TCseq: time course sequencing data analysis

Mengjun, Lei Gu

April 19, 2024

The TCseq package provides a unified suite for analysis of different types of time course sequencing data. It can be applied to transcriptomic time course data such as RNA-seq as well as epigenomic time course data such as ATAC-seq, ChIP-seq. The main focuses of this package are on differential analysis between different time points and temporal pattern analysis and visualization.

Unlike RNA-seq, the genomic regions of interest of sequencing data like ATAC-seq, ChIP-seq are not pre-defined and are specific to each experimental conditions, which limits the subsequential differential analysis between conditions. For those data type, the TCseq package provides functions to combine and merge conditionally specific genomic regions and generate a reference genomic regions for all conditions. This package then uses the negative binomial generalized linear model implemented in edgeR to provide differential analysis [1]. To capture the temporal patterns of the time course data, the package includes several unsupervised clustering methods to identify and a function to visualize the patterns.

This vignette uses an example ATAC-seq time course data to illustrate how to use the TCseq package.

1 Input data

The minimal input data for the TCseq are experiment design and reference genomic regions.

1.1 Generate reference genomic regions

For RNA-seq, the reference genomic regions are predefined (genes or exons). While for epigenome sequencing data, genomic regions of interest are usually defined as reads enriched regions which are also called peaks. peaks set for a given condition can be identified by peak callers such as MACs and is specific to that condition. The TCseq package provides a function to read in a set of peak set file in BED format, combines these files in to a single data frame, merges overlapping regions according use defined criteria and takes the largest bound as the reference region for all the overlapping regions. The merge criteria can be either absolute overlapping bases or overlapping ration (absolute overlapping bases divide minimum length of the regions to be merged).

If a set of BED files are available under certain directory, say dir.peaks, the file names of the BED files to be merged have common substring "narrowpeaks", then the reference genomic regions can be generated by:

```R
> library(TCseq)
> dir <- dir.peaks
> gf <- peakreference(dir = dir, pattern = "narrowpeaks")
```

The resulting data frame have four columns as follows:

```R
> data("genomicIntervals")
> head(genomicIntervals)
```
1.2 Create a TCA object

The TCseq uses an S4 class TCA to store all input data for subsequent analysis. When read counts table is not available, only data frames of experiment design and reference genomic regions are required to create a TCA object. TCseq also provides a function to generate counts table, to use the function, file names of BAM files for each sample/library have to be provided in the data frame of experiment design:

```r
> # Experiment design
> data("experiment_BAMfile")
> head(experiment_BAMfile)
# sampleid timepoint group bamfile
1 s1 0h 1 rep1_0h.bam
2 s2 24h 2 rep1_24h.bam
3 s3 40h 3 rep1_40h.bam
4 s4 56h 4 rep1_56h.bam
5 s5 72h 5 rep1_72h.bam
6 s6 120h 6 rep1_120h.bam

> # create a TCA object
> tca <- TCA(design = experiment_BAMfile, genomicFeature = genomicIntervals)
> tca
An object of class "TCA"
@design
  sampleid timepoint group bamfile
1 s1 0h 1 rep1_0h.bam
2 s2 24h 2 rep1_24h.bam
3 s3 40h 3 rep1_40h.bam
4 s4 56h 4 rep1_56h.bam
5 s5 72h 5 rep1_72h.bam
7 more rows ...

@genomicFeature
  chr start end id
1 chr1 6453992 6454731 peak1
2 chr1 7823890 7824372 peak2
3 chr1 8029820 8030138 peak3
4 chr1 8030317 8030627 peak4
5 chr1 10880000 10880701 peak5
2746 more rows ...

@clusterRes
An object of class "clust"
```

The count table then can be created (suppose the BAM files are store in the directory dir.BAM):
When the counts table is available, BAM file information is not mandatory in the experiment design. Counts table can be provided when creating a TCA object:

```r
# Experiment design without BAM file information
data("experiment")
data("countsTable")
tca <- TCA(design = experiment, genomicFeature = genomicIntervals, +
            counts = countsTable)
tca
An object of class "TCA"
@design
  sampleid timepoint group
  1   s1   0h   1
  2   s2   24h  2
  3   s3   40h  3
  4   s4   56h  4
  5   s5   72h  5
  7 more rows ...
@counts
  s1  s2  s3  s4  s5  s6  s7  s8  s9 s10 s11 s12
peak1  344 243 169  70  57  20 298 199 135  63  54  34
peak2   72 114  91  93 133 164  55  71  93 116 150 191
peak3   28  50 109 115  94 109  60  89  75 129  85 101
peak4   28  49 110 113 103 108  59  89  77 131  83 104
peak5  464 344 280 154 155  33 255 259 155  97  32 274
2746 more rows ...
@genomicFeature
  chr    start   end    id
  1 chr1 6453992 6454731 peak1
  2 chr1 7823890 7824372 peak2
  3 chr1 8029820 8030138 peak3
  4 chr1 8030317 8030627 peak4
  5 chr1 10880000 10880701 peak5
2746 more rows ...
@clusterRes
An object of class "clust"
The counts table can also be assigned to an existing TCA object:
> counts(tca) <- countsTable

In addition, a TCA object can also be created from an existing RangedSummarizedExperiment or SummarizedExperiment. For SummarizedExperiment, additional reference genomic regions information must be provided, while for RangedSummarizedExperiment object, the reference genomic regions will be extracted directly from the object. For a SummarizedExperiment object:

```r
suppressWarnings(library(SummarizedExperiment))
se <- SummarizedExperiment(assays=list(counts = countsTable), colData = experiment)
tca <- TCAFromSummarizedExperiment(se = se, genomicFeature = genomicIntervals)
```

The TCA object with experiment design, read counts, reference genomic regions can be used for following differential analysis.
2 Differential Analysis

The differential event is detected by using the generalized linear model (GLM) methods [2] implemented in edgeR package.

```r
> tca <- DBanalysis(tca)
```

Low quality genomic regions (read counts are low for all the time points) can also be filtered out. The following step only keeps genomic regions with two or more more samples that have read counts more than 10.

```r
> tca <- DBanalysis(tca, filter.type = "raw", filter.value = 10, samplePassfilter = 2)
```

Differential analysis results between given timepoints can be extracted by:

```r
> DBres <- DBresult(tca, group1 = "0h", group2 = c("24h","40h","72h"))
> str(DBres, strict.width = "cut")
```

Formal class 'CompressedGRangesList' [package "GenomicRanges"] with 5 slots

..@ unlistData :Formal class 'GRanges' [package "GenomicRanges"] with 7 ..
  .. . . . @ seqnames :Formal class 'Rle' [package "S4Vectors"] with 4 sl..
  .. . . . . @ values : Factor w/ 21 levels "chr1","chr2",...
  .. . . . . @ lengths : int [1:180] 63 42 35 44 33 42 35 42 28 ... ..
  .. . . . . @ elementMetadata: NULL
  .. . . . . @ ranges :Formal class 'IRanges' [package "IRanges"] with 6 ..
  .. . . . . @ start : int [1:8253] 6453992 7823890 8029820 803031..
  .. . . . . @ width : int [1:8253] 740 483 319 311 702 319 491 39..
  .. . . . . @ NAMES : chr [1:8253] "peak1" "peak2" "peak3" "peak"..
  .. . . . . @ elementType : chr "ANY"
  .. . . . . @ elementMetadata: NULL
  .. . . . . @ strand :Formal class 'Rle' [package "S4Vectors"] with 4 sl..
  .. . . . . @ values : Factor w/ 3 levels "+", "-", "*": 3
  .. . . . . @ lengths : int 8253
  .. . . . . @ elementMetadata: NULL
  .. . . . . @ seqinfo :Formal class 'Seqinfo' [package "GenomeInfoDb"] wi..
  .. . . . . @ seqnames : chr [1:21] "chr1" "chr2" "chr3" "chr4" ...
  .. . . . . @ seqlengths : int [1:21] NA NA NA NA NA NA NA NA ...
  .. . . . . @ is_circular: logi [1:21] NA NA NA NA NA NA ...
  .. . . . . @ genome : chr [1:21] NA NA NA NA ...
  .. . . . . @ elementMetadata:Formal class 'DFrame' [package "S4Vectors"] with 6..
  .. . . . . . @ rownames : NULL
  .. . . . . . @ nrow: int 8253
  .. . . . . . @ elementType : chr "ANY"
  .. . . . . . @ elementMetadata: NULL
  .. . . . . @ listData :List of 4
  .. . . . . . .$ logFC : num [1:8253] -0.232 0.836 0.984 0.992 -0.304 ...
  .. . . . . . .$ PValue: num [1:8253] 0.156923 0.000133 0.000897 0.000831 ..
  .. . . . . . .$ paj : num [1:8253] 0.37247 0.00377 0.01378 0.01314 0.14..
  .. . . . . . .$ id : chr [1:8253] "peak1" "peak2" "peak3" "peak4" ...
  .. . . . . . @ elementType : chr "ANY"
  .. . . . . @ metadata : list()
  .. @ elementMetadata:Formal class 'DFrame' [package "S4Vectors"] with 6 slots
> head(DBres$'24hvs0h')

GRanges object with 6 ranges and 4 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>logFC</th>
<th>PValue</th>
<th>paj</th>
</tr>
</thead>
<tbody>
<tr>
<td>peak1</td>
<td>chr1</td>
<td>6453992-6454731</td>
<td>*</td>
<td>-0.232273</td>
<td>0.156922944 0.37247197</td>
</tr>
<tr>
<td>peak2</td>
<td>chr1</td>
<td>7823890-7824372</td>
<td>*</td>
<td>0.835753</td>
<td>0.000132918 0.00376967</td>
</tr>
<tr>
<td>peak3</td>
<td>chr1</td>
<td>8029820-8030138</td>
<td>*</td>
<td>0.984173</td>
<td>0.000896762 0.01378418</td>
</tr>
<tr>
<td>peak4</td>
<td>chr1</td>
<td>8030317-8030627</td>
<td>*</td>
<td>0.991673</td>
<td>0.000830989 0.01313822</td>
</tr>
<tr>
<td>peak5</td>
<td>chr1</td>
<td>10880000-10880701</td>
<td>*</td>
<td>-0.304292</td>
<td>0.033572917 0.14476347</td>
</tr>
<tr>
<td>peak6</td>
<td>chr1</td>
<td>13154468-13154786</td>
<td>*</td>
<td>-0.188395</td>
<td>0.404095979 0.65507840</td>
</tr>
</tbody>
</table>

> DBres.sig <- DBresult(tca, group1 = "0h", group2 = c("24h","40h","72h"), top.sig = TRUE)
> str(DBres.sig, strict.width = "cut")

Formal class 'CompressedGRangesList' [package "GenomicRanges"] with 5 slots

.@ unlistData	Formal class 'GRanges' [package "GenomicRanges"] with 7 ..
.@ sequences	Formal class 'Rle' [package "S4Vectors"] with 4 sl. ..
.@ values	Factor w/ 21 levels "chr1","chr2",...: 14 19 ..
.@ lengths	int [1:151] 1 1 1 2 1 1 3 2 1 1 ...
.@ elementMetadata: NULL	
.@ ranges	Formal class 'IRanges' [package "IRanges"] with 6 ..
.@ start	int [1:1066] 60749878 28631781 106287039 26 ..
.@ width	int [1:1066] 399 369 964 310 211 411 439 46 ..
.@ NAMES	chr [1:1066] "peak767" "peak1298" "peak166" ..
.@ elementType : chr "ANY"	

------

seqinfo: 21 sequences from an unspecified genome; no seqlengths

Significant differential events (log2-fold > 2 or log2-fold < -2, adjusted p-value < 0.05) can be further extracted by:

> DBres.sig <- DBresult(tca, group1 = "0h", group2 = c("24h","40h","72h"), top.sig = TRUE)
> str(DBres.sig, strict.width = "cut")

Formal class 'CompressedGRangesList' [package "GenomicRanges"] with 5 slots

.@ unlistData	Formal class 'GRanges' [package "GenomicRanges"] with 7 ..
.@ sequences	Formal class 'Rle' [package "S4Vectors"] with 4 sl. ..
.@ values	Factor w/ 21 levels "chr1","chr2",...: 14 19 ..
.@ lengths	int [1:151] 1 1 1 2 1 1 3 2 1 1 ...
.@ elementMetadata: NULL	
.@ ranges	Formal class 'IRanges' [package "IRanges"] with 6 ..
.@ start	int [1:1066] 60749878 28631781 106287039 26 ..
.@ width	int [1:1066] 399 369 964 310 211 411 439 46 ..
.@ NAMES	chr [1:1066] "peak767" "peak1298" "peak166" ..
.@ elementType : chr "ANY"	
### 3 Temporal pattern analysis

#### 3.1 Construct time course table

To detect temporal patterns of the time course sequencing data, the TCseq package uses unsupervised clustering methods. First, a time course table is created for clustering analysis. The rows of the time course table are genomic regions, and the columns are time points, the values can be chosen from normalized read counts or logFC of all time points compared to a given group. Here we compare each time point with the initial time point. Such table can be created as follows:

```r
> # values are logFC
> tca <- timecourseTable(tca, value = "FC", control.group = "0h", norm.method = "rpkm", filter = TRUE)
```

or
> # values are normalized read counts
> tca <- timecourseTable(tca, value = "expression", norm.method = "rpkm", filter = TRUE)
When the "filter" parameter is set to be TRUE, the time course table will filter out all genomic regions with no significant changes between any two time points. The table can be accessed by:

> t <- tcTable(tca)
> head(t)

<table>
<thead>
<tr>
<th></th>
<th>0h</th>
<th>24h</th>
<th>40h</th>
<th>56h</th>
<th>72h</th>
<th>120h</th>
</tr>
</thead>
<tbody>
<tr>
<td>peak1298</td>
<td>19.677065</td>
<td>100.91683</td>
<td>297.78073</td>
<td>668.2194</td>
<td>779.7382</td>
<td>260.8255</td>
</tr>
<tr>
<td>peak1667</td>
<td>31.716975</td>
<td>142.26128</td>
<td>387.47324</td>
<td>666.9718</td>
<td>800.7809</td>
<td>634.0918</td>
</tr>
<tr>
<td>peak2103</td>
<td>46.542402</td>
<td>313.97751</td>
<td>362.09517</td>
<td>857.1818</td>
<td>979.5473</td>
<td>976.4725</td>
</tr>
<tr>
<td>peak2129</td>
<td>17.421163</td>
<td>72.14858</td>
<td>237.62324</td>
<td>490.9435</td>
<td>781.7799</td>
<td>448.2977</td>
</tr>
<tr>
<td>peak2369</td>
<td>2.523052</td>
<td>22.77127</td>
<td>65.60794</td>
<td>189.1049</td>
<td>388.9364</td>
<td>1090.6255</td>
</tr>
</tbody>
</table>

3.2 Clustering analysis

Two types of clustering algorithms are included in the package: hard clustering (hierarchical, pam, kmeans) and soft clustering (fuzzy c-means [3]). The temporal patterns are analyzed using the following function:

> tca <- timeclust(tca, algo = "cm", k = 6, standardize = TRUE)

Instead of absolute value of different time series, one might only focus on the change patterns and expect time series with similar pattern to be cluster in same group. In this case, "standardize" parameter gives an option to perform z-score transformation on the data to be clustered, which reduces the noises introduced by the difference in the absolute values.

3.3 Visualize the clustering results

The clustering results can be visualized as follows:

> p <- timeclustplot(tca, value = "z-score(PKRM)", cols = 3)

Figure 1: Visualization of clustering results
Individual clusters can also be plotted:

```r
> # plot cluster 1:
> print(p[[1]])
```

![Figure 2: Visualization of cluster 1](image)

To plot the cmeans clustering results, the TCseq provides several color schemes to color code the membership values which indicate the degree to which data points belong to a cluster.

**References**


