10 normal samples and 12 colorectal cancer samples, is normalized with affy and limma package. The result of topTable in limma is used as the input data.

```r
> if(require(SPIA)) {
+   data(colorectalcancer,package="SPIA")
+ } else {
+   load(system.file("extdata/colorectalcancerSPIA.RData", package="KEGGgraph"))
+ }
> head(top)

     ID      logFC  AveExpr   t  P.Value  adj.P.Val B
10738 201289_at  5.960206  6.226928 23.94388 1.789221e-17 9.782565e-13 25.40124
18604 209189_at  5.143502  7.487305 17.42995 1.560212e-14 2.843486e-10 21.02120
11143 201694_s_at  4.148081  7.038281 16.46040 5.153117e-14 7.043667e-10 20.14963
10490 201041_s_at  2.429889  6.102428 14.06891 1.293706e-12 1.414667e-08 17.66883
10913 201464_x_at  1.531126  5.327647 10.98634 1.685519e-10 1.151947e-06 13.61189
11463 202014_at  1.429269  5.327647 10.45906 4.274251e-10 2.418771e-06 12.80131

ENTREZ
10738  3491
18604  2353
11143  1958
10490  1843
10913  3725
11463  23645
```
We only consider the probes annotated with EntrezGeneID and differentially expressed with FDR \(p \)-value less than 0.05.

```r
> library(hgu133plus2.db)
> x <- hgu133plus2ENTREZID
> top$ENTREZ <- unlist(as.list(x[top$ID]))
> top <- top[!is.na(top$ENTREZ),]
> top <- top[!duplicated(top$ENTREZ),]
> tg1 <- top[top$adj.P.Val < 0.05,]
> DE_Colorectal <- tg1$logFC
> names(DE_Colorectal) <- as.vector(tg1$ENTREZ)
> ALL_Colorectal <- top$ENTREZ

The SPIA algorithm takes as input two vectors: log2 fold changes of differentially expressed genes (DE_Colorectal) and those of all EntrezGeneID annotated genes (ALL_Colorectal), and returns a table of pathways ranked from the most to the least significant. The results show that Colorectal cancer pathway (ID:05210) is significantly activated (ranked the 5th of the result table). To visualize the results, we visualize the pathway with differentially expressed genes marked with color.

For the first time we could use the retrieveKGML function to retrieve the KGML remotely from the KEGG FTP site.

```r
> tmp <- "hsa05210.xml"
> retrieveKGML(pathwayid="05210", organism="hsa", destfile=tmp)
```

We have attached this file in the KEGGgraph, we parse it into graph and observe that around 30% percent of the genes in the pathway are differentially expressed. The pathway map (figure) can be found at [http://www.genome.jp/dbget-bin/show_pathway?hsa05210](http://www.genome.jp/dbget-bin/show_pathway?hsa05210).

```r
> colFile <- system.file("extdata/hsa05210.xml", + package="KEGGgraph")
> g <- parseKGML2Graph(colFile)
> deKID <- translateGeneID2KEGGID(names(DE_Colorectal))
> allKID <- translateGeneID2KEGGID(ALL_Colorectal)
> isDiffExp <- nodes(g) %in% deKID
> sprintf("%.2f%% genes differentially-expressed", mean(isDiffExp)*100)
[1] "29.76% genes differentially-expressed"
```

We visualize the pathway with pseudo-colors representing the log2 fold change of the differentially expressed genes in figure[2].

In the figure[2] we observe that:
• Not all the genes are connected with each other, 40.4761904761905% (34/84) nodes in the pathway have a degree of 0 – they are not connected to any other node. There are several reasons for this. One of them is the genes with genetic alterations are indicated in the pathway map, but not interweaved into the pathway (cf. [http://www.genome.jp/dbget-bin/show_pathway?hsa05210](http://www.genome.jp/dbget-bin/show_pathway?hsa05210)). Another important factor is that in some pathways, especially human disease pathways, KEGG records genes involved in the disease

![Diagram](image.png)

Figure 2: Overview of colorectal cancer pathway with pseudo-colored nodes representing expression change. Red nodes represented up-regulated mRNAs in cancer samples and blue ones are down-regulated. Grey nodes are detected not to be differentially expressed, yellow ones are not reported (possibly due to under detection threshold). The gradual colors indicate the log2 fold change of the expression - the darker the colors, the larger fold change. One distinct feature is the existence of many non-connected nodes, which could has been omitted when the graph information is discarded and only the membership of the gene is considered.
but does not provide any edge in that pathway, although one can find their interaction partners in other pathways (e.g., Grb2 has no edges in colorectal cancer pathway, however in other maps including MAPK signaling pathway, both up- and down-stream interactors are found). One solution to the later problem is to merge (union) the related pathways together, to this end KEGGgraph provides the function mergeKEGGgraphs.

- From the visualization in [2] it is difficult to recognize any patterns. To examine the pathway in more details, it is necessary to use Divide and Conquer strategy, namely to subset the graph into subgraphs. To this end KEGGgraph provides the function subKEGGgraph, which maintains the KEGG information while subsetting the graph.

Out of 34 nonconnected genes, 7 is up-regulated and 4 downregulated. Notably, out of 10 Frizzled homologues (Wnt receptors), four are up-regulated (FZD2, FZD4, FZD7 and FZD10), and only one is down-regulated (FZD5), in accordance with the former report [Vincan et al., 2007].

Next we concentrate on upregulated genes, the result given by SPIA package indicates that colorectal pathway is activated.

We can use degree centrality (the sum of in- and out-degree of each node) as a measure of the relative importance of the node compared to others. In this subgraph, 8 nodes have an degree equal or larger than three (in decreasing order: AKT3, TCF7L1, CCND1, FOS, MAPK3, MAPK1, JUN, MAPK10), and 5 of them are upreguated to different extent. This reinforces the conclusion of SPIA that the pathway is activated - it seems that the relative important nodes are up-regulated. Especially we note the upregulation of Jun and Fos, two transcription factors with many targetting genes, although their up-stream interactors (MAPK3 and MAPK1) are either not significantly differentially expressed or slightly down-regulated (MAPK1, logFC=-0.381).

Further analysis could done, for example, by merging the colorectal pathway with linked pathways (Wnt signaling, apoptosis, etc) and investigate the graph characteristics of differnetially expressed genes and their links.

References


Figure 3: Up-regulated genes (seven, in red) and their neighborhood genes in colorectal cancer pathway, the color follows the legend in figure 2. Un-reported genes are hidden from the figure.


