RUVSeq: Remove Unwanted Variation from RNA-Seq Data

David Risso

Contents

1 Overview ... 1
2 A typical differential expression analysis workflow 2
 2.1 Filtering and exploratory data analysis 3
 2.2 RUVg: Estimating the factors of unwanted variation using control genes ... 4
 2.3 Differential expression analysis 5
 2.4 Empirical control genes 6
 2.5 Differential expression analysis with DESeq2 7
3 RUVs: Estimating the factors of unwanted variation using replicate samples ... 7
4 RUVR: Estimating the factors of unwanted variation using residuals ... 8
5 Session info .. 8

1 Overview

In this document, we show how to conduct a differential expression (DE) analysis that controls for “unwanted variation”, e.g., batch, library preparation, and other nuisance effects, using the between-sample normalization methods proposed in [1]. We call this approach **RUVSeq for remove unwanted variation from RNA-Seq data**.

Briefly, **RUVSeq** works as follows. For \(n \) samples and \(J \) genes, consider the following generalized linear model (GLM), where the RNA-Seq read counts are regressed on both the known covariates of interest and unknown factors of unwanted variation,

\[
\log E[Y|W, X, O] = W\alpha + X\beta + O.
\]
Here, \(Y \) is the \(n \times J \) matrix of observed gene-level read counts, \(W \) is an \(n \times k \) matrix corresponding to the factors of “unwanted variation” and \(\alpha \) its associated \(k \times J \) matrix of nuisance parameters, \(X \) is an \(n \times p \) matrix corresponding to the \(p \) covariates of interest/factors of “wanted variation” (e.g., treatment effect) and \(\beta \) its associated \(p \times J \) matrix of parameters of interest, and \(O \) is an \(n \times J \) matrix of offsets that can either be set to zero or estimated with some other normalization procedure (such as upper-quartile normalization).

The matrix \(X \) is a random variable, assumed to be known a priori. For instance, in the usual two-class comparison setting (e.g., treated vs. control samples), \(X \) is an \(n \times 2 \) design matrix with a column of ones corresponding to an intercept and a column of indicator variables for the class of each sample (e.g., 0 for control and 1 for treated) [2]. The matrix \(W \) is an unobserved random variable and \(\alpha, \beta, \) and \(k \) are unknown parameters.

The simultaneous estimation of \(W, \alpha, \beta, \) and \(k \) is infeasible. For a given \(k \), we consider instead the following three approaches to estimate the factors of unwanted variation \(W \):

- **RUVg** uses negative control genes, assumed to have constant expression across samples;
- **RUVs** uses centered (technical) replicate/negative control samples for which the covariates of interest are constant;
- **RUVr** uses residuals, e.g., from a first-pass GLM regression of the counts on the covariates of interest.

The resulting estimate of \(W \) can then be plugged into Equation 1, for the full set of genes and samples, and \(\alpha \) and \(\beta \) estimated by GLM regression. Normalized read counts can be obtained as residuals from ordinary least squares (OLS) regression of \(\log Y - O \) on the estimated \(W \).

Note that although here we illustrate the RUV approach using the GLM implementation of \textit{edgeR} and \textit{DESeq2}, all three RUV versions can be readily adapted to work with any DE method formulated within a GLM framework.

See [1] for full details and algorithms for each of the three RUV procedures.

2 A typical differential expression analysis workflow

In this section, we consider the **RUVg** function to estimate the factors of unwanted variation using control genes. See Sections 3 and 4, respectively, for examples using the **RUVs** and **RUVr** approaches.

We consider the zebrafish dataset of [3], available through the Bioconductor package \textit{zebrafishRNASeq}. The data correspond to RNA libraries for three pairs of gallein-treated and control embryonic zebrafish cell pools. For each of the 6 samples, we have RNA-Seq read counts for 32,469 Ensembl genes and 92 ERCC spike-in sequences. See [1] and the \textit{zebrafishRNASeq} package vignette for details.

```r
library(RUVSeq)
library(zebrafishRNASeq)
data(zfGenes)
head(zfGenes)
```
Ctl1 Ctl3 Ctl5 Trt9 Trt11 Trt13
ENSDARG00000000001 304 129 339 102 16 617
ENSDARG00000000002 605 637 406 82 230 1245
ENSDARG000000000018 391 235 217 554 451 565
ENSDARG000000000019 2979 4729 7002 7309 9395 3349
ENSDARG000000000068 89 356 41 149 45 44
ENSDARG000000000069 312 184 844 269 513 243

```
tail(zfGenes)
## Ctl1 Ctl3 Ctl5 Trt9 Trt11 Trt13
## ERCC-00163 204 59 183 152 104 59
## ERCC-00164 6 1 74 11 206 21
## ERCC-00165 140 119 93 331 52 38
## ERCC-00168 0 0 0 0 2 0
## ERCC-00170 216 145 111 456 196 552
## ERCC-00171 12869 6682 7675 47488 24322 26112
```

2.1 Filtering and exploratory data analysis

We filter out non-expressed genes, by requiring more than 5 reads in at least two samples for each gene.

```r
filter <- apply(zfGenes, 1, function(x) length(x[x>5])>=2)
filtered <- zfGenes[filter,]
genes <- rownames(filtered)[grep("^ENS", rownames(filtered))]
spikes <- rownames(filtered)[grep("^ERCC", rownames(filtered))]
```

After the filtering, we are left with 20806 genes and 59 spike-ins.

We store the data in an object of S4 class `SeqExpressionSet` from the `EDASeq` package. This allows us to make full use of the plotting and normalization functionality of `EDASeq`. Note, however, that all the methods in `RUVSeq` are implemented for both `SeqExpressionSet` and `matrix` objects. See the help pages for details.

```r
x <- as.factor(rep(c("Ctl", "Trt"), each=3))
set <- newSeqExpressionSet(as.matrix(filtered),
                          phenoData = data.frame(x, row.names=colnames(filtered)))
```

RUVSeq: Remove Unwanted Variation from RNA-Seq Data
The boxplots of relative log expression (RLE = log-ratio of read count to median read count across sample) and plots of principal components (PC) in Figure 1 reveal a clear need for between-sample normalization.

```r
library(RColorBrewer)
colors <- brewer.pal(3, "Set2")
plotRLE(set, outline=FALSE, ylim=c(-4, 4), col=colors[x])
plotPCA(set, col=colors[x], cex=1.2)
```

![RLE plot](image1)
![PCA plot](image2)

Figure 1: No normalization

We can use the `betweenLaneNormalization` function of EDASeq to normalize the data using upper-quartile (UQ) normalization [4].

```r
set <- betweenLaneNormalization(set, which="upper")
plotRLE(set, outline=FALSE, ylim=c(-4, 4), col=colors[x])
plotPCA(set, col=colors[x], cex=1.2)
```

![RLE plot](image3)
![PCA plot](image4)

Figure 2: Upper-quartile normalization

After upper-quartile normalization, treated sample Trt11 still shows extra variability when compared to the rest of the samples (Figure 2a). This is reflected by the first principal component (Figure 2b), that is driven by the difference between Trt11 and the other samples.

2.2 RUVg: Estimating the factors of unwanted variation using control genes

To estimate the factors of unwanted variation, we need a set of negative control genes, i.e., genes that can be assumed not to be influenced by the covariates of interest (in the case of the zebrafish dataset, the Gallein treatment). In many cases, such a set can
be identified, e.g., housekeeping genes or spike-in controls. If a good set of negative controls is not readily available, one can define a set of “in-silico empirical” controls as in Section 2.4.

Here, we use the ERCC spike-ins as controls and we consider \(k = 1 \) factors of unwanted variation. See [1] and [5] for a discussion on the choice of \(k \).

```r
set1 <- RUVg(set, spikes, k=1)
pData(set1)
```

```
##       x   W_1
## Ctl1  Ctl -0.04539413
## Ctl3  Ctl  0.50347642
## Ctl5  Ctl  0.40575319
## Trt9   Trt -0.30773479
## Trt11 Trt -0.68455406
## Trt13 Trt  0.12845337
```

```
plotRLE(set1, outline=FALSE, ylim=c(-4, 4), col=colors[x])
plotPCA(set1, col=colors[x], cex=1.2)
```

Figure 3: RUVg normalization based on spike-in controls

The \texttt{RUVg} function returns two pieces of information: the estimated factors of unwanted variation (added as columns to the \texttt{phenoData} slot of \texttt{set}) and the normalized counts obtained by regressing the original counts on the unwanted factors. The normalized values are stored in the \texttt{normalizedCounts} slot of \texttt{set} and can be accessed with the \texttt{normCounts} method. These counts should be used only for exploration. It is important that subsequent DE analysis be done on the original counts (accessible through the \texttt{counts} method), as removing the unwanted factors from the counts can also remove part of a factor of interest [6].

Note that one can relax the negative control gene assumption by requiring instead the identification of a set of positive or negative controls, with a priori known expression fold-changes between samples, i.e., known \(\beta \). One can then use the centered counts for these genes (\(\log Y - X \beta \)) for normalization purposes.

2.3 Differential expression analysis

Now, we are ready to look for differentially expressed genes, using the negative binomial GLM approach implemented in \texttt{edgeR} (see the \texttt{edgeR} package vignette for details). This is done by considering a design matrix that includes both the covariates of interest (here, the treatment status) and the factors of unwanted variation.
RUVSeq: Remove Unwanted Variation from RNA-Seq Data

```r
design <- model.matrix(~x + W_1, data=pData(set1))
y <- DGEList(counts=counts(set1), group=x)
y <- calcNormFactors(y, method="upperquartile")
y <- estimateGLMCommonDisp(y, design)
y <- estimateGLMTagwiseDisp(y, design)

fit <- glmFit(y, design)
lrt <- glmLRT(fit, coef=2)

# 2.4 Empirical control genes

If no genes are known *a priori* not to be influenced by the covariates of interest, one can obtain a set of “in-silico empirical” negative controls, e.g., least significantly DE genes based on a first-pass DE analysis performed prior to RUVg normalization.

```r
design <- model.matrix(~x, data=pData(set))
y <- DGEList(counts=counts(set), group=x)
y <- calcNormFactors(y, method="upperquartile")
y <- estimateGLMCommonDisp(y, design)
y <- estimateGLMTagwiseDisp(y, design)

fit <- glmFit(y, design)
lrt <- glmLRT(fit, coef=2)

top <- topTags(lrt, n=nrow(set))$table
empirical <- rownames(set)[which(!(rownames(set) %in% rownames(top)[1:5000]))]

Here, we consider all but the top 5,000 genes as ranked by *edgeR* *p*-values.

```r
set2 <- RUVg(set, empirical, k=1)
pData(set2)

# x  W_1
# Ctl1  Ctl -0.10879677
# Ctl3  Ctl  0.23066424
# Ctl5  Ctl  0.19926266
# Trt9  Trt  0.07672121
# Trt11 Trt -0.83540924
# Trt13 Trt  0.43755790

plotRLE(set2, outline=FALSE, ylim=c(-4, 4), col=colors[x])
plotPCA(set2, col=colors[x], cex=1.2)
```
2.5 Differential expression analysis with DESeq2

In alternative to edgeR, one can perform differential expression analysis with DESeq2. The approach is very similar, namely, we will use the same design matrix specified in Section 2.3, but we need to specify it within the DESeqDataSet object.

```r
library(DESeq2)
dds <- DESeqDataSetFromMatrix(countData = counts(set1),
colData = pData(set1),
design = ~ W_1 + x)

dds <- DESeq(dds)
res <- results(dds)
res
```

Note that this will perform by default a Wald test of significance of the last variable in the design formula, in this case \(x \). If one wants to perform a likelihood ratio test, she needs to specify a reduced model that includes \(W \) (see the DESeq2 vignette for more details on the test statistics).

```r
dds <- DESeq(dds, test="LRT", reduced=as.formula("~ W_1"))
res <- results(dds)
res
```

3 RUVs: Estimating the factors of unwanted variation using replicate samples

As an alternative approach, one can use the RUVs method to estimate the factors of unwanted variation using replicate/negative control samples for which the covariates of interest are constant.

First, we need to construct a matrix specifying the replicates. In the case of the zebrafish dataset, we can consider the three treated and the three control samples as replicate groups. The function makeGroups can be used.

```r
differences <- makeGroups(x)
differences
```
Although in principle one still needs control genes for the estimation of the factors of unwanted variation, we found that RUVs is robust to that choice and that using all the genes works well in practice [1].

```r
set3 <- RUVs(set, genes, k=1, differences)
pData(set3)
```

4 RUVr: Estimating the factors of unwanted variation using residuals

Finally, a third approach is to consider the residuals (e.g., deviance residuals) from a first-pass GLM regression of the counts on the covariates of interest. This can be achieved with the RUVr method.

First, we need to compute the residuals from the GLM fit, without RUVg normalization, but possibly after normalization using a method such as upper-quartile normalization.

```r
design <- model.matrix(~x, data=pData(set))
y <- DGEList(counts=counts(set), group=x)
y <- calcNormFactors(y, method="upperquartile")
y <- estimateGLMCommonDisp(y, design)
y <- estimateGLMTagwiseDisp(y, design)

fit <- glmFit(y, design)
res <- residuals(fit, type="deviance")
```

Again, we can use all the genes to estimate the factors of unwanted variation.

```r
set4 <- RUVr(set, genes, k=1, res)
pData(set4)
```

5 Session info

```r
toLatex(sessionInfo())
```

- R version 3.5.1 Patched (2018-07-12 r74967), x86_64-pc-linux-gnu
- Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=C, LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C
- Running under: Ubuntu 16.04.5 LTS
RUVEq: Remove Unwanted Variation from RNA-Seq Data

- Matrix products: default
- BLAS: `/home/biocbuild/bbs-3.8-bioc/R/lib/libRblas.so`
- LAPACK: `/home/biocbuild/bbs-3.8-bioc/R/lib/libRlapack.so`
- Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, stats4, utils
- Other packages: Biobase 2.42.0, BiocGenerics 0.28.0, BiocParallel 1.16.0, Biostrings 2.50.0, DelayedArray 0.8.0, EDASeq 2.16.0, GenomeInfoDb 1.18.0, GenomicAlignments 1.18.0, GenomicRanges 1.34.0, IRanges 2.16.0, RColorBrewer 1.1-2, RUVEq 1.16.0, Rsamtools 1.34.0, S4Vectors 0.20.0, ShortRead 1.40.0, SummarizedExperiment 1.12.0, XVector 0.22.0, edgeR 3.24.0, knitr 1.20, limma 3.38.0, matrixStats 0.54.0, zebrafishRNASeq 1.1.0
- Loaded via a namespace (and not attached): AnnotationDbi 1.44.0, BiocManager 1.30.3, BiocStyle 2.10.0, DBI 1.0.0, DESeq 1.34.0, GenomeInfoDbData 1.2.0, GenomicFeatures 1.34.0, MASS 7.3-51, Matrix 1.2-14, R.methodsS3 1.7.1, R.oo 1.22.0, R.utils 2.7.0, R6 2.3.0, RCurl 1.95-4.11, RSQLite 2.1.1, Rcpp 0.12.19, XML 3.98-1.16, annotate 1.60.0, aroma.light 3.12.0, assertthat 0.2.0, backports 1.1.2, biomaRt 2.38.0, bit 1.1-14, bit64 0.9-7, bitops 1.0-6, bloo 1.1.1, codetools 0.2-15, compiler 3.5.1, crayon 1.3.4, digest 0.6.18, evaluate 0.12, genefilter 1.64.0, geneplotter 1.60.0, grid 3.5.1, highr 0.7, hms 0.4.2, htmltools 0.3.6, htr 1.3.1, hwriter 1.3.2, lattice 0.20-35, latticeExtra 0.6-28, locfit 1.5-9.1, magrittr 1.5, memoise 1.1.0, pkgconfig 2.0.2, prettyunits 1.0.2, progress 1.2.0, rlang 0.3.0.1, rmarkdown 1.10, rprojroot 1.3-2, rtracklayer 1.42.0, splines 3.5.1, stringi 1.2.4, stringr 1.3.1, survival 2.43-1, tools 3.5.1, xtable 1.8-3, yaml 2.2.0, zlibbioc 1.28.0

References

