
Infrastructure for copy number analysis in crlmm

Rob Scharpf

May 30, 2012

Abstract

This vignette provides an overview of the CNSet class and a brief discussion of the underlying in-
frastructure for large data support with the ff package. This package instantiates an object of class
CNSet using a trivial dataset with 3 files. As this sample size is too small for estimating copy number
with the crlmm package, the final section of this vignette loads an object created by the analysis of 180
HapMap CEL files (Affymetrix 6.0 platform). In particular, this object was instantiated by running (1)
the AffymetrixPreprocessCN vignette and (2) the copynumber vignette.

> library(ff)

> library(crlmm)

1 Supported platforms

The supported Affymetrix and Infinium platforms are those for which a corresponding annotation package
is available. The annotation packages contain information on the markers, such as physical position and
chromosome, as well as pre-computed parameters estimated from HapMap used during the preprocessing
and genotyping steps. For Affymetrix, the 5.0 and 6.0 platforms are supported and the corresponding
annotation packages are genomewidesnp5Crlmm and genomewidesnp6Crlmm. Supported Infinium platforms
are listed in the following code chunk.

> pkgs <- annotationPackages()

> crlmm.pkgs <- pkgs[grep("Crlmm", pkgs)]

> crlmm.pkgs[grep("human", crlmm.pkgs)]

[1] "human370v1cCrlmm" "human370quadv3cCrlmm"
[3] "human550v3bCrlmm" "human650v3aCrlmm"
[5] "human610quadv1bCrlmm" "human660quadv1aCrlmm"
[7] "human1mduov3bCrlmm" "humanomni1quadv1bCrlmm"

Large data: In order to reduce crlmm’s memory footprint for copy number estimation, we require the
ff. The ff package provides infrastructure for accessing and writing data to disk instead of keeping data in
memory. As the functions for preprocessing, genotyping, and copy number estimation do not simultaneously
require all samples and all probes in memory, memory-usage by crlmm can be fine-tuned by reading in
and processing subsets of the markers and/or samples. The functions ocSamples and ocProbesets in the
oligoClasses package can be used to declare how many markers and samples to read at once. In general,
specifying smaller values should reduce the RAM required for a particular job. In general, smaller values will
increase the run-time. In the following code-chunk, we declare that crlmm should process 150,000 markers
at a time (when possible) and 500 samples at a time. If our dataset contained fewer than 500 samples, the
ocSamples option would not have any effect. One can view the current settings for these commands, by
typing the functions without an argument.

> ocProbesets(50e3)

> ocSamples(200)

1

2 The CNSet container

2.1 Instantiating an object of class CNSet

An object of class CNSet can be instantiated by one of two methods:

Approach 1: during the preprocessing of the raw intensities for Illumina and Affymetrix arrays by the the func-
tions constructInf and genotype, respectively. (The genotype calls the non-exported function con-
structAffy to initialize a CNSet object for Affymetrix platforms.)

Approach 2: by subsetting an existing CNSet object. As per usual, the ‘[’ method can be used to extract a subset
of markers i as in ‘[i,]’, a subset of samples j as in ‘[, j]’, or a subset of markers i and samples j as in
‘[i, j]’.

There are important differences in the underlying data representation depending on how the object was
instantiated. In particular, objects generated by the functions constructInf and genotype store high-
dimensional data on disk rather than in memory through protocols defined in the R package ff. For instance,
the normalized intensities and genotype calls in a CNSet-instance from approach (1) are ff-derived objects.
By contrast, when such an objected generated by approach (1) is subset by the ‘[’ method, an object of the
same class is returned but the ff-derived objects are coerced to ordinary matrices. Note, therefore, that both
approaches (1) and (2) may involve substantial I/O.

2.1.1 Approach 1

To illustrate the first approach, we begin by specifying a local directory to store output files and setting the
ldPath function with this path.

> outdir <- paste("/local_data/r00/crlmm/", getRversion(), "/infrastructure", sep="")

> ldPath(outdir)

> if(!file.exists(outdir)) dir.create(outdir)

Next we load the annotation package required, as well as the R package hapmapsnp6 that contains 3
example CEL files. We use the system.file function to find the path to the CEL files.

> require(genomewidesnp6Crlmm) & require(hapmapsnp6)

[1] TRUE

> path <- system.file("celFiles", package="hapmapsnp6")

> celfiles <- list.celfiles(path, full.names=TRUE)

Typically, an object of class CNSet is instantiated as part of the preprocessing and genotyping by calling
the function genotype, as illustrated in the AffymtrixPreprocessCN vignette.

> exampleSet <- genotype(celfiles, batch=rep("1", 3), cdfName="genomewidesnp6")

Several files with .ff extensions now appear in the directory indicated by the ldPath function.

> ldPath()

[1] "/local_data/r00/crlmm/2.15.0/infrastructure"

One could also instantiate an object of class CNSet without preprocessing/genotyping by calling the
non-exported function constructAffy directly using the ::: operator.

> tmp <- crlmm:::constructAffy(celfiles, batch=rep("1", 3), cdfName="genomewidesnp6")

The show method provides a concise summary of the exampleSet object. Note the class of the elements
in the batchStatistics and assayData slots is indicated in the first line of the summary.

2

> invisible(open(exampleSet))

> exampleSet

CNSet (assayData/batchStatistics elements: ff_matrix)
CNSet (storageMode: lockedEnvironment)
assayData: 1852426 features, 3 samples
element names: alleleA, alleleB, call, callProbability

protocolData
rowNames: NA06985_GW6_C.CEL NA06991_GW6_C.CEL
NA06993_GW6_C.CEL

varLabels: ScanDate
varMetadata: labelDescription

phenoData
sampleNames: NA06985_GW6_C.CEL NA06991_GW6_C.CEL
NA06993_GW6_C.CEL

varLabels: SKW SNR gender
varMetadata: labelDescription

featureData
featureNames: SNP_A-2131660 SNP_A-1967418 ... CN_929945
(1852426 total)

fvarLabels: isSnp position chromosome
fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'
Annotation: genomewidesnp6
genome: hg19
batch: 1:3
batchStatistics: 29 elements, 1852426 features, 1 batches

As the assayData elements of the exampleSet object are stored on disk rather than in memory, we
inspect attributes of the elements by first opening the file connection using the open. For example, in the
following code we extract the normalized intensities for the A allele by first opening the object returned by
the A function. The name of the file where the data is stored on disk is provided by the filename. Finally,
the normalized intensities can be pulled from disk to memory by the ‘[’ method. It can be useful to wrap
the ‘[’ method by the as.matrix to ensure that the output is the desired class.

> invisible(open(exampleSet))

> class(A(exampleSet))

[1] "ff_matrix" "ff_array" "ff"

> filename(A(exampleSet))

[1] "/local_data/r00/crlmm/2.15.0/infrastructure/crlmmA-22416285f0b8.ff"

> as.matrix(A(exampleSet)[1:5,])

NA06985_GW6_C.CEL NA06991_GW6_C.CEL NA06993_GW6_C.CEL
SNP_A-2131660 1381 1226 720
SNP_A-1967418 289 223 251
SNP_A-1969580 917 1207 1124
SNP_A-4263484 1502 2424 2319
SNP_A-1978185 1130 1243 1377

Moving *.ff files Ideally, the files with .ff extension should not be moved. However, if this is not
possible, the safest way to move these files is to clone all of the ff objects using the clone, followed by the
delete function to remove the original files on disk. An example of the delete function is included at the
end of the IlluminaPreprocessCN vignette. See the documentation for the clone and delete functions in
the ff package for additional details.

3

Order of operations: For CNSet-instances derived by approach (1), users should be mindful of the
substantial I/O when using accessors to extract data from the class. For example, the following 2 methods
would extract identical results, with the latter being much more efficient (extra parentheses are added to the
second operation to emphasize the order of operations):

> ##inefficient

> ##invisible(open(cnSet))

> A(exampleSet[1:5,])

NA06985_GW6_C.CEL NA06991_GW6_C.CEL NA06993_GW6_C.CEL
SNP_A-2131660 1381 1226 720
SNP_A-1967418 289 223 251
SNP_A-1969580 917 1207 1124
SNP_A-4263484 1502 2424 2319
SNP_A-1978185 1130 1243 1377

> ## preferred

> (A(exampleSet))[1:5,]

NA06985_GW6_C.CEL NA06991_GW6_C.CEL NA06993_GW6_C.CEL
SNP_A-2131660 1381 1226 720
SNP_A-1967418 289 223 251
SNP_A-1969580 917 1207 1124
SNP_A-4263484 1502 2424 2319
SNP_A-1978185 1130 1243 1377

2.1.2 Approach 2: using ‘[’

Here we instantiate a new object of class CNSet by applying the ‘[’ method to an existing object of class
CNSet .

> cnset.subset <- exampleSet[1:5,]

Note the class of the batchStatistics and assayData elements of the cnset.subset object printed in
the first line of the summary.

> show(cnset.subset)

CNSet (assayData/batchStatistics elements: matrix)
CNSet (storageMode: lockedEnvironment)
assayData: 5 features, 3 samples
element names: alleleA, alleleB, call, callProbability

protocolData
rowNames: NA06985_GW6_C.CEL NA06991_GW6_C.CEL
NA06993_GW6_C.CEL

varLabels: ScanDate
varMetadata: labelDescription

phenoData
sampleNames: NA06985_GW6_C.CEL NA06991_GW6_C.CEL
NA06993_GW6_C.CEL

varLabels: SKW SNR gender
varMetadata: labelDescription

featureData
featureNames: SNP_A-2131660 SNP_A-1967418 ... SNP_A-1978185
(5 total)

fvarLabels: isSnp position chromosome

4

fvarMetadata: labelDescription
experimentData: use 'experimentData(object)'
Annotation: genomewidesnp6
genome: hg19
batch: 1:3
batchStatistics: 29 elements, 5 features, 1 batches

2.2 Slots of class CNSet

2.2.1 featureData

Information on physical position, chromosome, and whether the marker is a SNP can be accessed through
accessors defined for the featureData.

> library(Biobase)

> fvarLabels(exampleSet)

[1] "isSnp" "position" "chromosome"

> position(exampleSet)[1:10]

[1] 1156131 2234251 2329564 2553624 2936870 2951834 3095126 3165267
[9] 3302871 3705226

> chromosome(exampleSet)[1:10]

[1] 1 1 1 1 1 1 1 1 1 1

> is.snp <- isSnp(exampleSet)

> table(is.snp)

is.snp
FALSE TRUE
945615 906811

> snp.index <- which(is.snp)

> np.index <- which(!is.snp)

> chr1.index <- which(chromosome(exampleSet) == 1)

2.2.2 assayData

The assayData elements are of the class ff matrix/ffdf or matrix , depending on how the CNSet object was
instantiated. Elements in the assayData environment can be listed using the ls function.

> ls(assayData(exampleSet))

[1] "alleleA" "alleleB" "call"
[4] "callProbability"

The normalized intensities for the A and B alleles have names alleleA and alleleB and can be accessed
by the methods A and B, respectively. Genotype calls and confidence scores can be accessed by snpCall and
snpCallProbability, respectively. Note that the confidence scores are represented as integers to reduce the
filesize, but can be tranlated to the probability scale using the R function i2p. For example,

> scores <- as.matrix(snpCallProbability(exampleSet)[1:5, 1:2])

> i2p(scores)

5

NA06985_GW6_C.CEL NA06991_GW6_C.CEL
SNP_A-2131660 0.9999964 0.9999996
SNP_A-1967418 0.9999969 0.9999997
SNP_A-1969580 0.9995187 0.9995139
SNP_A-4263484 0.9999999 1.0000000
SNP_A-1978185 1.0000000 1.0000000

Note that for the Affymetrix 6.0 platform the assay data elements each have a row dimension corre-
sponding to the total number of polymorphic and nonpolymorphic markers interrogated by the Affymetrix
6.0 platform. A consequence of keeping the rows of the assay data elements the same for all of the statistical
summaries is that the matrix used to store genotype calls is larger than necessary.

2.2.3 batch and batchStatistics

As defined in Leek et al. 2010, Batch effects are sub-groups of measurements that have qualitatively differ-
ent behaviour across conditions and are unrelated to the biological or scientific variables in a study. The
batchStatistics slot is an environment used to store SNP- and batch-specific summaries, such as the suf-
ficient statistics for the genotype clusters and the linear model parameters used for copy number estimation.
The batch slot is used to store the ’batch name’ for each array. For small studies in which the samples were
processed at similar times (e.g., within a month), all the samples can be considered to be in the same batch.
For large studies in which the samples were processed over several months, users should the scan date of
the array or the chemistry plate are useful surrogates. The only constraint on the batch variable is that it
must be a character vector that is the same length as the number of samples to be processed. The batch is
specified as an argument to the R functions constructInf and genotype that instantiate CNSet objects for
the Illumina and Affymetrix platforms, respectively. The batch function can be used to access the batch
information on the samples as in the following example.

> batch(exampleSet)

[1] "1" "1" "1"

For the batchStatistics slot, the elements in the environment have the class ff matrix/ffdf or matrix ,
depending on how the CNSet object was instantiated. The dimension of each element is the number of
markers (SNPs + nonpolymorphic markers) × the number of batches. The names of the elements in the
environment can be list using the R function ls.

> ls(batchStatistics(exampleSet))

[1] "corrAA" "corrAB" "corrBB" "flags" "madA.AA"
[6] "madA.AB" "madA.BB" "madB.AA" "madB.AB" "madB.BB"
[11] "medianA.AA" "medianA.AB" "medianA.BB" "medianB.AA" "medianB.AB"
[16] "medianB.BB" "N.AA" "N.AB" "N.BB" "nuA"
[21] "nuB" "phiA" "phiB" "phiPrimeA" "phiPrimeB"
[26] "tau2A.AA" "tau2A.BB" "tau2B.AA" "tau2B.BB"

Currently, the batch-specific summaries are stored to allow some flexibility in the choice of downstream
analyses of copy number and visual assessments of model fit. Documentation for such applications will be
expanded in future versions of crlmm, and are currently not intended to be accessed directly by the user.

2.2.4 phenoData

Sample-level summaries obtained during the preprocessing/genotyping steps include skew (SKW), the signal
to noise ratio (SNR), and gender (1=male, 2=female) are stored in the phenoData slot. As for other eSet
extensions, the $ method can be used to extract these summaries. For CNSet objects generated by approach
(1), these elements are of the class ff vector .

> varLabels(exampleSet)

6

[1] "SKW" "SNR" "gender"

> class(exampleSet$gender)

[1] "ff_vector" "ff"

> invisible(open(exampleSet$gender))

> exampleSet$gender

ff (open) integer length=3 (3)
[1] [2] [3]
2 2 1

The ‘[’ methods without arguments can be used to coerce to a vector.

> c("male", "female")[exampleSet$gender[]]

[1] "female" "female" "male"

> invisible(close(exampleSet$gender))

2.2.5 protocolData

The scan date of the arrays are stored in the protocolData.

> varLabels(protocolData(exampleSet))

[1] "ScanDate"

> protocolData(exampleSet)$ScanDate

[1] 2007-03-06 2007-03-06 2007-03-06
Levels: 2007-03-06

3 Trouble shooting with a HapMap example

This section uses an object of class CNSet instantiated by the AffymetrixPreprocessCN vignette and saved
to a local path on our computing cluster indicated by the object outdir below. The copynumber vignette
was used to fill out the batchStatistics slot of the cnSet object.

> if(getRversion() < "2.13.0"){

rpath <- getRversion()

} else rpath <- "trunk"

> outdir <- paste("/thumper/ctsa/snpmicroarray/rs/ProcessedData/crlmm/", rpath, "/copynumber_vignette", sep="")

Next, we load the cnSet object.

> if(!exists("cnSet")) load(file.path(outdir, "cnSet.rda"))

> invisible(open(cnSet))

3.1 Missing values

Most often, missing values occur when the genotype confidence scores for a SNP were below the threshold
used by the crlmmCopynumber function. For the HapMap analysis, we used a confidence threshold of 0.80
(the default). In the following code, we assess NA’s appearing for the raw copy number estimates for the
first 10 samples.

7

> GT.CONF.THR <- 0.80

> autosome.index <- which(isSnp(cnSet) & chromosome(cnSet) < 23)

> sample.index <- 1:10

> ct <- totalCopynumber(cnSet, i=autosome.index, j=sample.index)

> ca <- CA(cnSet, i=autosome.index, j=sample.index)

> cb <- CB(cnSet, i=autosome.index, j=sample.index)

> missing.ca <- is.na(ca)

> missing.cb <- is.na(cb)

> (nmissing.ca <- sum(missing.ca))

[1] 0

> (nmissing.cb <- sum(missing.cb))

[1] 0

> identical(nmissing.ca, nmissing.cb)

[1] TRUE

If nmissing.ca is nonzero, check the genotype confidence scores provided by the crlmm genotyping
algorithm against the threshold specified in crlmmCopynumber.

> if(nmissing.ca > 0){

##invisible(open(snpCallProbability(cnSet)))

gt.conf <- i2p(snpCallProbability(cnSet)[autosome.index, sample.index])

##invisible(close(snpCallProbability(cnSet)))

below.thr <- gt.conf < GT.CONF.THR

index.allbelow <- as.integer(which(rowSums(below.thr) == length(sample.index)))

nmissingBecauseOfGtThr <- length(index.allbelow) * length(sample.index)

stopifnot(identical(nmissingBecauseOfGtThr, nmissing.ca))

or calculate the proportion of missing effected by low crlmm confidence

length(index.allbelow) * length(sample.index)/nmissing.ca

}

One could inspect the cluster plots for the ’low confidence’ calls.

> ## TODO

We repeat the above check for missing values at polymorphic loci on chromosome X. In this case, we
compare the rowSums of the missing values to the number of samples to check whether all of the estimates
are missing for a given SNP.

> ## start with first batch

> sample.index <- which(batch(cnSet)==batch(cnSet)[1])

> X.index <- which(isSnp(cnSet) & chromosome(cnSet) == 23)

> ca.X <- CA(cnSet, i=X.index, j=sample.index)

> missing.caX <- is.na(ca.X)

> (nmissing.caX <- sum(missing.caX))

[1] 15781

> missing.snp.index <- which(rowSums(missing.caX) == length(sample.index))

> index <- which(rowSums(missing.caX) == length(sample.index))

> ##length(index)*length(sample.index)/nmissing.caX

8

From the above codechunk, we see that 367 SNPs have NAs for all the samples. Next, we tally the
number of NAs for polymorphic markers on chromosome X that are below the confidence threshold. For
the HapMap analysis, all of the missing values arose from SNPs in which either the men or the women had
confidence scores that were all below the threshold.

> invisible(open(cnSet$gender))

> F <- which(cnSet$gender[sample.index] == 2)

> M <- which(cnSet$gender[sample.index] == 1)

> gt.conf <- i2p(snpCallProbability(cnSet)[X.index, sample.index])

> below.thr <- gt.conf < GT.CONF.THR

> index.allbelowF <- as.integer(which(rowSums(below.thr[, F]) == length(F)))

> index.allbelowM <- as.integer(which(rowSums(below.thr[, M]) == length(M)))

> all.equal(index.allbelowF, index.allbelowM)

[1] TRUE

> all.equal(as.integer(index.allbelowF), as.integer(index))

[1] TRUE

For nonpolymorphic loci, the genotype confidence scores are irrelevant and estimates are available at
most markers.

> np.index <- which(!isSnp(cnSet) & chromosome(cnSet)==23)

> ca.F <- CA(cnSet, i=np.index, j=F)

> ca.M <- CA(cnSet, i=np.index, j=M)

> ## NAs for one marker

> ca.F <- ca.F[-match("CN_974939", rownames(ca.F)),]

> ca.M <- ca.M[-match("CN_974939", rownames(ca.M)),]

> sum(is.na(ca.F))

[1] 23

> sum(is.na(ca.M))

[1] 20

In total, there were 367 polymorphic markers on chromosome X for which copy number estimates are not
available. Lowering the confidence threshold would permit estimation of copy number at most of these loci.
A confidence threshold is included as a parameter for the copy number estimation as an approach to reduce
the sensitivity of genotype-specific summary statistics, such as the within-genotype median, to intensities
from samples that do not clearly fall into one of the biallelic genotype clusters. There are drawbacks to this
approach, including variance estimates that can be a bit optimistic at some loci. More direct approaches for
outlier detection and removal may be explored in the future.

Copy number estimates for other chromosomes, such as mitochondrial and chromosome Y, are not cur-
rently available in crlmm.

> invisible(close(cnSet))

> invisible(close(cnSet$gender))

4 Session information

> toLatex(sessionInfo())

� R version 2.15.0 Patched (2012-04-25 r59178), x86_64-unknown-linux-gnu

9

� Locale: LC_CTYPE=en_US.iso885915, LC_NUMERIC=C, LC_TIME=en_US.iso885915,
LC_COLLATE=en_US.iso885915, LC_MONETARY=en_US.iso885915, LC_MESSAGES=en_US.iso885915,
LC_PAPER=C, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.iso885915,
LC_IDENTIFICATION=C

� Base packages: base, datasets, graphics, grDevices, methods, stats, tools, utils

� Other packages: Biobase 2.16.0, BiocGenerics 0.3.0, BiocInstaller 1.5.7, bit 1.1-8, cacheSweave 0.6-1,
crlmm 1.15.4, ff 2.2-7, filehash 2.2-1, genomewidesnp6Crlmm 1.0.6, hapmapsnp6 1.3.7, lattice 0.20-6,
oligoClasses 1.19.15, stashR 0.3-5, VanillaICE 1.19.11

� Loaded via a namespace (and not attached): affyio 1.24.0, annotate 1.34.0, AnnotationDbi 1.18.0,
Biostrings 2.24.1, codetools 0.2-8, compiler 2.15.0, DBI 0.2-5, digest 0.5.2, ellipse 0.3-7, foreach 1.4.0,
genefilter 1.38.0, GenomicRanges 1.9.13, grid 2.15.0, IRanges 1.15.9, iterators 1.0.6, msm 1.1.1,
mvtnorm 0.9-9992, preprocessCore 1.18.0, RSQLite 0.11.1, splines 2.15.0, stats4 2.15.0,
survival 2.36-14, xtable 1.7-0, zlibbioc 1.2.0

10

