RmiR.hsa package vignette

Francesco Favero*

June 24, 2009

Contents

1 Introduction .. 1

2 Querying and evaluating a miRNA target database 2
 2.1 Find a list of miRNAs or targets 4

1 Introduction

RmiR.hsa is an R package which includes various databases of miRNA targets:

- mirBase
- targetScan
- miRanda from microrna.org
- tarBase from Diana Labs
- mirTarget2 from mirDB
- picTar

With the package it is possible to evaluate or compare different miRNA target database or also retrieve the targets or the miRNAs, given a list of miRNAs or a list of genes respectively.

*favero.francesco@gmail.com
2 Querying and evaluating a miRNA target database

The miRNA targets databases are included in an SQLite object. We can browse and inspect them directly in an R environment:

```r
> library(RmiR.hsa)
> dbListTables(RmiR.hsa_dbconn())

[1] "miranda"  "mirbase"  "mirtarget2" "pictar"  "tarbase"
[6] "targetscren"
```

We should make a SQL query to have the desired results only:

```r
> dbGetQuery(RmiR.hsa_dbconn(), "SELECT * FROM tarbase WHERE mature_miRNA = 'hsa-miR-21'")
mature_miRNA gene_id pmid
1 hsa-miR-21 7168 17363372
2 hsa-miR-21 7168 17363372
3 hsa-miR-21 27250 18270520
4 hsa-miR-21 27250 17968323
5 hsa-miR-21 27250 18372920
6 hsa-miR-21 27250 17991735
7 hsa-miR-21 5728 17681183
8 hsa-miR-21 5728 16762633
9 hsa-miR-21 5268 18270520
```

Every query gives a mature_miRNA column with the microRNA name and a gene_id column with the entrez gene id of the target. There could be also other additional columns useful for further investigation. These columns depend on the database. For example, in TarBase we have the PubMed ID of the article which proves the relation between the miRNA and its target, in TargetScan there are the start and the end point of the miRNA seed in the gene, and so on.

To evaluate the consistency of a database we can visualize two properties of the miRNA/Target relationship; the multiplicity and the cooperativity:

```r
> tarbase <- dbReadTable(RmiR.hsa_dbconn(), "tarbase")[, 1:2]
> tarb_mir <- sort(table(tarbase$mature_miRNA), decreasing = T)
> plot(x = log2(c(1:length(tarb_mir))), y = tarb_mir, ylab = "miRNA targets",
+ xlab = "log2 (rank of miRNA)")
> tarb_gene <- sort(table(tarbase$gene_id), decreasing = T)
> plot(x = log2(c(1:length(tarb_gene))), y = tarb_gene, ylab = "target sites",
+ xlab = "log2 (rank of genes)")
```
Figure 1: Plot of the multiplicity and cooperativity generated with the TarBase database.

Figure 2: Plot of the multiplicity and cooperativity generated with the TargetScan database.
> targetscan <- dbReadTable(RmiR.hsa_dbconn(), "targetscan")[, 1:2]
> targ_mir <- sort(table(targetscan$mature_miRNA), decreasing = T)
> plot(x = log2(c(1:length(targ_mir))), y = targ_mir, ylab = "miRNA targets", xlab = "log2 (rank of miRNA)"
> targ_gene <- sort(table(targetscan$gene_id), decreasing = T)
> plot(x = log2(c(1:length(targ_gene))), y = targ_gene, ylab = "target sites", xlab = "log2 (rank of genes)"

From the graphs we can see that for some miRNAs the number of predicted targets is huge (Fig. 2(a)) compared with the number of experimentally validated targets (Fig. 1(a)).

For a predicted database we note how miRNA have a cooperative control for a lot of gene targets (Fig. 2(b)), when in the TarBase database many gene targets do not have more than four target sites (Fig. 1(b)).

2.1 Find a list of miRNAs or targets

In general the result of an analysis is a list of genes or microRNAs. A nice continuation it is to look for interesting miRNAs or gene targets matching the results.

> mirna <- c("hsa-miR-148b", "hsa-miR-27b", "hsa-miR-25", "hsa-miR-181a", "hsa-miR-27a", "hsa-miR-7", "hsa-miR-32", "hsa-miR-32", "hsa-miR-7")

We have created a list of miRNA and a list of genes, we use the table of targetscan we created in the previous example, to look for the information we need:

> mirs <- targetscan[targetscan$mature_miRNA %in% mirna,]
> nrow(mirs)
[1] 5479

> mirs[1:10,]

<table>
<thead>
<tr>
<th>mature_miRNA</th>
<th>gene_id</th>
</tr>
</thead>
<tbody>
<tr>
<td>36870</td>
<td>hsa-miR-148b 57419</td>
</tr>
<tr>
<td>36873</td>
<td>hsa-miR-148b 22870</td>
</tr>
<tr>
<td>36876</td>
<td>hsa-miR-148b 11176</td>
</tr>
<tr>
<td>36879</td>
<td>hsa-miR-148b 8065</td>
</tr>
<tr>
<td>36882</td>
<td>hsa-miR-148b 7471</td>
</tr>
<tr>
<td>36885</td>
<td>hsa-miR-148b 285527</td>
</tr>
<tr>
<td>36888</td>
<td>hsa-miR-148b 79718</td>
</tr>
</tbody>
</table>
> library(hgug4112a.db)
> targs <- targetscan[targetscan$gene_id %in% mget(genes, hgug4112aENTREZID), +
>]
> nrow(targs)

[1] 34

> targs[1:10,]

<table>
<thead>
<tr>
<th>mature_miRNA</th>
<th>gene_id</th>
</tr>
</thead>
<tbody>
<tr>
<td>24852</td>
<td>hsa-miR-128</td>
</tr>
<tr>
<td>35204</td>
<td>hsa-miR-143</td>
</tr>
<tr>
<td>36449</td>
<td>hsa-miR-145</td>
</tr>
<tr>
<td>36550</td>
<td>hsa-miR-145</td>
</tr>
<tr>
<td>38093</td>
<td>hsa-miR-152</td>
</tr>
<tr>
<td>38094</td>
<td>hsa-miR-148b</td>
</tr>
<tr>
<td>38095</td>
<td>hsa-miR-148a</td>
</tr>
<tr>
<td>54948</td>
<td>hsa-miR-181d</td>
</tr>
<tr>
<td>54949</td>
<td>hsa-miR-181c</td>
</tr>
<tr>
<td>54950</td>
<td>hsa-miR-181b</td>
</tr>
</tbody>
</table>