hthgu133pluspm.db
August 14, 2024

hthgu133pluspmACCNUM Map Manufacturer identifiers to Accession Numbers

Description
hthgu133pluspmACCNUM is an R object that contains mappings between a manufacturer’s identifiers and manufacturers accessions.

Details
For chip packages such as this, the ACCNUM mapping comes directly from the manufacturer. This is different from other mappings which are mapped onto the probes via an Entrez Gene identifier.
Each manufacturer identifier maps to a vector containing a GenBank accession number.
Mappings were based on data provided by: Entrez Gene ftp://ftp.ncbi.nlm.nih.gov/gene/DATA With a date stamp from the source of: 2021-Apr14

See Also
• AnnotationDb-class for use of the select() interface.

Examples
select() interface:
Objects in this package can be accessed using the select() interface
from the AnnotationDbi package. See ?select for details.

Bimap interface:
x <- hthgu133pluspmACCNUM
Get the probe identifiers that are mapped to an ACCNUM
mapped_probes <- mappedkeys(x)
Convert to a list
xx <- as.list(x[mapped_probes][1:300])
if(length(xx) > 0) {
 # Get the ACCNUM for the first five probes
 xx[1:5]
hthgu133pluspmALIAS2PROBE

Map between Common Gene Symbol Identifiers and Manufacturer Identifiers

Description

hthgu133pluspmALIAS is an R object that provides mappings between common gene symbol identifiers and manufacturer identifiers.

Details

Each gene symbol is mapped to a named vector of manufacturer identifiers. The name represents the gene symbol and the vector contains all manufacturer identifiers that are found for that symbol. An NA is reported for any gene symbol that cannot be mapped to any manufacturer identifiers.

This mapping includes ALL gene symbols including those which are already listed in the SYMBOL map. The SYMBOL map is meant to only list official gene symbols, while the ALIAS maps are meant to store all used symbols.

Mappings were based on data provided by: Entrez Gene ftp://ftp.ncbi.nlm.nih.gov/gene/DATA With a date stamp from the source of: 2021-Apr14

See Also

• AnnotationDb-class for use of the select() interface.

Examples

select() interface:
Objects in this package can be accessed using the select() interface
from the AnnotationDbi package. See ?select for details.

Bimap interface:
Convert the object to a list
xx <- as.list(hthgu133pluspmALIAS2PROBE)
if(length(xx) > 0){
 # Get the probe identifiers for the first two aliases
 xx[1:2]
 # Get the first one
 xx[[1]]
}
Description

Welcome to the hthgu133pluspm.db annotation Package. The purpose of this package is to provide detailed information about the hthgu133pluspm platform. This package is updated biannually.

Objects in this package are accessed using the `select()` interface. See ?select in the AnnotationDbi package for details.

See Also

- `AnnotationDb-class` for use of `keys()`, `columns()` and `select()`.

Examples

```r
## select() interface:
## Objects in this package can be accessed using the `select()` interface
## from the AnnotationDbi package. See ?select for details.
columns(hthgu133pluspm.db)

## Bimap interface:
## The 'old style' of interacting with these objects is manipulation as
## bimaps. While this approach is still available we strongly encourage the
## use of `select()`.
ls("package:hthgu133pluspm.db")
```

hthgu133pluspmCHR

Map Manufacturer IDs to Chromosomes

Description

hthgu133pluspmCHR is an R object that provides mappings between a manufacturer identifier and the chromosome that contains the gene of interest.

Details

Each manufacturer identifier maps to a vector of chromosomes. Due to inconsistencies that may exist at the time the object was built, the vector may contain more than one chromosome (e.g., the identifier may map to more than one chromosome). If the chromosomal location is unknown, the vector will contain an NA.

Mappings were based on data provided by: Entrez Gene ftp://ftp.ncbi.nlm.nih.gov/gene/DATA With a date stamp from the source of: 2021-Apr14
See Also

- **AnnotationDb-class** for use of the `select()` interface.

Examples

```r
## select() interface:
## Objects in this package can be accessed using the select() interface
## from the AnnotationDbi package. See ?select for details.

## Bimap interface:
x <- hthgu133pluspmCHR
# Get the probe identifiers that are mapped to a chromosome
mapped_probes <- mappedkeys(x)
# Convert to a list
xx <- as.list(x[mapped_probes][1:300])
if(length(xx) > 0) {
  # Get the CHR for the first five probes
  xx[1:5]
  # Get the first one
  xx[[1]]
}
```

hthgu133pluspmCHRLENGTHS

A named vector for the length of each of the chromosomes

Description

`hthgu133pluspmCHRLENGTHS` provides the length measured in base pairs for each of the chromosomes.

Details

This is a named vector with chromosome numbers as the names and the corresponding lengths for chromosomes as the values.

Total lengths of chromosomes were derived by calculating the number of base pairs on the sequence string for each chromosome.

See Also

- **AnnotationDb-class** for use of the `select()` interface.

Examples

```r
## select() interface:
## Objects in this package can be accessed using the select() interface
## from the AnnotationDbi package. See ?select for details.
```
Bimap interface:

```r
tt <- hthgu133pluspmCHRLENGTHS
# Length of chromosome 1
tt["1"]
```

Description

hthgu133pluspmCHRLOC is an R object that maps manufacturer identifiers to the starting position of the gene. The position of a gene is measured as the number of base pairs.

The **CHRLOCEnd** mapping is the same as the **CHRLOC** mapping except that it specifies the ending base of a gene instead of the start.

Details

Each manufacturer identifier maps to a named vector of chromosomal locations, where the name indicates the chromosome. Due to inconsistencies that may exist at the time the object was built, these vectors may contain more than one chromosome and/or location. If the chromosomal location is unknown, the vector will contain an NA.

Chromosomal locations on both the sense and antisense strands are measured as the number of base pairs from the p (5' end of the sense strand) to q (3' end of the sense strand) arms. Chromosomal locations on the antisense strand have a leading "-" sign (e.g. -1234567).

Since some genes have multiple start sites, this field can map to multiple locations.

Mappings were based on data provided by: UCSC Genome Bioinformatics (Homo sapiens)

With a date stamp from the source of: 2021-Feb16

See Also

- AnnotationDb-class for use of the `select()` interface.

Examples

```r
## select() interface:
## Objects in this package can be accessed using the select() interface
## from the AnnotationDbi package. See ?select for details.

## Bimap interface:
x <- hthgu133pluspmCHRLOC
# Get the probe identifiers that are mapped to chromosome locations
mapped_probes <- mappedkeys(x)
# Convert to a list
xx <- as.list(x[mapped_probes][1:300])
if(length(xx) > 0) {
  # Get the CHRLOC for the first five probes
  xx[1:5]
```
Get the first one
xx[[1]]
hthgu133pluspmENTREZID

Map between Manufacturer Identifiers and Entrez Gene

Description

hthgu133pluspmENTREZID is an R object that provides mappings between manufacturer identifiers and Entrez Gene identifiers.

Details

Each manufacturer identifier is mapped to a vector of Entrez Gene identifiers. An NA is assigned to those manufacturer identifiers that can not be mapped to an Entrez Gene identifier at this time.

If a given manufacturer identifier can be mapped to different Entrez Gene identifiers from various sources, we attempt to select the common identifiers. If a concensus cannot be determined, we select the smallest identifier.

Mappings were based on data provided by: Entrez Gene ftp://ftp.ncbi.nlm.nih.gov/gene/DATA With a date stamp from the source of: 2021-Apr14

References

See Also

• AnnotationDb-class for use of the select() interface.

Examples

```r
## select() interface:
## Objects in this package can be accessed using the select() interface
## from the AnnotationDbi package. See ?select for details.

## Bimap interface:
x <- hthgu133pluspmENTREZID
# Get the probe identifiers that are mapped to an ENTREZ Gene ID
```

hthgu133pluspmENZYME

Maps between Manufacturer IDs and Enzyme Commission (EC) Numbers

Description

hthgu133pluspmENZYME is an R object that provides mappings between manufacturer identifiers and EC numbers. hthgu133pluspmENZYME2PROBE is an R object that maps Enzyme Commission (EC) numbers to manufacturer identifiers.

Details

When the hthgu133pluspmENZYME mapping viewed as a list, each manufacturer identifier maps to a named vector containing the EC number that corresponds to the enzyme produced by that gene. The names corresponds to the manufacturer identifiers. If this information is unknown, the vector will contain an NA.

For the hthgu133pluspmENZYME2PROBE, each EC number maps to a named vector containing all of the manufacturer identifiers that correspond to the gene that produces that enzyme. The name of the vector corresponds to the EC number.

Enzyme Commission numbers are assigned by the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology http://www.chem.qmw.ac.uk/iubmb/enzyme/ to allow enzymes to be identified.

An Enzyme Commission number is of the format EC x.y.z.w, where x, y, z, and w are numeric numbers. In hthgu133pluspmENZYME2PROBE, EC is dropped from the Enzyme Commission numbers.

Enzyme Commission numbers have corresponding names that describe the functions of enzymes in such a way that EC x is a more general description than EC x.y that in turn is a more general description than EC x.y.z. The top level EC numbers and names are listed below:

EC 1 oxidoreductases
EC 2 transferases
EC 3 hydrolases
EC 4 lyases
EC 5 isomerases
EC 6 ligases
The EC name for a given EC number can be viewed at http://www.chem.qmul.ac.uk/iupac/jcbn/index.html#6

Mappings between probe identifiers and enzyme identifiers were obtained using files provided by: KEGG GENOME ftp://ftp.genome.jp/pub/kegg/genomes With a date stamp from the source of: 2011-Mar15

References

See Also

• AnnotationDb-class for use of the select() interface.

Examples

select() interface:
Objects in this package can be accessed using the select() interface
from the AnnotationDbi package. See ?select for details.

Bimap interface:
x <- hthgu133pluspmENZYME
Get the probe identifiers that are mapped to an EC number
mapped_probes <- mappedkeys(x)
Convert to a list
xx <- as.list(x[mapped_probes][1:3])
if(length(xx) > 0) {
 # Get the ENZYME for the first five probes
 xx[1:5]
 # Get the first one
 xx[[1]]
}

Now convert hthgu133pluspmENZYME2PROBE to a list to see inside
x <- hthgu133pluspmENZYME2PROBE
mapped_probes <- mappedkeys(x)
convert to a list
xx <- as.list(x[mapped_probes][1:3])
if(length(xx) > 0){
 # Get the probe identifiers for the first five enzyme
 #commission numbers
 xx[1:5]
 # Get the first one
 xx[[1]]
}
hthgu133pluspmGENENAME

Map between Manufacturer IDs and Genes

Description

hthgu133pluspmGENENAME is an R object that maps manufacturer identifiers to the corresponding gene name.

Details

Each manufacturer identifier maps to a named vector containing the gene name. The vector name corresponds to the manufacturer identifier. If the gene name is unknown, the vector will contain an NA.

Gene names currently include both the official (validated by a nomenclature committee) and preferred names (interim selected for display) for genes. Efforts are being made to differentiate the two by adding a name to the vector.

Mappings were based on data provided by: Entrez Gene ftp://ftp.ncbi.nlm.nih.gov/gene/DATA With a date stamp from the source of: 2021-Apr14

See Also

• AnnotationDb-class for use of the select() interface.

Examples

select() interface:
Objects in this package can be accessed using the select() interface
from the AnnotationDbi package. See ?select for details.

Bimap interface:
x <- hthgu133pluspmGENENAME
Get the probe identifiers that are mapped to a gene name
mapped_probes <- mappedkeys(x)
Convert to a list
xx <- as.list(x[mapped_probes][1:300])
if(length(xx) > 0) {
 # Get the GENENAME for the first five probes
 xx[1:5]
 # Get the first one
 xx[[1]]
}
hthgu133pluspmGO
Maps between manufacturer IDs and Gene Ontology (GO) IDs

Description

hthgu133pluspmGO is an R object that provides mappings between manufacturer identifiers and
the GO identifiers that they are directly associated with. This mapping and its reverse mapping
(hthgu133pluspmGO2PROBE) do NOT associate the child terms from the GO ontology with the
gene. Only the directly evidenced terms are represented here.

hthgu133pluspmGO2ALLPROBES is an R object that provides mappings between a given GO
identifier and all of the manufacturer identifiers annotated at that GO term OR TO ONE OF IT’S
CHILD NODES in the GO ontology. Thus, this mapping is much larger and more inclusive than
hthgu133pluspmGO2PROBE.

Details

If hthgu133pluspmGO is cast as a list, each manufacturer identifier is mapped to a list of lists. The
names on the outer list are GO identifiers. Each inner list consists of three named elements: GOID,
Ontology, and Evidence.

The GOID element matches the GO identifier named in the outer list and is included for convenience
when processing the data using ‘lapply’.

The Ontology element indicates which of the three Gene Ontology categories this identifier belongs
to. The categories are biological process (BP), cellular component (CC), and molecular function
(MF).

The Evidence element contains a code indicating what kind of evidence supports the association of
the GO identifier to the manufacturer id. Some of the evidence codes in use include:

IMP: inferred from mutant phenotype
IGI: inferred from genetic interaction
IPI: inferred from physical interaction
ISS: inferred from sequence similarity
IDA: inferred from direct assay
IEP: inferred from expression pattern
IEA: inferred from electronic annotation
TAS: traceable author statement
NAS: non-traceable author statement
ND: no biological data available
IC: inferred by curator

A more complete listing of evidence codes can be found at:

If hthgu133pluspmGO2ALLPROBES or hthgu133pluspmGO2PROBE is cast as a list, each GO
term maps to a named vector of manufacturer identifiers and evidence codes. A GO identifier
may be mapped to the same manufacturer identifier more than once but the evidence code can be different. Mappings between Gene Ontology identifiers and Gene Ontology terms and other information are available in a separate data package named GO.

Whenever any of these mappings are cast as a data.frame, all the results will be output in an appropriate tabular form.

Mappings between manufacturer identifiers and GO information were obtained through their mappings to manufacturer identifiers. NAs are assigned to manufacturer identifiers that can not be mapped to any Gene Ontology information. Mappings between Gene Ontology identifiers and Gene Ontology terms and other information are available in a separate data package named GO.

All mappings were based on data provided by: Gene Ontology http://current.geneontology.org/ontology/go-basic.obo With a date stamp from the source of: 2021-02-01

References

See Also
- hthgu133pluspmGO2ALLPROBES
- AnnotationDb-class for use of the select() interface.

Examples

```r
## select() interface:
## Objects in this package can be accessed using the select() interface
## from the AnnotationDbi package. See ?select for details.

## Bimap interface:
x <- hthgu133pluspmGO
# Get the manufacturer identifiers that are mapped to a GO ID
mapped_genes <- mappedkeys(x)
# Convert to a list
xx <- as.list(x[mapped_genes][1:300])
if(length(xx) > 0) {
  # Try the first one
  got <- xx[[1]]
  got[[1]]["GOID"]
  got[[1]]["Ontology"]
  got[[1]]["Evidence"]
}
# For the reverse map:
x <- hthgu133pluspmGO2PROBE
mapped_genes <- mappedkeys(x)
# Convert to a list
xx <- as.list(x[mapped_genes][1:300])
if(length(xx) > 0){
  # Gets the manufacturer ids for the top 2nd and 3nd GO identifiers
goids <- xx[2:3]
  # Gets the manufacturer ids for the first element of goids
goids[[1]]
```

```r
# Evidence code for the mappings
names(goids[[1]])
}
x <- hthgu133pluspmGO2ALLPROBES
mapped_genes <- mappedkeys(x)
# Convert hthgu133pluspmGO2ALLPROBES to a list
xx <- as.list(x[mapped_genes][1:300])
if(length(xx) > 0){
  # Gets the manufacturer identifiers for the top 2nd and 3rd GO identifiers
goids <- xx[2:3]
  # Gets all the manufacturer identifiers for the first element of goids
goids[[1]]
  # Evidence code for the mappings
  names(goids[[1]])
}
```

hthgu133pluspmMAP
Map between Manufacturer Identifiers and cytogenetic maps/bands

Description

hthgu133pluspmMAP is an R object that provides mappings between manufacturer identifiers and cytoband locations.

Details

Each manufacturer identifier is mapped to a vector of cytoband locations. The vector length may be one or longer, if there are multiple reported chromosomal locations for a given gene. An NA is reported for any manufacturer identifiers that cannot be mapped to a cytoband at this time.

Cytogenetic bands for most higher organisms are labeled p1, p2, p3, q1, q2, q3 (p and q are the p and q arms), etc., counting from the centromere out toward the telomeres. At higher resolutions, sub-bands can be seen within the bands. The sub-bands are also numbered from the centromere out toward the telomere. Thus, a label of 7q31.2 indicates that the band is on chromosome 7, q arm, band 3, sub-band 1, and sub-sub-band 2.

Mappings were based on data provided by: Entrez Gene ftp://ftp.ncbi.nlm.nih.gov/gene/DATA With a date stamp from the source of: 2021-Apr14

References

See Also

- `AnnotationDb-class` for use of the `select()` interface.
Examples

```r
## select() interface:
## Objects in this package can be accessed using the select() interface
## from the AnnotationDbi package. See ?select for details.

## Bimap interface:
# Map keys that are mapped to any cytoband
# Convert to a list
Map <- as.list(Map[[1:300]])
if(length(Map) > 0) {
    # Map for the first five probes
    Map[1:5]
    # Map the first one
    Map[[1]]
}
```

hthgu133pluspmMAPCOUNTS

Number of mapped keys for the maps in package hthgu133pluspm.db

Description

DEPRECATED. Counts in the MAPCOUNT table are out of sync and should not be used.

hthgu133pluspmMAPCOUNTS provides the "map count" (i.e. the count of mapped keys) for each map in package hthgu133pluspm.db.

Details

DEPRECATED. Counts in the MAPCOUNT table are out of sync and should not be used.

This "map count" information is precalculated and stored in the package annotation DB. This allows some quality control and is used by the `checkMAPCOUNTS` function defined in AnnotationDbi to compare and validate different methods (like `count.mappedkeys(x)` or `sum(!is.na(as.list(x)))`) for getting the "map count" of a given map.

hthgu133pluspmOMIM

Map between Manufacturer Identifiers and Mendelian Inheritance in Man (MIM) identifiers

Description

hthgu133pluspmOMIM is an R object that provides mappings between manufacturer identifiers and OMIM identifiers.
Details

Each manufacturer identifier is mapped to a vector of OMIM identifiers. The vector length may be one or longer, depending on how many OMIM identifiers the manufacturer identifier maps to. An NA is reported for any manufacturer identifier that cannot be mapped to an OMIM identifier at this time.

OMIM is based upon the book Mendelian Inheritance in Man (V. A. McKusick) and focuses primarily on inherited or heritable genetic diseases. It contains textual information, pictures, and reference information that can be searched using various terms, among which the MIM number is one.

Mappings were based on data provided by: Entrez Gene ftp://ftp.ncbi.nlm.nih.gov/gene/DATA With a date stamp from the source of: 2021-Apr14

References

See Also

• AnnotationDb-class for use of the select() interface.

Examples

select() interface:
Objects in this package can be accessed using the select() interface
from the AnnotationDbi package. See ?select for details.

Bimap interface:
x <- hthgu133pluspmOMIM
Get the probe identifiers that are mapped to a OMIM ID
mapped_probes <- mappedkeys(x)
Convert to a list
xx <- as.list(x[mapped_probes][1:300])
if(length(xx) > 0) {
 # Get the OMIM for the first five probes
 xx[1:5]
 # Get the first one
 xx[[1]]
}

The Organism information for hthgu133pluspm

Description

hthgu133pluspmORGANISM is an R object that contains a single item: a character string that names the organism for which hthgu133pluspm was built. hthgu133pluspmORGPKG is an R object that contains a character vector with the name of the organism package that a chip package depends on for its gene-centric annotation.
Details

Although the package name is suggestive of the organism for which it was built, hthgu133pluspmORGANISM provides a simple way to programmatically extract the organism name. hthgu133pluspmORGPKG provides a simple way to programmatically extract the name of the parent organism package. The parent organism package is a strict dependency for chip packages as this is where the gene cetric information is ultimately extracted from. The full package name will always be this string plus the extension ".db". But most programatic acces will not require this extension, so its more convenient to leave it out.

See Also

- AnnotationDb-class for use of the select() interface.

Examples

```r
## select() interface:
## Objects in this package can be accessed using the select() interface
## from the AnnotationDbi package. See ?select for details.

## Bimap interface:
hthgu133pluspmORGANISM
hthgu133pluspmORGPKG
```

hthgu133pluspmPATH Mappings between probe identifiers and KEGG pathway identifiers

Description

KEGG (Kyoto Encyclopedia of Genes and Genomes) maintains pathway data for various organisms.

hthgu133pluspmPATH maps probe identifiers to the identifiers used by KEGG for pathways in which the genes represented by the probe identifiers are involved

hthgu133pluspmPATH2PROBE is an R object that provides mappings between KEGG identifiers and manufacturer identifiers.

Details

Each KEGG pathway has a name and identifier. Pathway name for a given pathway identifier can be obtained using the KEGG data package that can either be built using AnnBuilder or downloaded from Bioconductor http://www.bioconductor.org.

Graphic presentations of pathways are searchable at url http://www.genome.ad.jp/kegg/pathway.html by using pathway identifiers as keys.

Mappings were based on data provided by: KEGG GENOME ftp://ftp.genome.jp/pub/kegg/genomes
With a date stamp from the source of: 2011-Mar15
hthgu133pluspmPFAM

Maps between Manufacturer Identifiers and PFAM Identifiers

Description

hthgu133pluspmPFAM is an R object that provides mappings between manufacturer identifiers and PFAM identifiers.

Details

The bimap interface for PFAM is defunct. Please use select() interface to PFAM identifiers. See ?AnnotationDbi::select for details.
hthgu133pluspmPMID | Maps between Manufacturer Identifiers and PubMed Identifiers

Description

hthgu133pluspmPMID is an R object that provides mappings between manufacturer identifiers and PubMed identifiers. hthgu133pluspmPMID2PROBE is an R object that provides mappings between PubMed identifiers and manufacturer identifiers.

Details

When hthgu133pluspmPMID is viewed as a list each manufacturer identifier is mapped to a named vector of PubMed identifiers. The name associated with each vector corresponds to the manufacturer identifier. The length of the vector may be one or greater, depending on how many PubMed identifiers a given manufacturer identifier is mapped to. An NA is reported for any manufacturer identifier that cannot be mapped to a PubMed identifier.

When hthgu133pluspmPMID2PROBE is viewed as a list each PubMed identifier is mapped to a named vector of manufacturer identifiers. The name represents the PubMed identifier and the vector contains all manufacturer identifiers that are represented by that PubMed identifier. The length of the vector may be one or longer, depending on how many manufacturer identifiers are mapped to a given PubMed identifier.

Titles, abstracts, and possibly full texts of articles can be obtained from PubMed by providing a valid PubMed identifier. The pubmed function of annotate can also be used for the same purpose.

Mappings were based on data provided by: Entrez Gene ftp://ftp.ncbi.nlm.nih.gov/gene/DATA With a date stamp from the source of: 2021-Apr14

References

See Also

- AnnotationDb-class for use of the select() interface.

Examples

```r
## select() interface:
## Objects in this package can be accessed using the select() interface
## from the AnnotationDbi package. See ?select for details.

## Bimap interface:
x <- hthgu133pluspmPMID
# Get the probe identifiers that are mapped to any PubMed ID
mapped_probes <- mappedkeys(x)
# Convert to a list
xx <- as.list(x[mapped_probes][1:300])
if(length(xx) > 0){
```
Maps between Manufacturer Identifiers and PROSITE Identifiers

Description

hthgu133pluspmPROSITE is an R object that provides mappings between manufacturer identifiers and PROSITE identifiers.

Details

The bimap interface for PROSITE is defunct. Please use select() interface to PROSITE identifiers. See ?AnnotationDbi::select for details.
hthgu133pluspmREFSEQ
Map between Manufacturer Identifiers and RefSeq Identifiers

Description

`hthgu133pluspmREFSEQ` is an R object that provides mappings between manufacturer identifiers and RefSeq identifiers.

Details

Each manufacturer identifier is mapped to a named vector of RefSeq identifiers. The name represents the manufacturer identifier and the vector contains all RefSeq identifiers that can be mapped to that manufacturer identifier. The length of the vector may be one or greater, depending on how many RefSeq identifiers a given manufacturer identifier can be mapped to. An `NA` is reported for any manufacturer identifier that cannot be mapped to a RefSeq identifier at this time.

RefSeq identifiers differ in format according to the type of record the identifiers are for as shown below:

- `NG_XXXXX`: RefSeq accessions for genomic region (nucleotide) records
- `NM_XXXXX`: RefSeq accessions for mRNA records
- `NC_XXXXX`: RefSeq accessions for chromosome records
- `NP_XXXXX`: RefSeq accessions for protein records
- `XR_XXXXX`: RefSeq accessions for model RNAs that are not associated with protein products
- `XM_XXXXX`: RefSeq accessions for model mRNA records
- `XP_XXXXX`: RefSeq accessions for model protein records

Where `XXXXX` is a sequence of integers.

References

See Also

- `AnnotationDb-class` for use of the `select()` interface.
Examples

```r
## select() interface:
## Objects in this package can be accessed using the select() interface
## from the AnnotationDbi package. See ?select for details.

## Bimap interface:
x <- hthgu133pluspmREFSEQ
# Get the probe identifiers that are mapped to any RefSeq ID
mapped_probes <- mappedkeys(x)
# Convert to a list
xx <- as.list(x[mapped_probes][1:300])
if(length(xx) > 0) {
  # Get the REFSEQ for the first five probes
  xx[1:5]
  # Get the first one
  xx[[1]]
}
```

Description

`hthgu133pluspmSYMBOL` is an R object that provides mappings between manufacturer identifiers and gene abbreviations.

Details

Each manufacturer identifier is mapped to an abbreviation for the corresponding gene. An NA is reported if there is no known abbreviation for a given gene.

Symbols typically consist of 3 letters that define either a single gene (ABC) or multiple genes (ABC1, ABC2, ABC3). Gene symbols can be used as key words to query public databases such as Entrez Gene.

Mappings were based on data provided by: Entrez Gene ftp://ftp.ncbi.nlm.nih.gov/gene/DATA With a date stamp from the source of: 2021-Apr14

References

See Also

- `AnnotationDb-class` for use of the select() interface.
Examples

```r
## select() interface:
## Objects in this package can be accessed using the select() interface
## from the AnnotationDbi package. See ?select for details.

## Bimap interface:
x <- hthgu133pluspmSYMBOL
# Get the probe identifiers that are mapped to a gene symbol
mapped_probes <- mappedkeys(x)
# Convert to a list
xx <- as.list(x[mapped_probes][1:300])
if(length(xx) > 0) {
  # Get the SYMBOL for the first five probes
  xx[1:5]
  # Get the first one
  xx[[1]]
}
```

hthgu133pluspmUNIPROT *Map Uniprot accession numbers with Entrez Gene identifiers*

Description

hthgu133pluspmUNIPROT is an R object that contains mappings between the manufacturer identifiers and Uniprot accession numbers.

Details

This object is a simple mapping of manufacturer identifiers to Uniprot Accessions.

Mappings were based on data provided by NCBI (link above) with an exception for fly, which required retrieving the data from ensembl http://www.ensembl.org/biomart/martview/

See Also

- *AnnotationDb-class* for use of the select() interface.

Examples

```r
## select() interface:
## Objects in this package can be accessed using the select() interface
## from the AnnotationDbi package. See ?select for details.

## Bimap interface:
x <- hthgu133pluspmUNIPROT
# Get the entrez gene IDs that are mapped to an Uniprot ID
mapped_genes <- mappedkeys(x)
# Convert to a list
xx <- as.list(x[mapped_genes][1:300])
if(length(xx) > 0) {
```
Get the Uniprot IDs for the first five genes
xx[1:5]
Get the first one
xx[[1]]
}

##Collect information about the package annotation DB

###Description
Some convenience functions for getting a connection object to (or collecting information about) the package annotation DB.

###Usage

```r
hthgu133pluspm_dbconn()
hthgu133pluspm_dbfile()
hthgu133pluspm_dbschema(file="", show.indices=FALSE)
hthgu133pluspm_dbInfo()
```

###Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>file</code></td>
<td>A connection, or a character string naming the file to print to (see the <code>file</code> argument of the <code>cat</code> function for the details).</td>
</tr>
<tr>
<td><code>show.indices</code></td>
<td>The CREATE INDEX statements are not shown by default. Use <code>show.indices=TRUE</code> to get them.</td>
</tr>
</tbody>
</table>

###Details

- `hthgu133pluspm_dbconn` returns a connection object to the package annotation DB. IMPORTANT: Don’t call `dbDisconnect` on the connection object returned by `hthgu133pluspm_dbconn` or you will break all the `AnnDbObj` objects defined in this package!
- `hthgu133pluspm_dbfile` returns the path (character string) to the package annotation DB (this is an SQLite file).
- `hthgu133pluspm_dbschema` prints the schema definition of the package annotation DB.
- `hthgu133pluspm_dbInfo` prints other information about the package annotation DB.

###Value

- `hthgu133pluspm_dbconn`: a DBIConnection object representing an open connection to the package annotation DB.
- `hthgu133pluspm_dbfile`: a character string with the path to the package annotation DB.
- `hthgu133pluspm_dbschema`: none (invisible NULL).
- `hthgu133pluspm_dbInfo`: none (invisible NULL).
See Also

`dbGetQuery, dbConnect, dbconn, dbfile, dbschema, dbInfo`

Examples

```r
library(DBI)
## Count the number of rows in the "probes" table:
dbGetQuery(hthgu133pluspm_dbconn(), "SELECT COUNT(*) FROM probes")

hthgu133pluspm_dbschema()

hthgu133pluspm_dbInfo()
```
Index

* datasets
 hthgu133pluspm.db, 3
 hthgu133pluspm_dbconn, 23
 hthgu133pluspmACCNUM, 1
 hthgu133pluspmALIAS2PROBE, 2
 hthgu133pluspmCHR, 3
 hthgu133pluspmCHRLENGTHS, 4
 hthgu133pluspmCHRLOC, 5
 hthgu133pluspmENSEMBL, 6
 hthgu133pluspmENTREZID, 7
 hthgu133pluspmENZYME, 8
 hthgu133pluspmGENENAME, 10
 hthgu133pluspmGO, 11
 hthgu133pluspmMAP, 13
 hthgu133pluspmMAPCOUNTS, 14
 hthgu133pluspmOMIM, 14
 hthgu133pluspmORGANISM, 15
 hthgu133pluspmPATH, 16
 hthgu133pluspmPFAM, 17
 hthgu133pluspmPMID, 18
 hthgu133pluspmPROSITE, 19
 hthgu133pluspmREFSQ, 20
 hthgu133pluspmSYMBOL, 21
 hthgu133pluspmUNIPROT, 22

* utilities
 AnnDbObj, 23
 AnnDbObj dbconn, 23
 cat, 23
 checkMAPCOUNTS, 14
 dbconn, 24
 dbConnect, 24
 dbDisconnect, 23
 dbfile, 24
 dbGetQuery, 24
 dbInfo, 24
 dbschema, 24
 hthgu133pluspm (hthgu133pluspm.db), 3
 hthgu133pluspm.db, 3
 hthgu133pluspm_dbconn, 23
 hthgu133pluspm_dbfile (hthgu133pluspm_dbconn), 23
 hthgu133pluspm_dbInfo (hthgu133pluspm_dbconn), 23
 hthgu133pluspm_dbschema (hthgu133pluspm_dbconn), 23
 hthgu133pluspmACCNUM, 1
 hthgu133pluspmALIAS2PROBE, 2
 hthgu133pluspmCHR, 3
 hthgu133pluspmCHRLENGTHS, 4
 hthgu133pluspmCHRLOC, 5
 hthgu133pluspmCHRLOCEND (hthgu133pluspmCHRLOC), 5
 hthgu133pluspmENSEMBL, 6
 hthgu133pluspmENSEMBL2PROBE (hthgu133pluspmENSEMBL), 6
 hthgu133pluspmENTREZID, 7
 hthgu133pluspmENZYME, 8
 hthgu133pluspmENZYME2PROBE (hthgu133pluspmENZYME), 8
 hthgu133pluspmGENENAME, 10
 hthgu133pluspmGO, 11
 hthgu133pluspmGO2ALLPROBES, 12
 hthgu133pluspmGO2ALLPROBES (hthgu133pluspmGO), 11
 hthgu133pluspmGO2PROBE (hthgu133pluspmGO), 11
 hthgu133pluspmLOCUSID (hthgu133pluspmENTREZID), 7
 hthgu133pluspmMAP, 13
 hthgu133pluspmMAPCOUNTS, 14
 hthgu133pluspmOMIM, 14
 hthgu133pluspmORGANISM, 15
 hthgu133pluspmORGPKG (hthgu133pluspmORGANISM), 15
 hthgu133pluspmPATH, 16
 hthgu133pluspmPATH2PROBE
(hthgu133pluspmPATH), 16
hthgu133pluspmPFAM, 17
hthgu133pluspmPMID, 18
hthgu133pluspmPMID2PROBE
 (hthgu133pluspmPMID), 18
hthgu133pluspmPROSITE, 19
hthgu133pluspmREFSEQ, 20
hthgu133pluspmSYMBOL, 21
hthgu133pluspmUNIPROT, 22
hthgu133pluspmUNIPROT2PROBE
 (hthgu133pluspmUNIPROT), 22