1 Introduction

RmiR.Hs.miRNA is an R package which includes various databases of miRNA targets:

- mirBase
- targetScan
- miRanda from microrna.org
- tarBase from Diana Labs
- mirTarget2 from mirDB
- picTar

With the package it is possible to evaluate or compare different miRNA target database or also retrieve the targets or the miRNAs, given a list of miRNAs or a list of genes respectively.

*favero.francesco@gmail.com
2 Querying and evaluating a miRNA target database

The miRNA targets databases are included in an SQLite object. We can browse and inspect them directly in an R environment:

```r
> library(RmiR.Hs.miRNA)
> dbListTables(RmiR.Hs.miRNA_dbconn())

[1] "miranda"  "mirbase"  "mirtarget2"  "pictar"  "tarbase"
[6] "targetscan"
```

We should make a SQL query to have the desired results only:

```r
> dbGetQuery(RmiR.Hs.miRNA_dbconn(), "SELECT * FROM tarbase WHERE mature_miRNA='hsa-

mature_miRNA  gene_id   pmid
1  hsa-miR-21   7168  17363372
2  hsa-miR-21   7168  17363372
3  hsa-miR-21  27250  18270520
4  hsa-miR-21  27250  17968323
5  hsa-miR-21  27250  18372920
6  hsa-miR-21  27250  17991735
7  hsa-miR-21   5728  17681183
8  hsa-miR-21   5728  16762632
9  hsa-miR-21   5268  18270520
```

Every query gives a mature_miRNA column with the microRNA name and a gene_id column with the entrez gene id of the target. There could be also other additional columns useful for further investigation. These columns depend on the database. For example, in TarBase we have the PubMed ID of the article which proves the relation between the miRNA and its target, in TargetScan there are the start and the end point of the miRNA seed in the gene, and so on.

To evaluate the consistency of a database we can visualize two properties of the miRNA/Target relationship; the **multiplicity** and the **cooperativity**:

```r
> tarbase <- dbReadTable(RmiR.Hs.miRNA_dbconn(), "tarbase")[, 1:2]
> tarb_mir <- sort(table(tarbase$mature_miRNA), decreasing = T)
> plot(x = log2(c(1:length(tarb_mir))), y = tarb_mir, ylab = "miRNA targets",
+     xlab = "log2 (rank of miRNA)")
> tarb_gene <- sort(table(tarbase$gene_id), decreasing = T)
> plot(x = log2(c(1:length(tarb_gene))), y = tarb_gene, ylab = "target sites",
+     xlab = "log2 (rank of genes)")
```
(a) Multiplicity of miRNA in TarBase.
(b) Cooperativity of miRNA in TarBase.

Figure 1: Plot of the multiplicity and cooperativity generated with the TarBase database.

(a) Multiplicity of miRNA in TargetScan.
(b) Cooperativity of miRNA in TargetScan.

Figure 2: Plot of the multiplicity and cooperativity generated with the TargetScan database.
> targetscan <- dbReadTable(RmiR.Hs.miRNA_dbconn(), "targetscan")[, + 1:2]
> targ_mir <- sort(table(targetscan$mature_miRNA), decreasing = T)
> plot(x = log2(c(1:length(targ_mir))), y = targ_mir, ylab = "miRNA targets", + xlab = "log2 (rank of miRNA)"
> targ_gene <- sort(table(targetscan$gene_id), decreasing = T)
> plot(x = log2(c(1:length(targ_gene))), y = targ_gene, ylab = "target sites", + xlab = "log2 (rank of genes)"

From the graphs we can see that for some miRNAs the number of predicted targets
is huge (Fig. 2(a)) compared with the number of experimentally validated targets (Fig. 1(a)).

For a predicted database we note how miRNA have a cooperative control for a lot
of gene targets (Fig. 2(b)), when in the TarBase database many gene targets do not
have more than four target sites (Fig. 1(b)).

2.1 Find a list of miRNAs or targets

In general the result of an analysis is a list of genes or microRNAs. A nice continuation
it is to look for interesting miRNAs or gene targets matching the results.

> mirna <- c("hsa-miR-148b", "hsa-miR-27b", "hsa-miR-25", "hsa-miR-181a", + "hsa-miR-27a", "hsa-miR-7", "hsa-miR-32", "hsa-miR-32", "hsa-miR-7")

We have created a list of miRNA and a list of genes, we use the table of targetscan we
created in the previous example, to look for the information we need:

> mirs <- targetscan[targetscan$mature_miRNA %in% mirna,]
> nrow(mirs)

[1] 5479

> mirs[1:10,]

<table>
<thead>
<tr>
<th>mature_miRNA</th>
<th>gene_id</th>
</tr>
</thead>
<tbody>
<tr>
<td>36870</td>
<td>hsa-miR-148b</td>
</tr>
<tr>
<td>36873</td>
<td>hsa-miR-148b</td>
</tr>
<tr>
<td>36876</td>
<td>hsa-miR-148b</td>
</tr>
<tr>
<td>36879</td>
<td>hsa-miR-148b</td>
</tr>
<tr>
<td>36882</td>
<td>hsa-miR-148b</td>
</tr>
<tr>
<td>36885</td>
<td>hsa-miR-148b</td>
</tr>
<tr>
<td>36888</td>
<td>hsa-miR-148b</td>
</tr>
</tbody>
</table>
> library(hgug4112a.db)
> targs <- targetscan[gene_id %in% mget(genes, hgug4112aENTREZID),
+]
> nrow(targs)

[1] 34

> targs[1:10,]

 mature_miRNA gene_id
24852 hsa-miR-128 59
35204 hsa-miR-143 120
36449 hsa-miR-145 120
36550 hsa-miR-145 120
38093 hsa-miR-152 22
38094 hsa-miR-148b 22
38095 hsa-miR-148a 22
54948 hsa-miR-181d 133
54949 hsa-miR-181c 133
54950 hsa-miR-181b 133