Package ‘GSVAdataset’

April 11, 2024

Title Data employed in the vignette of the GSVA package

Version 1.38.0

Author Robert Castelo <robert.castelo@upf.edu>

Maintainer Robert Castelo <robert.castelo@upf.edu>

Depends R (>= 3.5), Biobase, GSEABase, hgu95a.db

License Artistic-2.0

biocViews ExperimentData, RNASeqData, Homo_sapiens_Data, CancerData, LeukemiaCancerData

git_url https://git.bioconductor.org/packages/GSVAdataset

git_branch RELEASE_3_18

git_last_commit 196f501

git_last_commit_date 2023-10-24

Repository Bioconductor 3.18

Date/Publication 2024-04-11

R topics documented:

GSVAdataset-package .. 2
annotEntrez220212 .. 3
brainTxDbSets ... 4
c2BroadSets ... 4
commonPickrellHuang ... 5
gbm_eset ... 7
genderGenesEntrez ... 8
leukemia_eset ... 9

Index 11
GSVdata-package

Data employed in the vignette of the GSVA package.

Description

This package contains data employed in the vignette of the GSVA package.

Data sets

- **leukemia** Leukemia data by Armstrong et al. (2002) from the Broad Institute.
- **c2BroadSets** C2 canonical pathways from the MSigDB 3.0 database of gene sets at the Broad Institute.
- **gbm_VerhaakEtAl** TCGA Glioblastoma Multiforme microarray expression data from Verhaak et al. (2010).
- **brainTxDbSets** Gene sets signatures specific to four different brain cell types derived from murine models (Cahoy et al., 2008).
- **commonPickrellHuang** Matching microarray and RNA-seq data from human lymphoblastoid cell lines (Huang et al., 2007; Pickrell et al., 2010).
- **genderGenesEntrez** Entrez genes with documented sex-specific expression (Skaletsky et al., 2003; Carrel and Willard, 2005).

Author(s)

S. Haenzelmann, J. Guinney and R. Castelo

References

annotEntrez220212

Annotation data on gene length and G+C content from NCBI

Description

Annotation data for human genes defined by Entrez identifiers and downloaded on 22/02/2012.

Usage

data(annotEntrez220212)

Format

- **Length**: Length of the longest cDNA of this gene.
- **GCcontent**: G+C content of the longest cDNA of this gene.

Details

All human mRNAs were downloaded from NCBI on 22/02/12 by going first to the taxonomy browser, select "Homo Sapiens", then select mRNAs, then follow the link on "manage filters" and made sure that only mRNAs is checked. Then, we selected FASTA format and sent it to a file. We also downloaded the NCBI Entrez Gene ID to NCBI Accession mapping from ftp://ftp.ncbi.nih.gov/gene/DATA/gene2accession.gz which we used to group mRNA transcripts by Entrez Gene identifier. Finally, for each Entrez Gene identifier we picked the longest mRNA and stored its length and G+C content in a data frame called annotEntrez220212 whose row names indicate the corresponding Entrez Gene identifier.

Source

Examples

data(annotEntrez220212)
dim(annotEntrez220212)
head(annotEntrez220212)
brainTxDbSets

Gene sets signatures of brain cell types

Description

Gene sets signatures specific to four different brain cell types (astrocytes, oligodendrocytes, neurons and cultured astroglial cells) derived from murine models (Cahoy et al. 2008).

Usage

```r
data(brainTxDbSets)
```

Details

The data is contained in an `list` object called `brainTxDbSets` obtained from the Brain Transcriptome Database (Cahoy et al., 2008).

Source

Examples

```r
data(brainTxDbSets)
head(lapply(brainTxDbSets, head))
```

c2BroadSets

C2 collection of canonical pathways from MSigDB 3.0

Description

C2 Broad Sets.

Usage

```r
data(c2BroadSets)
```

Details

The data is contained in an `GeneSetCollection` object called `c2BroadSets` obtained by parsing the file `c2.all.v3.0.entrez.gmt`, downloaded from http://www.broadinstitute.org/gsea, using the `getGmt()` function from the GSEABase package.
Source

Examples
data(c2BroadSets)
c2BroadSets

commonPickrellHuang

Matching microarray and RNA-seq data from human lymphoblastoid cell lines

Description
ExpressionSet objects containing microarray and RNA-seq count data for 11,508 matching Entrez genes from 36 samples of lymphoblastoid cell lines derived from unrelated Nigerian individuals. These microarray and count data are employed in the vignette of the package GSVA Hanzelmann et al. (submitted). The original experimental data was published by Huang et al. (2007) and Pickrell et al. (2010).

Usage
data(commonPickrellHuang)

Format
huangArrayRMAnoBatchCommon_eset: ExpressionSet object containing filtered, normalized and batch-removed microarray expression values for 11,508 Entrez genes from 36 unrelated Nigerian individuals.
pickrellCountsArgonneCQNcommon_eset: ExpressionSet object containing filtered and normalized RNA-seq read counts for 11,508 Entrez genes from 36 unrelated Nigerian individuals. This table of counts corresponds to RNA-seq data produced at the Argonne sequencing center (see Pickrell et al., 2010).
pickrellCountsYaleCQNcommon_eset: ExpressionSet object containing filtered and normalized RNA-seq read counts for 11,508 Entrez genes from 36 unrelated Nigerian individuals. This table of counts corresponds to RNA-seq data produced at the Yale sequencing center (see Pickrell et al., 2010).

Details
The microarray data was processed from the raw CEL files available at http://www.ncbi.nlm.nih.gov/geo under accession GSE7792. First, only Yoruba samples were considered. Second, data was processed using the Bioconductor oligo package. Quality assessment was performed by calculating NUSE and RLE diagnostics (Bolstad et al., 2005) and discarding those samples that either of the two reported diagnostics was considered below a minimum quality threshold. Third,
most samples formed part of family trios and only samples belonging to father or mother were kept. Fourth, using the RMA algorithm (Irizarry et al., 2003) implemented in the `rma()` function from the `oligo` package with argument `target="core"`, expression values were background corrected, normalized and summarized into Affymetrix transcript clusters. Fifth, using the `getNetAffx()` function from the `oligo` package, Affymetrix transcript cluster identifiers were translated into Entrez Gene identifiers resolving duplicated assignments by keeping the transcript cluster with largest expression variability measured by its interquartile range (IQR).

At this point an expression data matrix of 17,324 Entrez genes by 59 samples was obtained and using the scanning date of each CEL file samples were grouped into 5 batches stored in the pheno-typic variable `Batch` within the resulting `ExpressionSet`. Batch effect was removed by using the QR-decomposition method implemented in the `removeBatchEffect()` function from the package `limma` while keeping the sex-specific expression effect by setting the gender sample indicator variable within the design matrix argument. Finally, samples and genes were further filtered to match those from the RNA-seq tables of counts.

The RNA-seq data was obtained by directly downloading the tables of counts processed by Pickrell et al. (2010) from http://eqtl.uchicago.edu/RNA_Seq_data/results, which initially consisted of 41,466 Ensembl genes by 80 and 81 samples corresponding to the RNA-seq data obtained at the Argonne and Yale sequencing centers, respectively. Some of the samples (11 from Argonne and 12 from Yale) were prepared and sequenced twice within each sequencing center. In these cases we kept the sample of deeper coverage obtaining a final number of 69 samples on each table. We further filtered genes with low expression by discarding those with a mean of less than 0.5 counts per million calculated in log2 scale resulting in tables of counts with 17,607 genes (Argonne) and 17,843 genes (Yale) by 69 samples and we kept those genes common to both tables (17,324). Next, we normalized these two tables of counts adjusting for gene length and G+C content using the Bioconductor package `cqn` (Hansen et al., 2012). The corresponding gene length and G+C content information was extracted from data deposited at the same site from were the tables of counts were downloaded. We further filtered these two normalized tables of counts in order to match the genes and samples obtained after processing the LCL microarray data from Huang et al. (2007). This step required first to translate Ensembl gene identifiers into Entrez gene identifiers and second to match gene and sample identifiers between microarray and RNA-seq data. After these two steps we obtained the two final tables of counts of 11,508 Entrez genes by 36 samples included in this package.

Source

References

gbm_eset

See Also
genderGenesEntrez

Examples

```r
suppressMessages(library(Biobase))
data(commonPickrellHuang)
dim(huangArrayRMAnoBatchCommon_eset)
dim(pickrellCountsArgonneCQNcommon_eset)
dim(pickrellCountsYaleCQNcommon_eset)
table(huangArrayRMAnoBatchCommon_eset$Gender)
table(pickrellCountsArgonneCQNcommon_eset$Gender)
table(pickrellCountsYaleCQNcommon_eset$Gender)
stopifnot(identical(featureNames(huangArrayRMAnoBatchCommon_eset),
                     featureNames(pickrellCountsArgonneCQNcommon_eset)))
stopifnot(identical(sampleNames(huangArrayRMAnoBatchCommon_eset),
                     sampleNames(pickrellCountsArgonneCQNcommon_eset)))
```

gbm_eset

Glioblastoma Multiforme (GBM) Data by Verhaak et al. (2010)

Description

Microarray data from Glioblastoma multiforme (GBM) downloaded from the TCGA website (http://cancergenome.nih.gov). The data is provided as an ExpressionSet object containing RMA-processed expression values.

Usage

```r
data(gbm_VerhaakEtAl)
```

Details

The data is contained in an ExpressionSet object called gbm_eset and was obtained using RMA (Irizarry et al. 2003).

Source

References

Examples

```r
data(gbm_VerhaakEtAl)
gbm_eset
head(pData(gbm_eset))
table(gbm_eset$subtype)
```

<table>
<thead>
<tr>
<th>genderGenesEntrez</th>
<th>Entrez genes with documented sex-specific expression</th>
</tr>
</thead>
</table>

Description

Entrez genes with documented sex-specific expression.

Usage

```r
data(genderGenes)
```

Format

- `msYgenesEntrez`: Entrez gene identifiers from genes belonging to the male-specific region of chromosome Y (Skaletsky et al., 2003).
- `XiEgenesEntrez`: Entrez gene identifiers from genes located in the X chromosome and which have been reported to escape X-inactivation (Carrel and Willard, 2005).

Details

These are two vectors of Entrez gene identifiers corresponding to genes with sex-specific expression documented by Skaletsky et al. (2003) and Carrel and Willard (2005).

Source

Examples

```r
data(genderGenesEntrez)
length(msYgenesEntrez)
length(XiEgenesEntrez)
```

leukemia_eset
Leukemia Data by Armstrong et al. (2002) from the Broad Institute

Description

Microarray data hybridized on the Affymetrix Human Genome U95 Set chip, for 37 different individuals with human acute leukemias, where 20 of them had conventional childhood acute lymphoblastic leukemia (ALL) and the other 17 were affected with the MLL (mixed-lineage leukemia gene) translocation. The data is provided as an `ExpressionSet` object containing RMA-processed expression values.

Usage

```r
data(leukemia)
```

Details

The data is contained in an `ExpressionSet` object called `leukemia_eset` obtained as follows:

- Raw CEL files corresponding to the data of the entire study (72 individuals) were downloaded from http://www.broadinstitute.org/cgi-bin/cancer/publications/pub_paper.cgi?mode=view&paper_id=63
- 41 ALL and MLL samples with the same scanning date were kept and the rest were discarded.
- Based on quality assessments by NUSE and RLE diagnostics (Bolstad et al., 2005), 4 additional samples were discarded such that 20 ALL and 17 MLL samples were finally kept.
- Probe-level data from these 37 samples were background corrected, normalized and summarized using RMA (Irizarry et al., 2003) providing this final `ExpressionSet` object.

Source

MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia.

References

Examples

data(leukemia)
leukemia_eset
head(pData(leukemia_eset))
Index

* datasets
 * annotEntrez220212, 3
 * brainTxDbSets, 4
 * c2BroadSets, 4
 * commonPickrellHuang, 5
 * gbm_eset, 7
 * genderGenesEntrez, 8
 * leukemia_eset, 9
 * dataset
 * GSVAdataset-package, 2
 * annotEntrez220212, 2, 3
 * brainTxDbSets, 2, 4
 * c2BroadSets, 2, 4
 * commonPickrellHuang, 2, 5
 * gbm_eset, 7
 * gbm_VerhaakEtAl, 2
 * gbm_VerhaakEtAl(gbm_eset), 7
 * genderGenesEntrez, 2, 7, 8
 * GSVAdataset (GSVAdataset-package), 2
 * GSVAdataset-package, 2
 * huangArrayRMAnoBatchCommon_eset
 * (commonPickrellHuang), 5
 * leukemia, 2
 * leukemia(leukemia_eset), 9
 * leukemia_eset, 9
 * msYgenesEntrez (genderGenesEntrez), 8
 * pickrellCountsArgonneCQNcommon_eset
 * (commonPickrellHuang), 5
 * pickrellCountsYaleCQNcommon_eset
 * (commonPickrellHuang), 5
 * XiEgenesEntrez (genderGenesEntrez), 8