Package ‘GenomicDistributionsData’

May 16, 2024

Title Reference data for GenomicDistributions package

Version 1.12.0

Description This package provides ready to use reference data for GenomicDistributions package. Raw data was obtained from ensemblldb and processed with helper functions. Data files are available for the following genome assemblies: hg19, hg38, mm9 and mm10.

License BSD_2_clause + file LICENSE

biocViews ExperimentHub, ExperimentData, Genome

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.1.1

Depends R (>= 4.1)

Imports ExperimentHub (>= 1.14.0), AnnotationHub, AnnotationFilter, data.table, utils, BSgenome, GenomeInfoDb, GenomicFeatures, GenomicRanges, ensemblldb

Suggests knitr, BiocStyle, rmarkdown

VignetteBuilder knitr

BugReports http://github.com/databio/GenomicDistributionsData

git_url https://git.bioconductor.org/packages/GenomicDistributionsData

git_branch RELEASE_3_19

git_last_commit 1421bba

git_last_commit_date 2024-04-30

Repository Bioconductor 3.19

Date/Publication 2024-05-16

Author Michal Stolarczyk [aut], Kristyna Kupkova [aut, cre], Jose Verdezoto [aut], John Lawson [ctb], Jason Smith [ctb], Nathan C. Sheffield [ctb]
Maintainer Kristyna Kupkova <kristynakupkova@gmail.com>

Contents

- **.requireAndReturn** .. 2
- buildChromSizes ... 3
- buildGeneModels .. 3
- buildOpenSignalMatrix ... 4
- buildTSS ... 4
- cellTypeMetadata .. 5
- chromSizes_hg19 ... 5
- chromSizes_hg38 .. 6
- chromSizes_mm10 ... 7
- chromSizes_mm9 ... 7
- geneModels_hg19 .. 8
- geneModels_hg38 .. 9
- geneModels_mm10 ... 9
- geneModels_mm9 .. 10
- GenomicDistributionsData .. 11
- loadBSgenome ... 11
- loadEnsDb ... 12
- loadTxDb ... 13
- openSignalMatrix_hg19 .. 13
- openSignalMatrix_hg38 .. 14
- openSignalMatrix_mm10 .. 15
- TSS_hg19 ... 16
- TSS_hg38 ... 17
- TSS_mm10 ... 18
- TSS_mm9 ... 18

Index 20

.requireAndReturn Checks to make sure a package object is installed, and if so, returns it.
If the library is not installed, it issues a warning and returns NULL.

Description

Checks to make sure a package object is installed, and if so, returns it. If the library is not installed, it issues a warning and returns NULL.

Usage

```
.requireAndReturn(BSgenomeString)
```

Arguments

- **BSgenomeString** A BSgenome compatible genome string.
buildChromSizes

Value
A BSgenome object if installed.

Description
Build chromosome sizes object

Usage
buildChromSizes(assembly)

Arguments
assembly string, reference assembly identifier to chromosome sizes for

Value
named int, sizes of chromosome with respective names

Examples
Not run:
buildChromSizes("hg19")
End(Not run)

buildGeneModels

Description
Build gene models

Usage
buildGeneModels(refAssembly)

Arguments
refAssembly string, reference assembly identifier to build gene model for

Value
a list of four GRanges objects: genesGR, exonsGR, threeUTRGR, fiveUTRGR
Examples

```r
## Not run:
hg19models = buildGeneModels("hg19")

## End(Not run)
```

buildOpenSignalMatrix

Build open signal matrix

Usage

```r
buildOpenSignalMatrix(assembly)
```

Arguments

- `assembly` string, reference assembly identifier to build gene model for

Value

data.frame, rows represent whole selection of open chromatin regions across all cell types defined by ENCODE, columns are individual cell types and values are normalized open chromatin signal values

Examples

```r
## Not run:
buildOpenSignalMatrix("hg19")

## End(Not run)
```

buildTSS

Build TSS

Usage

```r
buildTSS(assembly)
```
cellTypeMetadata

Arguments

- **assembly**
 - string, reference assembly identifier to TSS for

Value

- GRanges object that consists of transcription start sites locations

Examples

```r
## Not run:
tss = buildTSS("hg19")
## End(Not run)
```

cellTypeMetadata

Table the maps cell types to tissues and groups

Description

Table the maps cell types to tissues and groups

Format

data.table with 3 columns (cellType, tissue and group) and 74 rows (one per cellType)

Source

self-curated dataset

chromSizes_hg19

hg19 chromosome sizes

Description

A dataset containing chromosome sizes for Homo sapiens hg19 genome assembly

Usage

```r
chromSizes_hg19(metadata=FALSE)
```

Arguments

- **metadata**
 - logical value indicating whether only metadata should be returned or if the resource should be loaded
Format

A named vectors of lengths with one item per chromosome

Value

A vector of lengths

Source

BSgenome.Hsapiens.UCSC.hg19 package

Examples

hg19c = chromSizes_hg19()

chromSizes_hg38 hg38 chromosome sizes

Description

A dataset containing chromosome sizes for Homo sapiens hg38 genome assembly

Usage

chromSizes_hg38(metadata=FALSE)

Arguments

metadata logical value indicating whether only metadata should be returned or if the resource should be loaded

Format

A named vectors of lengths with one item per chromosome

Value

A vector of lengths

Source

BSgenome.Hsapiens.UCSC.hg38 package

Examples

hg38c = chromSizes_hg38()
chromSizes.mm10

chromSizes.mm10
mm10 chromosome sizes

Description
A dataset containing chromosome sizes for Mus musculus mm10 genome assembly

Usage
`chromSizes_mm10(metadata=FALSE)`

Arguments
- **metadata**
 Logical value indicating whether only metadata should be returned or if the resource should be loaded

Format
A named vectors of lengths with one item per chromosome

Value
A vector of lengths

Source
BSgenome.MMusculus.UCSC.mm10 package

Examples
```r  
mm10c = chromSizes_mm10()
```

chromSizes.mm9
mm9 chromosome sizes

Description
A dataset containing chromosome sizes for Mus musculus mm9 genome assembly

Usage
`chromSizes_mm9(metadata=FALSE)`

Arguments
- **metadata**
 Logical value indicating whether only metadata should be returned or if the resource should be loaded
geneModels_hg19

Format
A named vectors of lengths with one item per chromosome

Value
A vector of lengths

Source
BSgenome.MMusculus.UCSC.mm9 package

Examples
mm9c = chromSizes_mm9()

geneModels_hg19 hg19 gene models

Description
A dataset containing gene models for Homo sapiens hg19 genome assembly

Usage
geneModels_hg19(metadata=FALSE)

Arguments
metadata logical value indicating whether only metadata should be returned or if the resource should be loaded

Format
A list of two GRanges objects, with genes and exons locations

Value
A list with two GRanges objects.

Source
EnsDb.Hsapiens.v75 package

Examples
hg19GeneModels = geneModels_hg19()
geneModels_hg38

Description
A dataset containing gene models for Homo sapiens hg38 genome assembly

Usage
geneModels_hg38(metadata=FALSE)

Arguments
- `metadata` logical value indicating whether only metadata should be returned or if the resource should be loaded

Format
A list of two GRanges objects, with genes and exons locations

Value
A list with two GRanges objects.

Source
EnsDb.Hsapiens.v86 package

Examples
```r
geneModels_hg38 = geneModels_hg38()
```

geneModels_mm10 mm10 gene models

Description
A dataset containing gene models for Mus musculus mm10 genome assembly

Usage
geneModels_mm10(metadata=FALSE)
Arguments

metadata logical value indicating whether only metadata should be returned or if the resource should be loaded

Format

A list of two GRanges objects, with genes and exons locations

Value

A list with two GRanges objects.

Source

EnsDb.Mmusculus.v79 package

Examples

```r
mm10GeneModels = geneModels_mm10()
```

geneModels_mm9

mm9 gene models

Description

A dataset containing gene models for Mus musculus mm9 genome assembly

Usage

geneModels_mm9(metadata=FALSE)

Arguments

metadata logical value indicating whether only metadata should be returned or if the resource should be loaded

Format

A list of two GRanges objects, with genes and exons locations

Value

A list with two GRanges objects.

Source

TxDb.Mmusculus.UCSC.mm9.knownGene package
Examples

```r
mm9GeneModels = geneModels_mm9()
```

Description

Data (hg19, hg38, mm9, mm10) for the GenomicDistributions package.

Details

The vignette details how to access the data from ExperimentHub: `browseVignettes("GenomicDistributionsData")`
Details on how the data files were created can be found under the R directory in `utils.R` and `build.R`

Source

UCSC hg19, hg38, mm9, mm10 genome packages and ensembldb

Examples

```r
## Not run:
library(ExperimentHub)
hub = ExperimentHub()
q = query(hub, "GenomicDistributionsData")
q[[1]]
q[["EH3472"]]
## End(Not run)
```

loadBSgenome **Loads BSgenome objects from UCSC-style character vectors.**

Description

This function will let you use a simple character vector (e.g. ‘hg19’) to load and then return BSgenome objects. This lets you avoid having to use the more complex annotation for a complete BSgenome object (e.g. BSgenome.Hsapiens.UCSC.hg38.masked)

Usage

```r
loadBSgenome(genomeBuild, masked = TRUE)
```
Arguments

- `genomeBuild` (string): One of 'hg19', 'hg38', 'mm10', 'mm9', or 'grch38'
- `masked` (logical): Should we used the masked version? Default: TRUE

Value

a BSgenome object according to the specified genome assembly

Examples

```r
## Not run:
bsg = loadBSgenome('hg19')
## End(Not run)
```

loadEnsDb

Load selected EnsDb library

Description

Load selected EnsDb library

Usage

`loadEnsDb(genomeBuild)`

Arguments

- `genomeBuild` (string): genome identifier

Value

loaded library

Examples

```r
## Not run:
loadEnsDb("hg19")
## End(Not run)
```
loadTxDb

Load selected TxDb library

Usage

loadTxDb(genomeBuild)

Arguments

geneBuild string, genome identifier

Value

loaded library

Examples

Not run:
loadTxDb("hg19")

End(Not run)

openSignalMatrix_hg19 A dataset containing open chromatin regions across all cell types de-
defined by ENCODE for Homo Sapiens hg19

Description

Preparation steps:

1. made a universe of regions by merging regions across cell types defined as opened in EN-
CODE
2. took bigwig files from ENCODE for individual cell types, merged replicates, filtered out
blacklisted sites
3. evaluated the signal above regions defined by previous step
4. performed quantile normalization

Usage

openSignalMatrix_hg19(metadata=FALSE)
openSignalMatrix_hg38

Arguments

`metadata` logical value indicating whether only metadata should be returned or if the resource should be loaded

Format

data.frame, rows represent whole selection of open chromatin regions across all cell types defined by ENCODE, columns are individual cell types and values are normalized open chromatin signal values.

Value

A data.frame with hg19 open chromatin regions.

Source

http://big.databio.org/open_chromatin_matrix/openSignalMatrix_hg19_percentile99_01_quantNormalized_round4d.txt.gz

Examples

```r
## Not run:
hg19OpenSignal = openSignalMatrix_hg19()
## End(Not run)
```

openSignalMatrix_hg38
A dataset containing open chromatin regions across all cell types defined by ENCODE for Homo sapiens hg38

Description

Preparation steps:

1. made a universe of regions by merging regions across cell types defined as opened in ENCODE
2. took bigwig files from ENCODE for individual cell types, merged replicates, filtered out blacklisted sites
3. evaluated the signal above regions defined by previous step
4. performed quantile normalization

Usage

`openSignalMatrix_hg38(metadata=FALSE)`
openSignalMatrix_mm10

A dataset containing open chromatin regions across all cell types defined by ENCODE for *Mus musculus* mm10

Description

Preparation steps:

1. made a universe of regions by merging regions across cell types defined as opened in ENCODE
2. took bigwig files from ENCODE for individual cell types, merged replicates, filtered out blacklisted sites
3. evaluated the signal above regions defined by previous step
4. performed quantile normalization

Usage

`openSignalMatrix_mm10(metadata=FALSE)`

Arguments

- `metadata` logical value indicating whether only metadata should be returned or if the resource should be loaded

Format

data.frame, rows represent whole selection of open chromatin regions across all cell types defined by ENCODE, columns are individual cell types and values are normalized open chromatin signal values.

Value

A data.frame with hg38 open chromatin regions.

Source

http://big.databio.org/open_chromatin_matrix/openSignalMatrix_hg38_percentile99_01_quantNormalized_round4d.txt.gz

Examples

```r
## Not run:
hg38OpenSignal = openSignalMatrix_hg38()
## End(Not run)
```
Arguments

metadata logical value indicating whether only metadata should be returned or if the resource should be loaded

Format

data.frame, rows represent whole selection of open chromatin regions across all cell types defined by ENCODE, columns are individual cell types and values are normalized open chromatin signal values.

Value

A data.frame with mm10 open chromatin regions.

Source

http://big.databio.org/open_chromatin_matrix/openSignalMatrix_mm10_percentile99_01_quantNormalized_round4d.txt.gz

Examples

Not run:
mm10OpenSignal = openSignalMatrix_mm10()
End(Not run)
TSS_hg38

Value
A GRanges object with hg19 TSS locations.

Source
EnsDb.Hsapiens.v75 package

Examples
hg19TSS = TSS_hg19()

TSS_hg38
hg38 TSS locations

Description
A dataset containing Transcription Start Sites for the Homo sapiens hg38 genome assembly

Usage
TSS_hg38(metadata=FALSE)

Arguments
metadata logical value indicating whether only metadata should be returned or if the resource should be loaded

Format
A GRanges object with Transcription Start Site locations

Value
A GRanges object with hg38 TSS locations.

Source
EnsDb.Hsapiens.v86 package

Examples
hg38TSS = TSS_hg38()
Description
A dataset containing Transcription Start Sites for the Mus musculus mm10 genome assembly

Usage
TSS_mm10(metadata=FALSE)

Arguments
metadata logical value indicating whether only metadata should be returned or if the resource should be loaded

Format
A named vectors of lengths with one item per chromosome

Value
A GRanges object with mm10 TSS locations.

Source
EnsDb.Mmusculus.v79 package

Examples
mm10TSS = TSS_mm10()

Description
A dataset containing Transcription Start Sites for the Mus musculus mm9 genome assembly

Usage
TSS_mm9(metadata=FALSE)

Arguments
metadata logical value indicating whether only metadata should be returned or if the resource should be loaded
TSS_mm9

Format

A named vectors of lengths with one item per chromosome

Value

A GRanges object with mm9 TSS locations.

Source

TxDb.Musculus.UCSC.mm9.knownGene package

Examples

```r
mm9TSS = TSS_mm9()
```
Index

* datasets
 - cellTypeMetadata, 5
 - chromSizes_hg19, 6
 - chromSizes_hg38, 6
 - chromSizes_mm10, 7
 - chromSizes_mm9, 7
 - geneModels_hg19, 8
 - geneModels_hg38, 9
 - geneModels_mm10, 9
 - geneModels_mm9, 10
 - openSignalMatrix_hg19, 13
 - openSignalMatrix_hg38, 14
 - openSignalMatrix_mm10, 15
 - TSS_hg19, 16
 - TSS_hg38, 17
 - TSS_mm10, 18
 - TSS_mm9, 18
 .requireAndReturn, 2

buildChromSizes, 3
buildGeneModels, 3
buildOpenSignalMatrix, 4
buildTSS, 4

 - cellTypeMetadata, 5
 - chromSizes_hg19, 5
 - chromSizes_hg38, 6
 - chromSizes_mm10, 7
 - chromSizes_mm9, 7
 - geneModels_hg19, 8
 - geneModels_hg38, 9
 - geneModels_mm10, 9
 - geneModels_mm9, 10
 - GenomicDistributionsData, 11

loadBSgenome, 11
loadEnsDb, 12
loadTxDb, 13

openSignalMatrix_hg19, 13