pmp 1.16.0
This is a step by step tutorial on how to assess and/or correct signal drift and batch effects within/across a multi-batch direct infusion mass spectrometry (DIMS) dataset. The same approach can be used on liquid chromatography mass spectrometry (LCMS) peak table as well.
Deeper details on how the algorithm works are detailed in 4.3
You should have R version 4.0.0 or above and Rstudio installed to be able to run this notebook.
Execute following commands from the R terminal.
install.packages("gridExtra")
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("pmp")
Load the required libraries into the R environment
library(S4Vectors)
library(SummarizedExperiment)
library(pmp)
library(ggplot2)
library(reshape2)
library(gridExtra)
In this tutorial we will be using a direct infusion mass spectrometry (DIMS)
dataset consisting of 172 samples measured across 8 batches and is included in
pmp
package as SummarizedExperiemnt
class object MTBLS79
.
More detailed description of the dataset is available from Kirwan et al. (2014),
MTBLS79 and R man page.
help ("MTBLS79")
feature_names <- c("70.03364", "133.07379", "146.16519", "163.04515",
"174.89483", "200.03196", "207.07818", "221.05062", "240.02445",
"251.03658", "266.01793", "304.99115", "321.07923", "338.98131",
"376.03962", "393.35878", "409.05716", "430.24353", "451.01086",
"465.14937")
summary(t(SummarizedExperiment::assay(MTBLS79[feature_names, ])))
#> 70.03364 133.07379 146.16519 163.04515
#> Min. : 2390 Min. :214680 Min. : 20142 Min. : 85138
#> 1st Qu.:15107 1st Qu.:326793 1st Qu.: 43129 1st Qu.:140682
#> Median :25992 Median :364517 Median : 57957 Median :153265
#> Mean :25715 Mean :355800 Mean : 73911 Mean :154682
#> 3rd Qu.:35395 3rd Qu.:389726 3rd Qu.: 85819 3rd Qu.:170635
#> Max. :56061 Max. :452978 Max. :351751 Max. :216917
#> NA's :18
#> 174.89483 200.03196 207.07818 221.05062
#> Min. : 6839 Min. :18338 Min. :179175 Min. : 52204
#> 1st Qu.:11551 1st Qu.:24673 1st Qu.:206967 1st Qu.: 86777
#> Median :14079 Median :28380 Median :220686 Median : 96552
#> Mean :16982 Mean :30027 Mean :225574 Mean : 96794
#> 3rd Qu.:21159 3rd Qu.:33026 3rd Qu.:234812 3rd Qu.:105478
#> Max. :43762 Max. :58147 Max. :431784 Max. :131368
#>
#> 240.02445 251.03658 266.01793 304.99115
#> Min. :12994 Min. : 4726 Min. : 5283 Min. : 24683
#> 1st Qu.:22179 1st Qu.: 20658 1st Qu.:14247 1st Qu.: 44669
#> Median :28939 Median : 30675 Median :30224 Median : 60338
#> Mean :29429 Mean : 41251 Mean :26680 Mean : 68689
#> 3rd Qu.:34527 3rd Qu.: 58220 3rd Qu.:36028 3rd Qu.: 80126
#> Max. :54417 Max. :164754 Max. :61402 Max. :190193
#> NA's :32 NA's :30
#> 321.07923 338.98131 376.03962 393.35878
#> Min. : 5368 Min. : 2817 Min. : 7082 Min. : 62973
#> 1st Qu.: 16107 1st Qu.: 6413 1st Qu.:17636 1st Qu.:123464
#> Median : 27822 Median : 8215 Median :22720 Median :166579
#> Mean : 38301 Mean : 9494 Mean :24130 Mean :235819
#> 3rd Qu.: 46408 3rd Qu.:11087 3rd Qu.:28685 3rd Qu.:334867
#> Max. :285756 Max. :30462 Max. :67877 Max. :830668
#> NA's :27 NA's :29
#> 409.05716 430.24353 451.01086 465.14937
#> Min. : 110970 Min. : 25415 Min. : 1884 Min. : 3167
#> 1st Qu.: 151404 1st Qu.: 34350 1st Qu.: 5254 1st Qu.: 19916
#> Median : 161617 Median : 38528 Median : 7210 Median : 25224
#> Mean : 183870 Mean : 43203 Mean : 7880 Mean : 27209
#> 3rd Qu.: 174052 3rd Qu.: 43726 3rd Qu.:10490 3rd Qu.: 29656
#> Max. :2828059 Max. :121995 Max. :17602 Max. :101471
#> NA's :1 NA's :9
#number of samples:
ncol(MTBLS79)
#> [1] 172
#Batches:
unique(MTBLS79$Batch)
#> [1] "1" "2" "3" "4" "5" "6" "7" "8"
#Sample classes:
unique(MTBLS79$Class)
#> [1] "QC" "C" "S"
A more detailed overview and guidelines on strategies for quality control of mass spectrometry assays is detailed in recent work by Broadhurst et al. (2018).
To evaluate if the data needs correction, it is common practice to examine the relative standard deviation (RSD) of the quality control (QC) samples and biological samples. RSD% is also sometimes referred to as the coefficient of variation (CV). An RSD% for the QC samples below 20-30% is commonly used as an acceptable level of technical variation where signal correction is not required.
The following code calculates and plots the RSD% values of the features within the dataset.
# separate the LCMS data from the meta data
data(MTBLS79)
data <- SummarizedExperiment::assay(MTBLS79[feature_names, ])
class <- SummarizedExperiment::colData(MTBLS79)$Class
batch <- SummarizedExperiment::colData(MTBLS79)$Batch
order <- c(1:ncol(data))
# get index of QC samples
QChits <- which(class == "QC")
# small function to calculate RSD%
FUN <- function(x) sd(x, na.rm=TRUE) / mean(x, na.rm=TRUE) * 100
# RSD% of biological and QC samples within all 8 batches:
out <- matrix(ncol=2, nrow=nrow(data))
colnames(out) <- c("Sample","QC")
rownames(out) <- rownames(data)
# for each feature calculate RSD% for the samples and the QCs
for (i in 1:nrow(data)) {
out[i, 1] <- FUN(data[i, -QChits]) # for samples
out[i, 2] <- FUN(data[i, QChits]) # for QCs
}
# prepare data for plotting
plotdata <- melt(data.frame(out), variable.name="Class", value.name="RSD")
plotdata$feature <- rownames(data)
plotdata$RSD <- round(plotdata$RSD,0)
plotdata$feature <- factor(plotdata$feature, ordered=TRUE,
levels=unique(plotdata$feature))
# plot
ggplot(data=plotdata, aes(x=Class, y=feature, fill=RSD)) +
geom_tile() +
geom_text(aes(label=RSD)) +
scale_fill_gradient2(low="black", mid="white", high="red")